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Supplementary Figure 1

Supplementary Figure 1 | Growth phenotype distributions. (a) Variation in degree of stress in the different 
environments for maximum growth rate (left panel) and mean growth (right panel). In the upper panels actual 
population doubling time (hours), and mean growth (cells), are shown for all phenotyped strains to allow a direct 
biological interpretation of values. The transformation, from normalized trait values to actual doubling times and 
mean growth, was achieved by multiplying normalized values with the median control trait value and reversion of 
the log-transformation for each environment. In the lower panels, The same distributions have been divided to show 
the difference in distribution between strains without chr. IX aneuploidies (color coded by environment) and strains 
with chr. IX aneuploidies (red superimposed violins). (b) Frequency distribution of normalized phenotypes for 
POLs (blue) and estimated diploid F12 parents (gray).
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Supplementary Figure 4

Supplementary Figure 4 | Major QTL positions. QTL positions (purple line) and associated 1.8-LOD support 
interval (dashed area) for (a) the chromosome IX QTL in allantoin and (b) the chromosome IV QTL in galactose. Both 
QTLs point to variants known to explain a large portion of the variation in the respective environments. 
Figure initially constructed with AnnotationSketch (S. Steinbiss et al. AnnotationSketch, a library for drawing genome 
annotations. Bioinformatics 25(4), 533-534 (2009)) and then modified.
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Supplementary Figure 5 | Variance explained by QTLs per environment. The accumulated variance explained by QTLs called in 
additive and nonadditive respectively. The variance explained by each QTL has been summed over each environment to show the 
fraction of variance explained by QTLs in each environment. Black labels = growth rate, red labels = mean growth.
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Supplementary Figure 6 | Phenotype distributions as a function of genotype for key QTLs. (a)  Left panel: 
distribution of mean growth in allantoin, as a function of genotype composition at the QTL at chr. IX. Right panel: 
mean growth in galactose, as a function of genotype composition at the QTL on chr. IV. (b) Tukey boxplots for 
growth traits as a function of genotype composition at the near universal chr. IX QTL, penetrating in all but one 
evironment with antagonistic effects on maximum growth rate and mean growth. Note: on average, homozygote WA 
is the strongest genotype for maximum growth rate. However, as shown in Supplementary Figure 7, heterozygotes 
are heavily enriched among the best performing POLs.
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Supplementary Figure 7 | Dominance, overdominance, and underdominance in heterotic POLs. (a) Frequency of 
POLs not significantly different from their corresponding estimated diploid parents (y-axis) as a function of different FDR 
q-values (x-axis) where the red label (0.01) indicates the FDR q-value used for downstream analysis. (b) For each growth 
phenotype (black label = growth rate, red label = mean growth) the genotype frequencies for best parent heterotic POLs 
(BPH), all POLs and worst parent heterotic POLs (WPH) at the pleiotropic chr. IX QTL. Best parent heterotic POLs for 
growth rate at this segregating site are significantly overrepresented for the heterozygous genotype compared to all POLs in 
most environments (p<0.01, exception of NaCl, glycine and caffeine). Conversely, best parent heterotic POLs in mean 
growth are in most environments overrepresented for homozygous NA (χ2 test, p<0.01, exception of caffeine) and 
underrepresented for the heterozygote (exception of NaCl and caffeine). (c) The percentage of WHP explained by 
enrichment of worst homozygote, dominance and underdominance as a function of FDR. Note: we show the outcomes of a 
range of FDR cut-off values to illustrate the robustness of conclusions; the cut-offs used for downstream analysis was set 
beforehand and not influenced by the results.
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Supplementary Figure 8 | QQ-plots showing correction for population structure. This QQ-plot 
shows the expected vs. observed p-values for two of the QTL calls using linear mixed models. The 
locus with the strongest effect (red triangles) explain the outliers for the expected uniform 
distribution under the null.



