
Supplementary Material:
Time series analysis of the Bacillus subtilis
sporulation network reveals low dimensional
chaotic dynamics
Paola Lecca*, Ivan Mura, Angela Re, Gary Barker and Adaoha Ihekwaba*
*Correspondence:
Paola Lecca
Department of Mathematics, University of Trento
via Somamrive 14, 38123 Povo (Trento), Italy
paola.lecca@unitn.it

Adaoha Ihekwaba
Gut Health and Food Safety Institute of Food Research,
Norwich Research Park, Colney, Norwich NR4 7UA, UK
Adaoha.Ihekwaba@ifr.ac.uk

1 ORDINARY DIFFERENTIAL EQUATIONS AND PARAMETERS OF THE
NETWORK MODEL

We report here the ordinary differential equations (ODEs) and the parameters of the model of the B. subtilis
sporulation initiation network published in Ihekwaba et al. (2014). All state variables are in normal text,
all parameters in italic. Parameter names are formed by a sequence of tokens separated by underscore
characters (“ ”). They begin with letter k for reaction rates, or Kk for Hill function parameters, or n for
Hill function exponents, followed by a token that indicates the biological process, followed by a token that
indicates the species the process is active upon, and possibly followed by a token that identifies a regulatory
species (when it exists), or a partner species in the reaction (e.g., phosphotransfers). The only exception to
this notation is for the mRNA and the protein degradation rates, which are denoted by degm and degp,
respectively, and which do not change depending on the species. As the concentration of the IPTG and SS
species does not change over time, no differential equations exist in the model for these two species. The
Tables S1, S2, and S3 collect all the parameters, explain their their biological meaning and report their
value. The ODEs are given in Table S4. The time is measured in seconds, and the abundance of the species
in nM. The model has been simulated on a time interval from 0 to 15,000 seconds with a time resolution of
10 seconds. Numerical solutions are shown in Figure S1.

1



Lecca et al. Supplementary Material

Table S1. Parameters of the input signal sub-model

Parameter Name Meaning Value

k tr laci rate of translation of lacI 0.1
degm rate of mRNA degradation 9.0058
k trl laci rate of lacI translation 0.2
k re laci rate of lacI reactivation 0.01
k in laci rate of lacI inactivation 0.00012
degp rate of protein degradation 0.0208
k trbasal kina basal rate of KinA transcription 0.24
k tr kina laci rate of lacI induced transcription of KinA 50
Kk tr kina laci Hill parameter for the lacI induced transcription of KinA 50
k tr kina spo0a rate of Spo0A induced transcription of KinA 1.95
Kk tr kina spo0a Hill parameter for the Spo0A induced transcription of KinA 2,100
k dim kina rate of KinA dimerization 0.001
k undim kina rate of KinA dimer dissociation 0.25
k trl kina rate of KinA translation 0.0659
k ph kina rate of KinA dimer phosphorylation 0.001

Table S2. Parameters of the phosphorelay sub-model.

Parameter Name Meaning Value

k pht kina spo0f rate of KinA dimer to Spo0F phosphotransfer 0.001
k trl spo0f rate of Spo0F translation 0.0723
k deph spo0f rate of Spo0F dephosphorylation 0.05
k pht spo0f spo0b rate of Spo0F to Spo0B phosphotransfer 0.001
k trl spo0b rate of Spo0B translation 0.1076
k pht spo0b spo0a rate of Spo0B to Spo0A phosphotransfer 0.02
k trl spo0a rate of Spo0A translation 0.2143
k deph spo0a rate of Spo0A dephosphorylation 0.05
k1 tr spo0a spo0a rate of Spo0A repressed transcription of Spo0A 0.013888
Kk1 tr spo0a spo0a Hill parameter for the Spo0A repressed transcription of Spo0A 100
k2 tr spo0a spo0a rate of Spo0A induced transcription of Spo0A 0.13888
Kk2 tr spo0a spo0a Hill parameter for the Spo0A induced transcription of Spo0A 150
k tr spo0b rate of Spo0B transcription 0.2384
k tr spo0f spo0a rate of Spo0A induced transcription of Spo0F 0.1
Kk tr spo0f spo0a Hill parameter for the Spo0A induced transcription of Spo0F 50

Table S3. Parameters of the gene expression sub-model.

