Supplementary Data

HPLC-based kinetics assay facilitates analysis of systems with multiple reaction products and thermal enzyme

denaturation

Klingaman, Chase A.^{1†}; Wagner, Matthew, J.^{1†}; Brown, Justin R.^{1‡}; Klecker, John B.^{1‡}; Pauley, Ethan H.¹; Noldner, Colin

J.1; Mays, Jared R.1*

¹ Augustana University, Department of Chemistry, 2001 S. Summit Ave., Sioux Falls, SD 57197, Phone: 605-274-4815,

Fax: 605-274-4492, Email: jmays@augie.edu

* Corresponding author

[†] These authors contributed equally to this work

[‡] These authors contributed equally to this work

Table of Contents

Page

Equation SD-1. Closed-form solution to the Michaelis-Menten equation used to fit [Gluc]t (Eq. 3 in Goličnik)	S2
Equation SD-2. Lambert W(x) approximation used to fit [Gluc]t (Eq. 11 in Goličnik)	S2
Equation SD-3. Second portion of Lambert W(x) approximation used to fit [Gluc]t (Eq. 10 in Goličnik)	S2
Equation SD-4. Textual definition of Equation SD-1 (with inclusion of Eq. SD-2 and Eq. SD-3)	S2
Equation SD-5. Closed-form solution to the Michaelis-Menten equation used to fit [ITC]t	S2
Equation SD-6. Lambert W(x) approximation used to fit [ITC]t (Eq. 7 in Goličnik)	S2
Equation SD-7. Textual definition of Equation SD-5 (with inclusion of Eq. SD-1 and Eq. SD-6)	S2
Equation SD-8. The Michaelis–Menten equation	S2

$$[\operatorname{Gluc}]_t = \mathrm{K}_{\mathrm{m}}W(x)$$

Equation SD-1

$$W(x) \cong (1+\varepsilon) \left(\ln \left\{ \frac{6 \cdot x}{5 \cdot \ln \left[(12/5) \cdot \left(x/\ln(1+(12/5) \cdot x) \right) \right]} \right\} \right) - \varepsilon \left(\ln \left\{ \frac{2 \cdot x}{\ln(1+2 \cdot x)} \right\} \right)$$

Equation SD-2

$$x = \left(\frac{[\text{Gluc}]_0}{K_{\text{m}}}\right) \exp\left(\frac{[\text{Gluc}]_0 - V_{\text{max}} \cdot t}{K_{\text{m}}}\right)$$

Equation SD-3

Equation SD-4. Textual definition of Equation SD-1 (with included Eq. SD-2 and Eq. SD-3) for use in calculating reaction progress curves for $[Gluc]_t$ in GraphPad Prism 6.0 and other nonlinear regression software. This equation is based on Equation 7 with the improved Lambert *W* function (Equations 10-11) in Goličnik, M. *Anal. Biochem.* **2010**, *406*, 94–96. Initial variable values for nonlinear regression were $[Gluc]_0 = Y0 = 500$, $K_m = KM = 1.0$, and $V_{max} = VMAX = 8.0$.

$$[ITC]_t = [nitrile]_t = [Gluc]_0 - [Gluc]_t$$

Equation SD-5

Equation SD-6. Textual definition of Eq. SD-5 (with included Eq. SD-1, Eq. SD-2, and Eq. SD-3) for use in calculating reaction progress curves for [ITC]_t or [nitrile]_t in GraphPad Prism 6.0 and other nonlinear regression software. This equation is based on Equation 7 from Goličnik, M. *Anal. Biochem.* **2010**, *406*, 94–96. Initial variable values for nonlinear regression were [Gluc]₀ = Y0 = 500, $K_m = KM = 1.0$, and $V_{max} = VMAX = 8.0$.

$$V_0 = -\frac{d[\text{Gluc}]}{dt} = \frac{V_{\text{max}} \cdot [\text{Gluc}]_0}{K_{\text{m}} + [\text{Gluc}]_0}$$

Equation SD-7. The Michaelis–Menten equation.

Equation SD-8. Textual definition of Eq. SD-1 (with included Eq. SD-2, Eq. SD-3, and Eq. 1) for use in calculating reaction progress curves of [Gluc]_t in GraphPad Prism 6.0 and other nonlinear regression software. This equation is based on Equation 7 with the improved Lambert *W* function (Equations 10-11) in Goličnik, M. *Anal. Biochem.* **2010**, *406*, 94–96 and includes a term to account for the first-order denaturation of enzyme (Eq. 1). Initial variable values for nonlinear regression were [Gluc]₀ = Y0 = 250, $K_m = KM = 500$, $V_{max} = VMAX = 8.0$, and $k_d = KD = 1 \times 10^{-7}$. The following constraints were placed on nonlinear regression variables: Y0 = 0–400, KM = 0–1200, VMAX = 0–50, and KD = 0–0.1.