Supplementary Table 1 

Challenge  Conc. Type Cellular effect 
NaCl 1.4M Cation 

stress 
Extracellular Na+ exposes yeast to hyperosmosis, and requires intracellular 
glycerol accumulation and cell wall and cytoskeleton strengthening1. Na+ 
enters cells through the K+ transporters Trk1 and Trk2, and potentially through 
Pho89 and Nsc1. Intracellularly, it displaces K+, challenging cell volume 
regulation, intracellular pH and membrane potentials, protein synthesis, and 
enzyme activation2. At acidic pH, Na+ is exported by Nha13. At higher pH, 
Na+ efflux is mediated by the Ena proteins, encoded in a single gene in most 
natural strains but in Wine/European strains a different gene variant 
introgressed from S. paradoxus has been amplified into 3-5 similar paralogs4. 
This introgression/duplication largely defines natural yeast variation in salt 
tolerance. The Ena1 variant plays the critical role in Na+ tolerance5. 
Regulation of salt tolerance genes is complex, involving the HOG1, 
Calcineurin pathway, TOR pathway, RIM101 and glucose repression 
pathways. 

Galactose 2% Carbon 
source 
(replaces 
glucose) 

Galactose well supports yeast growth as only energy and carbon source. It 
enters cells through the Gal2 permease in a process that also requires Gal1. 
Intracellular galactose is converted into glucose-1-phosphate by three 
sequential reactions that are catalyzed by Gal10, Gal1 and Gal7 respectively, 
with Gal10 also being required for re-cycling of a pathway intermediate. All 
the galactose structural genes are coordinately regulated at the level of 
transcription in response to galactose by Gal4p, Gal80p, and Gal3p6,7. All 
seven GAL genes are spatially co-localized in a gene cluster8. Large natural 
variations in galactose use is largely accounted for by loss-of-function 
mutations in Gal2, Gal34 or loss of the whole GAL cluster8. 

Caffeine 2.25mg/mL Toxin A purine, similar to adenine and guanine, that binds multiple enzymatic 
targets. In yeast, caffeine targets the TORC1 complex9, caffeine prevents gene 
conversion by displacing Rad5110 (Tsabar et al. 2015), impairs DNA repair, 
and may interfere with cell wall generation. Mutations in very diverse cellular 
components modulate caffeine sensitivity.  Caffeine trafficking is not well 
understood.  

Rapamycin 0.024µg/ml Toxin A polyketide macrolide produced by Streptomyces hygroscopicus. Rapamycin 
binds the Fpr1 protein11. This protein-drug complex binds to and inhibits 
Tor112, but not Tor213. Tor1p is a component of TORC1, a protein complex 
regulating nutrient availability and stress responses14. Mutations in Fpr1 or 
Tor1 confer resistance to the drug12. Loss of non-essential TORC1 
components (e.g. Kog1 and Tco089), or in TORC1 interactors (e.g. Rrd1) 
confer rapamycin sensitivity. Rapamycin binds to the Fpr1 paralog Fpr2 
without known toxic effects15. Rapamycin trafficking is not well understood. 

Phleomycin 2µg/ml Toxin A 12 component drug complex isolated from Streptomyces. Binds to DNA, 
impedes DNA polymerase and induces DNA damage and breakdown, 
potentially via an oxidative mechanism16. Arrests cells before entry into S-
phase17,18. Loss of DNA repair components, such as Rad6, 9 or 17 cause 
phleomycin hypersensitivity19,20. Phleomycin trafficking is not well 
understood. 

Hydroxyurea 2.5mg/ml Toxin Hydroxyurea inhibits reduction of ribonucleotides to deoxidized 
ribonucleotides21, by binding to and inhibiting the four component RNR 
(ribonucleotide reductase) complex. dNTP depletion impedes synthesis and 
repair of DNA22,23, arresting cells in early S-phase. The RNR complex consists 
of four proteins, RNR1, 2, 3, and 4, of which RNR1 and 2 are essential, and 
RNR4’s essentiality depends on the genetic background24-26. Natural variation 
in hydroxyurea resistance is partially mediated via the Hur1 protein4. 