Parameter Name Meaning Value

k trbasal spolla basal rate of SpollA transcription 0.0277
k tr spolla spo0a rate of Spo0A induced transcription of SpollA 0.4166
n tr spolla spo0a Hill coefficient for Spo0A induced transcription of SpollA 4
Kk tr spolla spo0a Hill parameter for Spo0A induced transcription of SpollA 140
k trbasal spolle basal rate of SpollE transcription 0.0208
k tr spolle spo0a rate of Spo0A induced transcription of SpollE 140
n tr spolle spo0a Hill coefficient for Spo0A induced transcription of SpollE 4
Kk tr spolle spo0a Hill parameter for Spo0A induced transcription of SpollE 230
k trbasal spollg basal rate of SpollG transcription 0.0222
k tr spollg spo0a rate of Spo0A induced transcription of SpollG 0.729
n tr spollg spo0a Hill coefficient for Spo0A induced transcription of SpollG 4
Kk tr spollg spo0a Hill parameter for Spo0A induced transcription of SpollG 1,700
k trl aa rate of AA translation 0.125
k trl ab rate of AB translation 0.0555
k trl ac rate of AC translation 0.138
k trl iie rate of IIE translation 0.138
k trl ga rate of GA translation 0.034
k trl gb rate of GB translation 0.0138
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Table S4. Ordinary differential equations describing the dynamics of B. Subtilis sporulation initiation
network.

d
dt laci t = k tr laci− degm · laci t
d
dt laci = k trl laci · laci t + k re laci · laci d− k in laci · laci · IPTG− degp · laci

d
dt laci d = −k re laci · laci d + k in laci · laci · IPTG− degp · laci d
d
dtkina t =

(
k trbasal kina+ k tr kina laci·Kk tr kina laci2

Kk tr kina laci2+laci2

)
·
(

1 + k tr kina spo0a·spo0ap2
Kk tr kina spo0ap2+spo0ap2

)
−degm · kina t

d
dtkina = −degp · kinA− 2 · k dim kina · kina · kina + 2 · k undim kina · dimkina

+2 · degp · dimkina + 2 · degp · dimkinap + 2 · k undim kina · dimkinap
+k trl kina · kina t

d
dtdimkina = k dim kina · kina · kina− k undim kina · dimkina− 2 · degp · dimkina

−k ph kina · dimkina · SS + k pht kina spo0f · dimkinap · spo0f
d
dtdimkinap = k ph kina · dimkina · SS− k pht kina spo0f · dimkinap · spo0f

−2 · degp · dimkinap− k undim kina · dimkinap
d
dtspo0f = k trl spo0f · spo0f t− degp · spo0f − k pht kina spo0f · dimkinap · spo0f

+k deph spo0f · spo0fp + k pht spo0f spo0b · spo0fp · spo0b
d
dtspo0fp = k pht kina spo0f · dimkinap · spo0f − k deph spo0f · spo0fp

−degp · spo0fp− k pht spo0f spo0b · spo0fp · spo0b
d
dtspo0b = k trl spo0b · spo0b t− degp · spo0b− k pht spo0f spo0b · spo0fp · spo0b

+k pht spo0b spo0a · spo0bp · spo0a
d
dtspo0bp = k pht spo0f spo0b · spo0fp · spo0b− k pht spo0b spo0a · spo0bp · spo0a

−degp · spo0bp
d
dtspo0a = k trl spo0a · spo0a t− degp · spo0a− k pht spo0b spo0a · spo0bp · spo0a

