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ABSTRACT A unified approach is developed for the evo-
lutionary structure of mammalian life histories; it blends
together three basic components (individual growth or pro-
duction rate as a function ofbody size, natural selection on age
ofmaturity, and stable demography) to predict both the powers
and the intercepts of the scaling allometry of life history
variables to adult size. The theory also predicts the signs (+, -)
of the correlations between life history variables when body size
is held constant. Finally, the approach allows us to eliminate
body size to predict the dimensionless relationships between the
life history variables themselves.

Two major approaches have dominated recent thinking about
variation in mammalian life histories. The first sees variation
as simply reflecting allometric or scaling consequences of
adult body size (1-4), whereas the second sees natural
selection as molding the life history fairly independent of
body size (5-8). Both approaches recognize that "to grow big
takes time" so that larger adults must have longer immature
periods; they differ in that the first assumes that demographic
and birth rates are also mainly determined by adult size, with
a rather mysterious causal connection (at least for demogra-
phy; ref. 9), whereas the second sees these rates as free to
evolve within broad limits, independent ofadult size. A major
finding supporting the second position is that life-history
variables, such as birth rates, death rates, and age of matu-
rity, are highly correlated with each other even when adult
body size is held constant (5-8).

This paper develops a unification of the two approaches. It
assigns a central, yet well-defined, role to body size. It also
invokes natural selection, primarily on the age of maturity, to
link adult demography to adult body size, through the effects
of size on individual productivity (or growth potential).
Finally, the approach makes use of a demographic identity
appropriate for a nongrowing population; the net reproduc-
tive rate (RO) must equal 1 in such a population so that not all
variables in Ro can vary independently (4, 10, 11).
The model developed here makes four types of predictions:

(i) the allometric or scaling relations of life-history variables
with adult body size, including the intercepts ofthe loge lines;
(ii) the correlations between life-history variables with body
size held constant (5-8); (iii) the assignment of ecological
reasons for why species differ in their assemblage of life-
history variables, with or without consideration of body size
(this latter sort of prediction follows from the fact that only
a few major parameters are shown to influence the "permit-
ted combinations" of life-history variables); and (iv) numeric
values of the dimensionless relationships between the life
history variables themselves (12).

definitions), life expectancy at birth, life expectancy at ma-
turity, and annual fecundity all scale with exponents [a;
where Y = oc(weight)aI near ±1/4 (fecundity is negative) (4,
5-9, 12-14). The extensive analyses are at a variety of
taxonomic levels and degrees of precision. The exponents
invariably fall in the range of magnitude 0.2-0.3. Using the
life table data set compiled by Millar and Zammuto (13), I
estimated average instantaneous mortality rates for both the
juvenile and adult periods of life; both scaled with exponents
near -0.25 (adult, -0.21; r = 0.83; n = 26; juvenile, -0.27;
r = 0.89; n = 26). The definitions of these rates are given later
in this paper. This scaling is expected because life expectancy
is a direct function of the inverse of the mortality rates (and
it scales with a +0.25 power).
Harvey and colleagues (5-8) have also shown that these

life-history variables (age at maturity, adult and juvenile
mortality rates, and annual fecundity) are correlated with
each other, even when adult body size is held constant. Table
1 shows the results of the following analyses. The authors fit
lines of the form log,(variable) vs. log,(adult weight). Since
some taxa fall above or below the line, one can then extract
the deviation of the particular loge(variable) from the line.
These deviations are highly correlated with each other (Table
1). For example, taxa with relatively high ages of maturity
also have relatively low adult mortalities.

Theory: The Basic 0.25 Scaling

Stable demography. Consider a life history where growth
ceases at adulthood, which is also characterized by constant
fecundity and constant adult mortality. Let b be the birthrate
in daughters per unit time, S(a) the survival fraction of
daughters to maturity (age a), and M the adult instantaneous
mortality rate (i.e., survival for one time period = e-M). Ro
is the average number of daughters produced over a female's
lifetime. For this life history Ro is given by (10)

b-S(a)
Ro=M [1]

where 1/M is the average length of the adult life-span during
which a female produces b daughters per unit time, S
proportion of whom survive. In a nongrowing (stationary)
population RO = 1 so that any two of the variables set the
value of the third (4, 10, 11). Sometimes it will be more useful
to write S(a) as

_-f Z(x)dx [2e 2

Empirical Patterns

Several life-history variables scale as power functions of
adult body size. In particular, age at maturity (by several

where Z(x) is an immature instantaneous mortality rate
appropriate for age x. In general, Z(x) decreases with x but it
may well reach its lowest value prior to age a.
Growth versus body size. Several authors (14-16) have

noted that the adult-body-size/age-of-maturity scaling (a 0.25
power) follows directly from a growth relation, provided the
growth rate (individual productivity) scales with the 0.75
power of body size, after independence from the parent.
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Table 1. Signs of correlations between life-history variables,
with adult body size held constant (from refs. 5-8)