Glycine 30mg N/L Nitrogen Glycine is generally a very poor nitrogen source for yeast, but the growth 



source 
(replaces 
ammonium) 

delays, rates and efficiencies vary between strains27. Glycine has no dedicated 
high affinity permease but is taken up by the broad specificity amino acid 
permeases Gap128 and Agp1 and the more specialized Dip5 and Put429. 
Intracellular glycine is catabolized into ammonium in three sequential 
mitochondrial reactions. These are catalyzed by a single glycine cleavage 
complex with four components: Gcv3, Gcv1, Gcv2 and Lpd1. Cleavage 
reactions requires a folic acid derivative.  

Isoleucine 30mg N/L Nitrogen 
source 
(replaces 
ammonium) 

Isoleucine is generally a poor nitrogen source for yeast, but growth delays, 
rates and efficiencies vary between strains27. Isoleucine is take up by the 
paralogous high affinity permeases Bap230 and Bap329 as well the low affinity 
general amino acid permease Gap128. Isoleucine is catabolized in a single step 
reaction to glutamate, using the mitochondrial Bat1 or the cytoplasmic Bat231, 
with Bat1 expressed during exponential growth and Bat2 in stationary phase.   

Allantoin 30mg N/L Nitrogen 
source 
(replaces 
ammonium) 

Allantoin is the primary nitrogen secretion product of higher mammals, 
excluding apes. Yeast utilizes allantoin as sole nitrogen source, but with 
varying delays, rates and efficiencies that largely maps to variation in Dal4 
and Dal127. The Dal4 permease is the only known entrance mechanism for 
allantoin. Intracellular allantoin is catabolized to urea in three sequential 
reactions catalyzed by Dal1, Dal2 and Dal3 respectively32-34. Urea is 
converted into ammonium by the multi-step enzyme Dur1,235. The allantoin 
catabolic genes are regulated by both general and specific signals that involve 
Gln3, Gat1, Dal80, Dal81, and Dal8236. The DAL genes are encoded in a tight 
gene cluster on chr. IX37.  
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1 Variance Decomposition Model

The precision with which one can estimate variance components from interactions in-
creases in populations descending from a small number of founders38. We exploit the
information about non-additive variation that is contained in a large cross between two
di↵erent yeast strains to decompose the phenotypic variance of growth traits into com-
ponents that come from additive e↵ects, dominance e↵ects, and pairwise and third order
interaction e↵ects.

We first introduce the random e↵ects model, which gives the phenotypic covariance
matrix as a linear combination of covariance matrices which reflect the covariance due to
additive, dominance, pairwise, and third order interaction e↵ects. The coe�cients of this
linear combination reflect the decomposition of the phenotypic variance into components
originating from di↵erent types of genetic e↵ect.

Let Y be a normalised phenotype, and let X be an observed and normalised [N ⇥ ng]
genotype matrix. Under a standard additive random e↵ects model (see Yang et al.,
2010)39,

Y = X� + ✏; � ⇠ N (0, h2/ng); ✏ ⇠ N (0, �2). (1)

Assuming that X is observed, and that � and ✏ are independent, this implies that

Cov(Y ) = h2 1

ng
XXT + �2I. (2)

Let

R =
1

ng
XXT =

1

ng
K, with Ri,j =

1

ng

X

k=1

xikxjk, (3)

where xik is the normalized genotype of individual i at locus k. R is commonly termed
the relatedness matrix, and gives the covariance between individuals due to additive
e↵ects of measured genotypes when scaled by h2. K = XXT is the relatedness matrix
un-normalised by the number of loci.

If one assumes that environmental similarity is uncorrelated with genetic similarity,
and that all genotypes have been observed, then estimates of h2 correspond to estimates
of the narrow sense heritability of the phenotype Y .

Consider now a more general phenotype model which includes pairwise interactions
and dominance e↵ects.

