Supplementary Table 1

Yeast plasmids used in this study

Plasmid	Description	Reference
pRS315-ZUO1	pRS315 carrying ZUO1 under control of its native promoter;	1
	used as template to generate all Zuo1 variants used in this	
	study unless specified otherwise.	
pRS316-ZUO1	pRS316 carrying ZUO1 under control of its native promoter;	1
	used to construct $zuo1_{Asp262/Thr266/Val273Ala}$ mutant.	
pRS315-ZUO1 ₁₋₃₁₀	pRS315-ZUO1 with codons 311-433 deleted.	This study
pRS315-MET3-ZUO1	ZUO1 under control of MET3 promoter in pRS315.	This study
pRS416-TEF1-RPL31A	pRS416 carrying <i>RPL31A</i> under the control of <i>TEF1</i> promoter; used to generate pRS416-TEF1-RPL31A-HA.	This study
pRS416-TEF1-RPL31A-HA	pRS416 carrying RPL31A gene with HA-tag coding sequence	This study
	at its 3'-end, under control of <i>TEF1</i> promoter; used to generate	
	all Bpa RPL31A substitution mutations for crosslinking.	
pRS316-RPL22A-HA	pRS316 with RPL22A-HA tagged gene under the control of its	This study
	native promoter; used to generate all Bpa RPL22A point	
	mutations for crosslinking.	
ptRNA-Bpa	A 2 micron plasmid encoding a variant tRNA synthetase and	2
	tRNA _{CUA} for Bpa incorporation; plasmid with either a TRP1 or	
	LEU2 marker was used.	_
pRDN-hyg1	URA3-based 2 micron plasmid carrying a hygromycin-	3
NONGE	resistant <i>rDNA</i> repeat under control of its native promoter.	2
pNOY373	A derivative of the 2 micron plasmid YEp351 (<i>LEU2</i>) carrying	3
	a single copy of <i>rDNA</i> repeat under control of its native	
DDC00	promoter; used for generating $H24\Delta 1$, $H59\Delta 5$ and $ES12\Delta 10$.	4
pDB688	Reporter plasmid carrying a translational fusion of Renilla and	4
nDD600 Ston	firefly luciferase genes under the control of the PGK promoter.	This study
pDB688-Stop	Test plasmid for readthrough assays; existing CAA codon	This study
	replaced with TAG stop codon and flanking GAT and ACG	
	codons with CAA in the linker region between luciferase genes in pDB688.	
pDB688-QQQ	Control plasmid for readthrough assay; generated by	This study
ръвово-QQQ	substituting CAA for GAT and ACG codons flanking the	Tills study
	existing CAA codon in the linker region between Renilla and	
	firefly luciferase genes in pDB688.	
pJD375	Control plasmid for frameshift assays with Renilla and firefly	5
F	luciferase genes in frame.	J
pYDL-LA	Test plasmid for assaying -1 PRF with firefly luciferase gene in	5
r	-1 frame to Renilla luciferase gene.	· ·

References for Supplementary Table 1

- 1. Yan, W. et al. Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J 17, 4809-17 (1998).
- 2. Krishnamurthy, M. et al. Caught in the act: covalent cross-linking captures activator-coactivator interactions in vivo. *ACS Chem Biol* **6**, 1321-6 (2011).
- 3. Wai, H.H., Vu, L., Oakes, M., & Nomura, M. Complete deletion of yeast chromosomal rDNA repeats and integration of a new rDNA repeat: use of rDNA deletion strains for functional analysis of rDNA promoter elements *in vivo*. *Nucleic Acids Res* **28**, 3524-34 (2000).
- 4. Salas-Marco, J. & Bedwell, D.M. Discrimination between defects in elongation fidelity and termination efficiency provides mechanistic insights into translational readthrough. *J Mol Biol* **348**, 801-15 (2005).
- 5. Muldoon-Jacobs, K.L. & Dinman, J.D. Specific effects of ribosome-tethered molecular chaperones on programmed -1 ribosomal frameshifting. *Eukaryot Cell* **5**, 762-70 (2006).