
Multivariate Analysis of Longitudinal Rates of Change:

Supplementary Materials

This document provides additional results for assessing the power of the Multivariate Longitudinal Rate
Regression model (MLRR) under a Global Multivariate Proportional Rate (GMPR) assumption compared to
an unconstrained MLRR model with separate rate estimates for each outcome, and a pre-selected univariate
Longitudinal Rate Regression (LRR) model for a single outcome in scenarios with varying levels of violation
of the GMPR assumption. The set up for these calculation for a trivariate outcome is described in detail in
the main manuscript.

1 Multivariate Power Under Increased Across Outcome Correla-
tion

The following calculations replicate those from the main manuscript with an altered correlation structure
in order to illustrate the potential impact of changes in the covariance structure on the power of the two
multivariate approaches. The primary change in the correlation structure was to increase the across outcome
random effect correlation. The correlation between intercept and slope random effects within an outcome
was also reduced in order to ensure the specification of a positive definite covariance matrix. Hence, the
following covariance structure was used for these calculations:

R =


1.000 0.016 0.750 0.003 0.750 0.003
0.016 0.100 0.003 0.075 0.003 0.075
0.750 0.003 1.000 0.016 0.750 0.003
0.003 0.075 0.016 0.100 0.003 0.075
0.750 0.003 0.750 0.003 1.000 0.016
0.003 0.075 0.003 0.075 0.016 0.100

 .

All other specifications detailed in the main manuscript were left unchanged.
The resulting power curves from the altered covariance structure under the three scenarios are presented

in Figure S1. When the GMPR assumption is correct, the global MLRR model maintains higher power
relative to the univariate LRR model and joint MLRR model (see Figure S1(a)) though the advantage is less
substantial compared to the curves presented in the main manuscript. In both scenarios where the GMPR
assumption is violated, the global MLRR model was less powerful compared to the other two approaches
(see Figure S1(b) and Figure S1(c)). Not surprisingly, these results illustrate how the power for the global
MLRR model will suffer as the correlation between the measured outcomes increases. Therefore, when the
outcome measures are highly correlated, the global MLRR model may only be advantageous in terms of
power compared to a univariate or joint multivariate approach when the effect (difference in the rate of
change due to exposure) for each outcome is the same or highly similar.

The joint MLRR model in Figure S1 displays an interestingly different behavior compared to the results
presented in the primary manuscript. The power for the joint MLRR model is reduced relative to the
univariate model when the rate effect is the same for each outcome (see Figure S1 (a)). The joint MLRR
model likely suffers in this scenario due to the increased degrees of freedom of the joint test and an insufficient
increase in information from the multivariate outcome due to the high correlation. However, as shown in
panels (b) and (c), as the rate effects for the second and third outcome decrease in magnitude in the second
and third scenarios, the joint MLRR model actually increases in power and surpasses the univariate model
in the third scenario. Thus, this alternative calculation illustrates the complexity of examining power in a
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multivariate setting as it can be highly dependent on the assumed covariance structure and the direction of
the alternative.

Although the positive behavior of the joint MLRR model may appear surprising, the result can be
explained by the impact of correlation on relative power when considering different alternative structures
(directions) with multivariate statistics, and by the mathematical structure of the MLRR model. First, even
in relatively simple settings such as with MANOVA, Cole et al. [1] discuss apparent contradictions where
power may actually increase using multivariate testing when the correlation increases among outcomes that
have different effect sizes, and this can explain the results for MLRR in panel (b) relative to panel (a). Second,
the displayed behavior may be explained by two structural factors: the underlying relationship between the
rate effect size and its asymptotic standard error induced by the interaction between the reference time
structure and the rate structure, and the increased correlation between the random slope effects across
outcomes. The basic form of the relationship between the rate effect and its standard error can be discerned
by considering the derivative of the mean structure for the MLRR model with respect to parameters of the
reference time function. For example, if we set our reference function for the kth outcome µ0k(tijk) = β′kTijk

and take the derivative of Equation (2) from the main manuscript with respect to parameter βkl (the
coefficient for basis function l of the kth outcome), we obtain the following results:

∂E(Yijk | Xi = x, tij = t)

∂βkl
= (1 + θkx)T··k.