+k deph spo0a · spo0ap
d
dtspo0ap = −degp · spo0ap + k pht spo0b spo0a · spo0bp · spo0a− k deph spo0a · spo0ap
d
dtspolla t = k trbasal spolla+ k tr spolla spo0a·spo0apn tr spolla spo0a

spo0apn tr spolla spo0a+Kk tr spolla spo0an tr spolla spo0a

−degm · spolla t
d
dtspolle t = k trbasal spolle+ k tr spolle spo0a·spo0apn tr spolle spo0a

spo0apn tr spolle spo0a+Kk tr spolle spo0an tr spolle spo0a

−degm · spolle t
d
dtspollg t = k trbasal spollg + k tr spollg spo0a·spo0apn tr spollg spo0a

spo0apn tr spollg spo0a+Kk tr spollg spo0an tr spollg spo0a

−degm · spollg t
d
dtaa = k trl aa t · spolla t− degp · aa
d
dtab = k trl ab t · spolla t− degp · ab
d
dtac = k trl ac t · spolla t− degp · ac
d
dt iie = k trl iie t · spolle t− degp · iie
d
dtga = k trl ga t · spollg t− degp · ga
d
dtgb = k trl gb t · spollg t− degp · gb

d
dtspo0a t = k1 tr spo0a spo0a·Kk1 tr spo0a spo0a

Kk1 tr spo0a spo0a+spo0ap + k2 tr spo0a spo0a·spo0ap2
Kk2 tr spo0a spo0a2+spo0ap2

− degm · spo0a t
d
dtspo0b t = k tr spo0b− degm · spo0b t
d
dtspo0f t = k trbasal spo0f + k tr spo0f spo0a·spo0ap2

Kk tr spo0f spo0a2+spo0ap2
− degm · spo0f t
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Figure S1. Numerical solutions of the ODEs system. Most molecular species show a steep monotonic
behaviour, which reflects the stiffness of system’s dynamics.
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2 SUPPLEMENTARY ANALYSES

This section collects the results of (i) the sensitivity analysis performed on a smaller range of parameter
variation (Figure S2); (ii) the comparison between complexity indices estimated from the time series and
for those estimated from coloured and power-spectrum noise (Figures S4, S5, and S6), that confirm that the
complex behavior is due to chaos rather than to noise, and (iii) the recurrence plots (Figure S7). Table S5
reports the results of the the recurrence quantification analysis (RQA). RQA quantifies the number and
duration of recurrences of the state space trajectories of a dynamical system (Marwan et al., 2016).

2.1 Sensitivity analysis

Figure S2. Heatmap summarizing the results of sensitivity analysis. The size of the interval of
parameter variation is defined by q = 2 in Eq. 1. The most sensitive molecular species are
aa, ga, spo0b, ab, laci d, gb, spo0a. They are sensitive to the 50% of the parameters.
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2.2 Analysis of monotonicity

The (non-decreasing) monotonicity is the property for which ∂si
∂t ≥ 0,∀i|Θ ∈ RNP , where si is the

solution of the equation for the i-th molecular species, and Θ is the set of parameter values.

In an interval of parameter variation defined as in Eq. 13, we samples 10,000 parameter configurations,
and for each solution si we calculated the percentage of time points at which ∂si

∂t ≥ 0. Formally, the
Proportion of Positive Derivatives values (PPD) for the species i is.

PPDi =
1

10, 000

10,000∑
i=1

( N∑
k=1

PDi(tk)

N

)
where, N is the length of the time series (here it is equal for all the species), and

PDi =

 1 if ∂si∂t

∣∣∣∣
t=tk

≥ 0

0 otherwise

The derivative has been calculated with the Stineman method (Johannesson and Bjornsson, 2012). The
results are shown in Figure S3 A. For 20 species out of 25 the derivative is invariably positive. The negative
time derivatives of the solutions are due to (i) small fluctuations/irregularities of the curves (for spo0b
and spo0f ); (ii) a slow slight decreasing of the curve before reaching a plateau (for spo0a); (iii) a rapid
increment/decrement on a short time interval and/or of small magnitude (for dimkinap, and spo0bp).
The plots in Figures S3 B, C, D, E, and F show that the standard deviation of the simulation curves is
approximately null and that their overall trend is monotone.