Sign of
Variable pair correlation

Adult mortality rate-age of maturity Negative
Juvenile mortality rate-age of maturity Negative
Juvenile mortality rate-adult mortality rate Positive
Annual fecundity-age of maturity Negative
Annual fecundity-adult mortality rate Positive
Annual fecundity-juvenile mortality rate Positive

Each pair is expressed in log,(variable) form; the correlation is
between respective deviations of the variables from their means,
derived as the deviations (or residuals) from the log,(variable) vs.
loge(adult body size) regressions. The exact measures of adult and
juvenile mortality rates used in ref. 6 differ from the instantaneous
rates developed in the theory of this paper. To determine whether
these somewhat different measures affected the signs of the corre-
lations, I repeated the log, deviation analysis by using the appropriate
instantaneous rates calculated for the life table data compilation of
Millar and Zammuto (13). In terms of the signs of the correlations,
my more precise analysis gave the same answers.

There is abundant evidence that individual productivity does
indeed scale in this way within many animal groups (17). IfW
is body size, we have

dW
W.5-=A

dT [3]

The growth coefficient A differs between taxa (17) but the
power coefficient, here shown as 0.75, is generally between
0.7 and 0.8. In what follows, I use 0.75; alteration of it to
another value is straightforward. Ifwe take time 0 as the point
of independence from the parent (approximately the time of
weaning) and let W0 be the corresponding offspring size, Eq.
3 may be integrated to give

W(T)- 25 = 0.25*A*T +WO.21

If a is the age of maturity (measured from independence)
when growth ceases, and if Wo/W(a) is defined as 8, the
above may be written as

25 0.25-A
W ~~-(1 - . [4]

write WO/W(a) = 8, and solve for 1/2r. This gives

A 0.25b = -~a- [5]

Thus, b scales with the -0.25 power of adult body size
among species with similar A, 8, and C values. {If a W0 sized
offspring costs (C/2).Wl+k units of energy, the power in Eq.
5 is larger in magnitude by an additive amount k [i.e., -(0.25
+ k) instead of -0.25].}
Natural selection on the age ofmaturity (a). The mortality

rate of immatures is generally high; suppose that it drops with
age but reaches its minimum, and adult value, prior to
maturation and then remains relatively constant until it
begins to increase late in life (19). RO, a Darwinian fitness
measure appropriate for a nongrowing population (10), can be
written as

bf-oZ(x)dx
Ro = M [6]

But if the instantaneous mortality rate bottoms out prior to
a, only b and e-foZ(x)Ix are functions of a in Eq. 6. The
optimal or ESS (20) a may be found (21) by setting alogeRo/aa
= 0. We have (21)

dlogeb=
= Z(a),

aa
[7]

but Z(a) is M, the adult mortality rate.
Since reproduction is assumed to be simply energy di-

verted from personal growth, alogeb/da should be equal to
aloge(dW/dT)/aa [as first noted by Kozlowski and Wiegert
(15, 16)]. Notice that the use of b in this relation is not the
same as the b ofEq. 5. There we solved for b vs. W(a), setting
8 = W0/W(a); here we are after Ologeb/aa in the absence of
WO changing with a so we set b = (A-W0 75)/(C.WO). Direct
support of this assumption is provided by the fact that total
biomass of offspring per year is a power function of adult
weight with an exponent of 0.69, rather near 0.75 (see ref. 5).

This leads directly (through Eqs. 3 and 7) to a scaling of the
adult instantaneous mortality rate, M, on adult body size, or

M = 0.75 A4W(a)- 25. [8]
Thus, the age of maturity (a) will scale with the 0.25
power of adult body size among species with similar A and 8
values.

Offspring production versus adult body size. Although a
fair amount is known about offspring growth and energetics
during the period of parental care (4, 14, 18), I use a very
simple aggregated model for this process. We want b the
clutch size in daughters per unit time. Note that b is the ratio
of the brood size to the average time between broods, so that
neither appears alone in the theory. Read and Harvey (5)
label b "annual fecundity." Suppose at independence each
offspring is of size W0 and that rearing an offspring to W0 size
requires (C/2)-Wo energy, where C is in units of parental
growth (Eq. 3). (Later I shall discuss a slightly more general
model, where a W0 sized offspring requires (C/2)W +k
energy.) If T is the time to rear one offspring to independence,
then l1r is the clutch size per unit time (or 1/2r = b). In runits
of time, an adult of size W(a) can deliver A- W(a)0 75r units of
energy (from Eq. 3). Note that the cost of an offspring is
entirely given by the diversion of parental potential growth
(Eq. 3) to offspring. To get b, we set AW(a)0 75Tr = (C/2)-Wo,