Yi = �1xi1 + �2xi2 + �1x
m
i1x

p
i1 + �2x

m
i2x

p
i2 + �12xi1xi2; (4)

where xm
i1 is the normalized maternally inherited allele of individual i at locus 1, and xp

i2

is the normalized paternally inherited allele of individual i at locus 2; �1 is the dominance
e↵ect of locus 1, and �12 is the interaction e↵ect of loci 1 and 2; and

[�1, �2, �1, �2, �1,2]
T ⇠ N(0, diag(h2/2, h2/2, d2/2, d2/2, h2

2)), (5)

1



where d2 is the proportion of variance due to dominance e↵ects, and h2
2 is the proportion

of variance due to pairwise interactions. This assumes that the additive, dominance and
interaction e↵ects of the loci are uncorrelated. Therefore,

Cov(Yi, Yj) =h21

2
(xi1xj1 + xi2xj2) + d2

1

2
(xm

i1x
p
i1x

m
j1x

p
j1 + xm

i2x
p
i2x

m
j2x

p
j2)+ (6)

h2
2xi1xi2xj1xj2 + Cov(✏i, ✏j). (7)

We can recognise here element i, j of the additive relatedness matrix:

Ri,j =
1

2
(xi1xj1 + xi2xj2). (8)

Similarly,

�i,j =
1

2
(xm

i1x
p
i1x

m
j1x

p
j1 + xm

i2x
p
i2x

m
j2x

p
j2) (9)

is the element i, j of the dominance relatedness matrix, which in general for ng loci is

�i,j =
1

ng

ngX

k=1

xm
ikx

p
ikx

m
jkx

p
jk, (10)

and can be calculated from diploid genomes without knowledge of parent of origin. Finally,

R2
i,j = xi1xi2xj1xj2 (11)

is element i, j of the matrix R2 that, when scaled by h2
2, gives the covariance due to

pairwise interactions. In general, for ng loci,

R2
i,j =

2

ng(ng � 1)

ngX

k=1

ngX

l=k+1

(xikxil)(xjkxjl) =
2

ng(ng � 1)
K2

i,j, (12)

where K2 is R2 un-normalized by the number of pairs of loci. This can be e�ciently
calculated given R by the formula

R2 =
1

ng(ng � 1)
[K �K � (X �X)(X �X)T ], (13)

where � represents the Hadamard product. The formula can be verified by calculation of
element i, j.

This can be further generalised to third order interactions. The covariance due to
third order interactions depends on the correlation between individuals across all triples
of loci:

R3
i,j =

6

ng(ng � 1)(ng � 2)

ngX

k=1

ngX

l=k+1

ngX

m=l+1

(xikxilxim)(xjkxjlxjm). (14)
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This can be e�ciently computed given R and R2 by the formula:

R3 =
2

ng(ng � 1)(ng � 2)
[K2�K�K �(X �X)(X �X)T +(X �X �X)(X �X �X)T ], (15)

which can be verified by computing element i, j.
We therefore obtain an expression for the covariance matrix under a model allowing

additive, dominance, pairwise interaction, and third order interaction random e↵ects:

Cov(Y ) = h2R + d2�+ h2
2R

2 + h2
3R

3 + �2I, (16)

where h2
3 is the proportion of variance due to third order interactions. Given all the

genotypes have been observed, R, �, R2, R3 can be computed in O(nl2) operations, and
h2, h2

2, h
2
3, d

2, �2 can be fitted by restricted maximum likelihood in O(n3) operations.

2 Analysis of Yeast Cross

In the yeast cross, the environment is randomised, so genetic similarity should not be
correlated with environmental similarity. Nearly all genetic variants genome wide have
been observed by sequencing, so relatedness matrices calculated from genome wide genetic
variation will capture nearly all of the genetic variance. The combination of these two
properties makes the use of a linear mixed model with relatedness matrices calculated
from observed genome wide genetic variants a legitimate way to estimate the variance
decomposition of a phenotype.

2.1 Calculation of Covariance Matrices in Yeast Data

We compute the matrices R, �, R2, R3 for the yeast cross from genome wide genotypes
determined by sequencing. We excluded genetic variants with greater than 1% missingness
to prevent being overly influenced by noise.