2.3 Steep monotonicity and global sensitivity analysis

A steep monotonic behaviour reflects the stiffness of the system’s equations, which is due to the presence
of substantially different orders of magnitude of the parameters (see Table S3). The stiffness of the system
warns about the accuracy of the estimates of Sobol indices (Sumner et al., 2012) that quantify the global
parameter sensitivity of the model. It is known that numerical methods for integrating stiff equations on
large integration domain tend to be inaccurate. Since Sobol indices computation requires to integrate the
solutions of the equations in the parameters space (Sumner et al., 2012), the occurrence of stiff equations
would imply a severe loss of accuracy of the Sobol indices for our systems. The integrals in the definition
of Sobol indices are usually evaluated using Monte Carlo integration methods that use random or quasi-
random sampling of the model parameters. To obtain reliable accurate estimates of the Sobol indices,
especially for stiff systems, the sample size should be taken large (i.e. the step size of the integration should
be taken extremely small). However, the complexity of the method scales as NS(NP + 2), where NS is the
sample size and NP is the number of parameters. As reported in (Morio, 2011) ten thousands samples are
often necessary for the estimation of one Sobol index with a relative error of 10%. In order to have smaller
relative errors, we should increase NS . However, if the system is highly stiff in the parameters space, as it
is in our case, NS should be extremely high, so that the use of Sobol method becomes impractical (Sumner
et al., 2012). Therefore, we set out to preferentially avoid global sensitivity analysis in our study.
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Figure S3. Analysis of monotonicity. A. Proportion of time points at which the time derivative of the
numerical solution of the dynamical of a species is positive or null. B - F Simulation curves for the species
whose time derivative assumes also negative values. All the parameters have been changed over the range
defined in Eq. (13), and the effect on these variables has been assessed. The values of the parameters have
been sampled from a uniform distribution positively defined on this range. The model has been ran 5,000
times. An upper (max) and a lower (min) bound simulation curve, along with the mean simulation curve
and its standard deviation have been calculated (with the literature algorithms presented in (Soetaert et al.,
2016a,b, 2010)). The plots show that these curves overlap, as the standard deviation is very close to zero.
Therefore, these simulation prove that the model is monotonic and that it does not respond to a global
sensitivity analysis approach to parameter perturbation. Finally, note that although the behavior of spo0bp
shows vlear deviations from monotonicity, the magnitude of the spo0bp variation amounts to only few nMs.
Indeed, spo0b rapidly increases from 0 to only 4 nM and then it decays to 1 nM from which it starts to
monotonically increase, whereas the range on y-axis covered by the other species in the same simulation
time is tens/thousand times larger.
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2.4 Distinguishing chaos from noise

Figure S4. Complexity indices (right-handside heatmap) and linear correlation coefficient significance for
the time behaviour of Lyapunov exponents (left-handside heatmap) estimated for the model time series and
for a pink noise signal.
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Figure S5. Complexity indices (right-handside heatmap) and linear correlation coefficient significance for
the time behaviour of Lyapunov exponents (left-handside heatmap) estimated for the model time series and
for a red noise signal.
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Figure S6. Complexity indices (right-handside heatmap) and linear correlation coefficient significance for
the time behaviour of Lyapunov exponents (left-handside heatmap) estimated for the model time series and
for a power-low spectrum noise signal.
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2.5 Recurrence plots (RPs)

A d-dimensional phase space trajectory (d > 2) can be visualized through a two-dimensional
representation of its recurrences.