Note that the causal connection ofM to W(a) is via natural
selection on the age of maturity (i.e., when one stops growing
and diverts all production to offspring); unlike the argument
of Reiss (14) for the evolution of a, which assumes mortality
to be related to adult body size, this argument has adult body
size determined by mortality through the evolution of a. A
special case of Eq. 8 is developed in refs. 15 and 16.
Average immature mortality (Z)follows directlyfrom Ro =

1. Define 7 as follows: e-fOZ(x)dx = e-Za; thus 7 is the
temporal average of Z(x) over the immature period. Since Ro
= (bIM) e-Za equals 1 in population equilibrium, and since
M, b, and a are given by Eqs. 8, 5, and 4, respectively, we
may solve the relation for 7 as a function of adult body size

[ (~C 6 0.75) 1 -6 0.25) W(a<015. [9]

Average immature mortality (7) will scale with the -0.25
power of adult body size among species with similar C, 8, and
A values.
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Further Theoretical Interpretations

Eliminate adult body size. We may use the growth relation
(Eq. 4) to eliminate adult body size from the equations for b,
M, and Z (Eqs. 5, 8, and 9) and thus express b, M, and Z as

functions of the age of maturity (a). Note that a-M, a-b, and
a are dimensionless numbers (4, 12, 22), which express the
relation between maturation (a) and mortality (M, Z) and/or
offspring production (b). e-az is the proportion of offspring
surviving to maturity. The present theory says that these
dimensionless numbers take on fixed (or constant) values for
species with the same and C values. The productivity
parameter, A, does not appear in these relations. We have

a-Z = -loge(0.75-C-3) (or e-aZ = 0.75-C.8) [lOal

a-M = 3(1 -5025) [lOb]

/1 - 60.25\
a-b = 4( J[l6c]

What if adult body size is held constant? We rewrite Eqs.
4, 5, 8, and 9 in the loge form

0.25-A
logea = -loge 50.25) + 0.25 logeW(a) [11]

logeM = (logeO.75-A) - 0.25 logeW(a) [12]

A\
logeb = loge - 0.25 logeW(a) [13]

/ 0.25-A
1ogeZ = 1oge(-1oge(C 5-0.75)) + loge s0.25

- 0.25 1ogeW(a). [14]

To illustrate my proposed use of these four equations,
focus first on Eqs. 11 and 12. Suppose a group of species with
similar, but not identical A, C, and 8 values are plotted versus
logeW(a). Ifthe A, C, and 8 values do not correlate with W(a),
then the plots of logea and logeM will be power functions of
W(a), with the exponents of +0.25 and -0.25, respectively.
The intercepts will be through the average values of
-loge[(0.25-A)/(1 - 5025)] and loge(0.75-A), respectively.
Notice, however, that individual species will fall above or
below the scaling relation based on how their particular
-loge[(0.25-A)/(1 - 50-25)] and loge(0.75-A) values differ from
the respective average values. If we hold adult body size
constant in Eq. 12, then a species i with logeAi > (average
logeA) will have logeMi > (average logeM) and will fall above
the fitted line. But logeAi > (average logeA) will cause the
same species to fall on average below the fitted line of logea:
thus, a correlation calculated between [logea - (average
logea)] and [logeM - (average logeM)] will be negative. Since
the loge scaling relations for a, M, Z, and b all contain
combinations of the same three parameters (A, 8, C), devi-
ations from the average scaling relations are necessarily
correlated with each other. Eqs. 11-14 may thus be used to
study the correlations between loge(a, M, b, Z) expressed as
deviations from their average loge values, with body size held
constant. (Notice that these deviations are also dimension-
less numbers.) As shown in Table 2, five ofthe six correlation
coefficients are given unambiguously with respect to sign,
while one (a, b) depends on just why a species deviates from
the average (i.e., does it differ in 8, or in A, from the average
species?). Interestingly, all four loge lines share the A pa-
rameter; if variation in it is the main cause of species
deviating from the average, then even the sign of (a, b) is

Table 2. Theoretically expected correlations between life-history
variables, with adult body size held constant (derived from Eqs.
11-14 under the assumption that A, 8, and C are uncorrelated
with each other)

Variable pair Sign of correlation

logeM, logea Negative
logeZjlogea Negative
logeZ, logeM Positive
logeb, logea ?*
logeb, logeM Positive
logeb, logeZ Positive