Rare genetic variants can bias calculations of the relatedness matrix due to the nor-
malisation procedure. We therefore excluded genetic variants with a frequency below 1%.
This is unlikely to reduce heritability estimates by much as the variance explained by a
variant is proportional to its variance.

For calculation of the dominance relatedness matrix, we first compute the normalized
product of the maternal and paternal genotypes for each individual using the formula

xp
i1x

m
i1 =

(gpi1 � f1)(g
m
i1 � f1)

f1(1� f1)
, (17)

where gpi1 is the binary indicator variable for the minor allele on paternally inherited
position 1 in individual i, and f1 is the minor allele frequency at position 1. If f1 is

3



known and the population has been randomly mating, the expectation of this is 0 and its
variance is 1.

We estimated allele frequencies from the data and calculated xp
i1x

m
i1 for all individuals

and at all loci with minor allele frequency greater than 1% and missingness less than 1%.
However, we further filtered loci which had sample expectations

1

n

nX

i=1

(gpi1 � f̂1)(g
m
i1 � f̂1)

f̂1(1� f̂1)
(18)

which deviated by more than 0.05 from zero, the expectation under random mating and
knowledge of allele frequencies. This mainly filtered out rare loci, owing to the sensitivity
of the normalisation procedure to underestimation of low minor allele frequencies. It also
may have filtered out loci with gross deviations from random mating, which could include
loci with strong recessive e↵ects which have been selected against. This may therefore
cause an underestimation of dominance variance.

2.2 Simulations

We chose 100 loci evenly spaced across the genome with minor allele frequency greater
than 5% and with no missing data. Each of these was given an additive e↵ect. We then
randomly chose ten of these to have dominance e↵ects, and 50 pairs at random to have
pairwise interaction e↵ects. All e↵ects were drawn from normal distributions.

We simulated 100 phenotypes with h2 = 0.5, d2 = 0.1 and h2
2 = 0.1. We fitted the

model
Cov(Y ) = h2R + d2�+ h2

2R
2 + �2I (19)

in GCTA40 using the Average Information algorithm. The results are in Table 1.

Mean (SD) Estimates Mean ŜE

h2 0.51 (0.026) 0.033
d2 0.085 (0.008) 0.009
h2
2 0.10 (0.015) 0.017

The columns are, from left to right, the sample mean (standard deviation) of the estimates,
as well as the mean of the standard error estimates, from 100 simulated phenotypes. True
values are h2 = 0.5, d2 = 0.1, h2

2 = 0.1.

There is a slight underestimation of dominance variance likely to be due to removing
loci which were not normalized properly.
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2.2.1 With third order interactions

We then performed a simulation with the same number of loci with additive e↵ects,
dominance e↵ects, and pairwise interactions, with an additional 50 triples of loci randomly
chosen from the 100 causal loci to have third order interaction e↵ects.

We simulated 200 phenotypes with h2 = 0.5, d2 = 0.1, h2
2 = 0.1, and h2

3 = 0.1. We
fitted the model

Cov(Y ) = h2R + d2�+ h2
2R

2 + h2
3R

3 + �2I (20)

in GCTA using the Average Information algorithm. The results are in Table 2.

Mean (SD) Estimates Mean ŜE

h2 0.56 (0.037) 0.034
d2 0.16 (0.023) 0.015
h2
2 0.08 (0.022) 0.02

h2
3 0.10 (0.021) 0.021

The columns are, from left to right, the sample mean (standard deviation) of the estimates,
as well as the mean of the standard error estimates, from 100 simulated phenotypes. True
values are h2 = 0.5, d2 = 0.1, h2

2 = 0.1, h2
3 = 0.1.

The inference for h2
3 was accurate. However, the inference for the other variance

components loses its accuracy when also fitting a third order component. It is not clear
why this is, but it may be due to non-convexity of the likelihood function when fitting
many highly correlated variance components. There is evidence for this in the bi-modality
of the distribution of estimates for d2 and h2

2.
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