The recurrence plot (RP), proposed by Eckerman et al. (Eckmann et al., 1987), employs a two-dimensional
squared matrix of zero values, where both axes are time axes. The recurrence of a state, observed at time i,
at a time j different from i is marked with one (black dot in the plot) in the matrix. In formulas, an RP can
be expressed as follows:

Ri,j = Θ(νi − ||xi − xj ||), xi ∈ Rd, i, i = 1, . . . , N

where N is the length of the time series x, νi is a threshold distance, || · || is a norm, and Θ(·) is the
Heaviside step function

Θ(z)


0 x < 0
1
2 z = 0

1 z > 0

The RPs structures are indicative of the time evolution of phase space trajectories. A comprehensive
introduction to RPs and the interpretation of their structure is given in (Marwan et al., 2016; Abraham et al.,
1989). Here, we summarize the main definitions and concepts as reported in (Marwan et al., 2016, 2002).

The RPs structure is characterized by large scale (typologies) and small scale patterns (textures).

The typologies in a RP can be (i) a homogeneous, (ii) a periodic, and (iii) a disrupted distribution of
recurrent points.(Eckmann et al., 1987). Homogeneous RPs are common to chaotic and to stochasitc
dynamics. Diagonally oriented, periodic recurrent structures (diagonal lines, checkerboard structures),
represent oscillating systems. Fading to the upper left and lower right corners indicate non-stationarity
(i.e. the presence of a drift or trend). Finally, white areas or bands in RP are typical in presence of abrupt
changes in the dynamics as well as of rare events.

The textures can be single dots, diagonal lines as well as vertical and horizontal lines.

• Single, isolated recurrent points can occur if states are rare, if they do not persist for any time or if they
fluctuate heavily.

• A diagonal line Ri+k,j+k = 1 (for k = 1, . . . , l, where l is the length of the diagonal line) occurs when
a segment of the trajectory runs parallel to another segment, i.e. the trajectory visits the same region of
the phase space at different times. The length of this diagonal line is determined by the duration of
such similar local evolution of the trajectory segments. In presence of diagonal lines, the process coudl
be deterministic with no chaos; if these diagonal lines occur beside single isolated points, the process
could be affected by deterministic chaos (if these diagonal lines are periodic, unstable periodic orbits
can be retrieved).

• A vertical (horizontal) line Ri,j+k = 1 (for k = 1, . . . , v, where v is the length of the vertical line)
marks a time length in which a state does not change or changes very slowly. It seems, that the state is
trapped for some time. This is a typical behaviour of laminar states (intermittency).

The textures of a RP are the base of the definition of measure for a quantitative analysis of the RPs, called
Recurrence Quantification Analysis (RQA) (Webber et al., 2016; Marwan et al., 2002; Trulla et al., 1996).
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The list of the RQA measures, a short explanation of their meaning, and their values we found for the
variables of the B. subtilis sporulation initiation network, is given in Table S5. DET measures the proportion
of recurrent points forming diagonal line structures parallel to the main diagonal. Lmax, i.e. the length of
the longest diagonal line, inversely scales with the maximal Lyapunov exponent (Eckmann et al., 1987;
Trulla et al., 1996). Positive Lyapunov exponents gauge the rate at which trajectories diverge, and are the
hallmark for dynamic chaos. Thus, the shorter the Lmax, the more chaotic (less stable) the signal. ENTR is
the Shannon entropy of the distribution of the length of line segments parallel to the main diagonal. ENTR
is a measure of signal complexity and is calibrated in units of bits/bin to quantify how much information
one needs in order to recover the system. The entropy is small when the length of the longest segment
parallel to the diagonal is short and does not vary much. This has to be associated with information on
determinism. A high entropy is typical of periodic behavior while low entropy indicates chaotic behavior
(Fabretti and Ausloos, 2004; Blackledge et al., 2002).