For the above derivative, we did not impose the GMPR assumption since these calculations correspond to
the joint MLRR model. The important result of the above derivation is that the derivative of the mean
structure with respect to parameters in the reference function will depend on the value of the rate paremeter.
As outlined in the appendix to the main manuscript, the hessian equation for the cross component of the
rate parameter and reference time function parameter will depend on the above derivative. Furthermore, the
standard error of the rate parameter can be expressed as a function of the hessian matrix can be expressed
as follows:

Var(θ̂k) = [H11 −H12H
−1
22 H21]−1

where H11 denotes the hessian components for the rate parameter, H22 denotes the hessian components for
all other parameters, and H12 and H21 denote the hessian for the cross components of the rate parameter
and all other parameters. Therefore, since the cross components matrices H12 and H21 depend on the rate
structure based on the above calculation, the standard error for the rate parameter will also depend on the
rate structure in the form of the inverse of a function that has negative quadratic form with respect to the
rate structure. Thus, the standard error of the rate parameter will have a u-shaped relationship with the
value of the rate parameter with a minimum standard error when the rate parameter is equal to -1.

Note that these calculations are provided in the context of the joint MLRR model, but this relationship
between the rate parameter and its standard error will also exist in the univariate LRR model and the MLRR
model with a globally estimated rate parameter. Results from this manuscript suggest that the power curves
for the latter two models consistently increase with respect to effect size suggesting that the effect size as it
relates to power grows at a faster rate than the standard error for these models. This also seems to be the
case for the joint MLRR model when the measured outcomes are mildly correlated. The results presented
in this document shows that this relationship no longer holds for the joint MLRR model when the outcomes
are strongly correlated. A more detailed assessment (results not shown) conveys that power for this test
as the rate effect for the second and third outcome decrease toward zero is u-shaped. This result suggests
that the increased correlation reduces the total variation such that the size of the standard error of the rate
parameters drive the power. Further exploration indicates that this u-shaped behavior only occurs when
the correlation between random slope effects across outcomes is increased and is not impacted by other
increased correlations. The importance of the correlation in random slopes is likely due to the interaction
between the random slope and the reference time function in the model. From an intuitive stand point,
the behavior may be explained by the diverging rate effects for each outcomes. As the rate effects for the
three outcome become less similar, the imposed strong correlation across outcome may force a reduction in
the total variation in order for this strong across outcome correlation to be consistent with the increasingly
diverse behavior in the rate structure. Such intuition would be consistent with the results presented by Cole
et al. [?] and might suggest that the increased across outcome correlation is the primary factor for explaining
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the increased power with diverging effect size. Further exploration is need to examine this possibility as well
as other consequences of altering the covariance structure of this model.
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Figure S1

(a)
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(b)
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(c)
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Power curves for testing group differences in the
rate of change for three outcomes between two
groups for the univariate LRR model (solid red),
the MLRR model with separate rate parame-
ters for each outcome (dashed green), and the
MLRR model with a global rate parameter (dot-
ted blue). (a) The true data was generated from
a model where the rate parameter for each out-
come was the same and the GMPR assumption
was correct. The global rate effect size is 25%.
(b) The true data was generated from a model
where the rate parameters for the second and
third outcomes respectively were two-thirds and
one-third the size of the rate parameter for the
first outcome. The rate effect sizes for the each
outcome was 25%, 16.7%, and 8.3%. (c) The
true rate parameter for the second and third out-
comes respectively were reduced by half and to
zero relative to the rate parameter of the first
outcome. The rate effect sizes for each outcome
was 25%, 12.5%, and 0%. The power curve for
the univariate LRR model was generated from
testing the first outcome whose rate effect was
25% in each scenario.
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