Each variable is expressed as the deviation from its mean value,
as given by the scaling Eqs. 11-14, with adult body size (the logeW
term) held constant.
*This pair(Eqs. 11 and 13) has two parameters in common (A, 8). Eq.
11 has the term loge(1 - 80.25), while Eq. 13 has -loge8; these two
are positively related to each other. Eq. 11 has the term -logeA,
while Eq. 12 has logeA: these two are, of course, negatively related.
Thus, variation in 8 generates a positive (b, a) correlation, while
variation in A generates a negative correlation.

given; it's negative. With respect to sign (-, +), all of these
predicted correlations (Table 2) are as shown in the data
(Table 1). And r(a, b) is negative.
General theoretical interpretations. The approach devel-

oped here takes A, 8, and C as given parameters and uses
them to predict the other variables; of course, we would also
like to know just what determines the A, 8, and C values, as
well as why the production relation (Eq. 3) is a power
function with exponent -0.75. Although the discussion has
been couched in terms of between-species scaling, the entire
formalism really refers to predictions for any combinations of
A, 8, and C. Although the between-species scaling suggests
similarities in these, the real power in the approach may well
lie in its freedom from any particular assumptions about
them. It is probably worth noting that while A appears in the
body size relations (and may greatly influence deviation from
the average scaling line), A does not appear in the relations
(Eq. 10) for 7, b, and M vs. a. Of course, equations such as
Eq. 10, which predict the values of dimensionless numbers
(e.g., a-M), can only be in terms of other dimensionless
numbers; thus, for A to remain in such an equation would
require it to appear with another factor to cancel the dimen-
sions (8 and C are already dimensionless).
Perhaps the most speculative part of the argument is the

derivation of b in Eq. 5; for example, if the more complex
production model is needed (cost scales with W"+k) this will
alter the body size scaling of both b and Z. Z will not be
exactly a power function of body size at all; however, S(a)
from Eq. 1 will be and it will scale with W(a) to the k power.
Interestingly, this will also alter the scaling of b and Z with
a; both will now scale very closely (b identically) with
a-(l+4k). Thus, the a-Z and a-b numbers of Eq. 10 will now
alter with a. None of the alterations discussed in this para-
graph will affect the qualitative results of the correlations
between residuals (Table 2).
The equations derived here (Eqs. 11-14) are probably the

simplest that give the 0.25 scaling and the correct correlations
between residuals (Tables 1 and 2); more complex formula-
tions might attempt to recover 0.25 scaling (and the correct
correlations between residuals) while allowing, for example,
nonzero correlations between A, 8, and C, or more complex
offspring production relations.
One special hypothesis: a-M. From Eq. 10b we have that

a-M depends only on 8. From a sample of 26 mammal species
(6, 13), I estimated M and a (time from independence to
maturation). A loge plot has a slope of -0.98 (and r = -0.88)
and the average a-M equal to 0.72. Millar (1) gives relative
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size at weaning (8) for 100 mammalian species (mostly <1
kg), with an average (3) equal to 0.37. Since 1 S025 is almost
linear in 8 over the range 0.15-0.65, we may use 3(1 - 60.25)
(Eq. lOb) to predict the average a-M for mammals; with 8 =
0.37, we get a-M = 0.66. David Berrigan (personal commu-
nication) was able to use the literature to estimate 8 for 23 of
the 26 species (13) with estimated a M values. His sample had
6 = 0.33, so average aM is here predicted to be 0.73. More
interesting however is thatM a is inversely related to 8, just
as Eq. lOb predicts; a linear regression has r = -0.67,
significant at the >0.01 level. His detailed analysis will be
published elsewhere.

Conclusion

Time will tell if the approach begun here continues to be a
fruitful direction (or simply a temporally well-lit alley). Of
course, there are additional life-history variables that show
intercorrelations after adult body size is held constant (5-8);
some ofthese relate to components of b. My present focus on
b, Z, M, and a is simply that they are the major variables in
the demographic and life-history evolution equations and
thus are easier to work with directly.

In the larger context of life-history evolution, one point is
worthy of note. The only cost of reproduction allowed in the
present theory is the diversion of energy from growth to
offspring production; adult mortality is assumed to be fixed
independent of reproduction, so that increased mortality is
not a cost of reproduction. Many life-history models have
increased adult mortality as a cost of reproduction (10,
23-26); the assumption may simply be wrong for female
mammals, or such cost may affect their life histories in ways
too small to disrupt the larger patterns.

I thank D. Berrigan for help with data analysis, Jon Seger, J.
Kozlowski, and Paul Harvey for discussion on the theory.
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