Table S5 shows that DET is equal to 100% for all the molecular species, that means that for all the
molecular species all the recurrent points lie on diagonal segments parallel to the main diagonal. This
is a typical characteristic of deterministic systems (with and without chaos). However, we also found a
significant variability in the mean length (Lmean) of these segments, and more than 50% of the molecular
species with a Lmean smaller than the means value. These molecular species are marked in bold in Table
S6. The same set of species exhibits values of Vmean and ENTR below the mean. Of the species indicated
in bold in the table, spo0b, spo0bp, spo0a, spo0ap, aa, and ab, also report a value of Lmax below that the
mean. There results confirm again spo0b as a species affected with chaotic dynamics.
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Table S5. Summary of the recurrence quantification analysis (RQA). RQA quantifies the number and
duration of recurrences of a dynamical system presented by its state space trajectory (Zbilut and Webber,
2006). The complexity indices estimated in RQA are as follows. REC: recurrence. Percentage of recurrence
points in a Recurrence Plot. DET: Determinism. Percentage of recurrence points that form diagonal lines.
LAM: Laminar states. Percentage of recurrent points that form vertical lines. RATIO: Ratio between DET
and REC. Lmax: Length of the longest diagonal line. Lmean: Mean length of the diagonal lines. The main
diagonal is not taken into account. Vmax: Longest vertical line. Vmean: Average length of the vertical
lines. This parameter is also referred to as the Trapping time. ENTR: Shannon entropy of the diagonal line
lengths distribution TREND: Trend of the number of recurrent points depending on the distance to the
main diagonal. TREND measures how the density of points changes as you move away from the diagonal.

Variable REC DET LAM RATIO Lmax Lmean Vmax Vmean ENTR TREND

laci t 0.9367 1 1 1.0675 7100 3437.9311 6930 6651.7022 8.8349 -1e-04
laci 0.69 1 1 1.4493 6700 2806.1381 5805 4623.5748 8.6148 -1e-04
laci d 0.2357 1 0.9999 4.2428 5477 1578.8137 3253 1708.0701 7.9942 -1e-04
kina t 0.2512 1 1 3.9802 7500 2120.9898 3996 1884.6019 8.0883 -1e-04
kina 0.0722 1 1 13.8473 7385 1462.127 1969 548.1873 7.233 0
dimkina 0.0151 1 0.9997 66.2752 6695 1158.0381 578 111.1783 5.7956 0
dimkinap 0.1655 1 1 6.0426 7100 1633.9865 2964 1154.1871 7.6307 -1e-04
spo0f t 0.8701 1 1 1.1493 7500 3465.3561 7062 6526.4747 8.8484 -1e-04
spo0f 0.3719 1 1 2.6887 6428 2151.4713 4429 2855.3171 8.3412 -1e-04
spo0fp 0.3062 1 1 3.2664 7100 2226.0215 4173 2173.9841 8.1337 -1e-04
spo0b t 0.9061 1 1 1.1036 6300 3000.7364 6055 5709.5431 8.6987 -1e-04
spo0b 0.2562 1 0.9999 3.9025 5771 1731.0719 3587 1991.606 8.1068 -1e-04
spo0bp 0.917 1 1 1.0905 7100 1689.21 6706 3276.0912 7.0922 -1e-04
spo0a t 0.809 1 1 1.2361 7100 3168.9958 6489 5744.8933 8.756 -1e-04
spo0a 0.0142 1 0.9984 70.3931 5969 1168.553 540 119.7977 5.7263 0
spo0ap 0.0135 1 0.9991 74.034 6459 1148.5582 527 104.7233 5.6885 0
spolla t 0.8134 1 1 1.2294 7100 3182.0755 6466 5775.7743 8.7614 -1e-04
spolle t 0.7918 1 1 1.263 7100 3142.3768 6394 5622.2925 8.7477 -1e-04
spollg t 0.1202 1 1 8.3176 7100 1528.2029 2496 853.7365 7.5264 0
aa 0.1649 1 0.9998 6.0646 5141 1419.2515 2904 1439.6496 7.8667 -1e-04
ab 0.1791 1 0.9998 5.5831 5080 1392.4322 2847 1399.3177 7.8454 -1e-04
ac 0.2921 1 1 3.424 6102 1852.0501 3831 2060.3351 8.1713 -1e-04
iie 0.2963 1 1 3.3752 6700 1868.8112 3860 1985.3856 8.1775 -1e-04
ga 0.006 1 1 165.2942 7500 948.1588 277 45.3794 5.1612 0
gb 0.0111 1 1 90.3412 7100 1071.3033 433 78.6017 5.5533 0

Table S6. Summary of the distributions of the typologies showed in Table S5.

REC DET LAM RATIO Lmax Lmean Vmax Vmean ENTR TREND

Min. 0.0060 1 0.9984 1.067 5080 948.2 277 45.38 5.161 -1.0e-04
1st Qu. 0.1202 1 0.9999 1.263 6300 1419.3 2496 853.74 7.233 -1.0e-04
Median 0.2562 1 1.0000 3.902 7100 1731.1 3831 1985.39 8.088 -1.0e-04

Mean 0.3802 1 0.9999 21.626 6664 2014.1 3783 2577.78 7.656 -7.2e-05
3rd Qu. 0.7918 1 1.0000 8.318 7100 2806.1 6055 4623.57 8.615 0.0e+00

Max. 0.9367 1 1.0000 165.294 7500 3465.4 7062 6651.70 8.848 0.0e+00
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Figure S7. Global aspect of the RPs for the variables of the B. subtilis sporulation initiation network.
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2.6 Kaplan-Yorke ratio and Kolmogorov-Sinai entropy

By virtue of their definition including the Lyapunov exponents, Kaplan-Yorke ratio (i.e. the second term
of the Kaplan-Yorke dimension (Nichols et al., 2004; Hilborn, 2000)) and Kolmogorov-Sinai entropy
(Hilborn, 2000), also known as metric entropy, are the indices expressing topological complexity as function
of sensitivity of the systems to the initial conditions. Kaplan-Yorke ratio is defined as:

KYR =

∑j
i=1 λi
λi+j

(S1)

where λi is the i-th Lyapunov exponent, and, ordering in decreasing order the Lyapunov exponents
λ1 > λ2 > · · · > λi > · · · > λd, j is the largest integer such that

∑j
i=1 λi > 0.

Kolmogorov-Sinai entropy is defined as

KSE =
∑
λi>0

λi. (S2)

We calculated the values of KYR and KSE corresponding to the values of perturbations ∆ =
{10−5, 10−4, 10−3, 10−2, 10−1, 1, 10} applied to one variable at a time. Figure S8 shows the boxplots
of the distributions of the values KYR and KSE . The name of perturbed variable is indicated on the
horizontal axis. The heatmaps in Figures S9 (S10) report respectively, the value of the difference between
the mean values of KYR (KSE) distributions and the p-values of the multiple t-test performed to asses the
statistical significance of this difference.
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Figure S8. Boxplot showing the Kaplan-Yorke ratio and Kolmogorov-Sinai entropy corresponding to
the perturbations of each species in the system. The dashed red line indicates the average values overall
perturbations.
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Figure S9. Heatmap showing the difference of means of the Kaplan-Yorke dimension corresponding to
the perturbation of each pair of species in the system. Shown differences are computed by the Tukeys
Honest Significant Difference method. P-values are shown after adjustment for the multiple comparisons.
Not significant adjusted p-values are indicated in the heat maps cells by the abbreviation ’ns’.
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Figure S10. Heat map showing the difference of means of the Kolmogorov-Sinai entropy corresponding
to the perturbation of each pair of species in the system. Shown differences are computed by the Tukeys
Honest Significant Difference method. P-values are shown after adjustment for the multiple comparisons.
Not significant adjusted p-values are indicated in the heat maps cells by the abbreviation ’ns’.
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3 SOFTWARE

All the computational modules of the analysis presented in this paper have been implemented in R language
(https://www.r-project.org/) and is available upon request. The real and the CPU times (in seconds) to
process 7,500 time points and 25 time series are: 59754.43, and 36.78, on a Windows 8.1 Notebook PC,
Intel Core i7, 16Gb RAM, and 3.1 GHz, and 17237.85, and 28.19 on a Windows 8.1 Desktop PC, Intel Core
i3, 16Gb RAM, and 3.6 GHz. The most computationally expensive modules are those for the estimation of
recurrence plots, sample entropy, and fractal dimension.
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