Structural Chromosomal Rearrangements Require Nucleotide-Level Resolution: Lessons from Next-Generation Sequencing in Prenatal Diagnosis

Zehra Ordulu,^{1,2} Tammy Kammin,¹ Harrison Brand,^{3,4,5} Vamsee Pillalamarri,³ Claire E. Redin,^{2,3,4,5} Ryan L. Collins,³ Ian Blumenthal,³ Carrie Hanscom,³ Shahrin Pereira,¹ India Bradley,⁶ Barbara F. Crandall,⁶ Pamela Gerrol,¹ Mark A. Hayden,¹ Naveed Hussain,⁷ Bibi Kanengisser-Pines,⁸ Sibel Kantarci,⁹ Brynn Levy,¹⁰ Michael J. Macera,¹¹ Fabiola Quintero-Rivera,⁹ Erica Spiegel,¹² Blair Stevens,¹³ Janet E. Ulm,¹⁴ Dorothy Warburton,^{15,16} Louise E. Wilkins-Haug,^{1,2} Naomi Yachelevich,¹⁷ James F. Gusella,^{3,4,5,18} Michael E. Talkowski,^{2,3,4,5,19} and Cynthia C. Morton^{1,2,5,20,21,*}

In this exciting era of "next-gen cytogenetics," integrating genomic sequencing into the prenatal diagnostic setting is possible within an actionable time frame and can provide precise delineation of balanced chromosomal rearrangements at the nucleotide level. Given the increased risk of congenital abnormalities in newborns with de novo balanced chromosomal rearrangements, comprehensive interpretation of breakpoints could substantially improve prediction of phenotypic outcomes and support perinatal medical care. Herein, we present and evaluate sequencing results of balanced chromosomal rearrangements in ten prenatal subjects with respect to the location of regulatory chromatin domains (topologically associated domains [TADs]). The genomic material from all subjects was interpreted to be "normal" by microarray analyses, and their rearrangements would not have been detected by cell-free DNA (cfDNA) screening. The findings of our systematic approach correlate with phenotypes of both pregnancies with untoward outcomes (5/10) and with healthy newborns (3/10). Two pregnancies, one with a chromosomal aberration predicted to be of unknown clinical significance and another one predicted to be likely benign, were terminated prior to phenotype-genotype correlation (2/10). We demonstrate that the clinical interpretation of structural rearrangements should not be limited to interruption, deletion, or duplication of specific genes and should also incorporate regulatory domains of the human genome with critical ramifications for the control of gene expression. As detailed in this study, our molecular approach to both detecting and interpreting the breakpoints of structural rearrangements yields unparalleled information in comparison to other commonly used first-tier diagnostic methods, such as non-invasive cfDNA screening and microarray analysis, to provide improved genetic counseling for phenotypic outcome in the prenatal setting.

Introduction

Fetal material obtained through invasive methods can be assessed routinely with different techniques, including karyotyping, fluorescence in situ hybridization, and chromosomal microarray analysis (CMA).^{1–3} Although karyotyping remains the principal cytogenetic tool in prenatal diagnosis, CMA has the advantage of higher resolution and is the preferred method in a fetus with one or more major structural abnormalities identified by ultrasonography.¹ However, unlike karyotyping, CMA cannot detect balanced chromosomal rearrangements, such as translocations, inversions, and insertions.

The risk of congenital abnormalities is two to three times higher in newborns with apparently balanced de novo chromosomal rearrangements (6.1% for translocations and 9.4% for inversions) than in a population of pregnancies tested by amniocentesis.⁴ The cause of the increase in abnormal phenotypes in such cases can be a submicroscopic deletion, duplication, disruption, dysregulation, or fusion of a gene(s) located at or near the breakpoints. Studies using CMA have demonstrated the presence of a cryptic imbalance in 40%–50% of subjects with an abnormal

¹Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Boston, MA 02115, USA; ²Harvard Medical School, Boston, MA 02115, USA; ³Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA; ⁴Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; ⁵Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA 02142, USA; ⁶Department of Psychiatry, Prenatal Diagnosis Center, David Geffen School of Medicine, University of California, Los Angeles, Medical Plaza, Los Angeles, CA 90095, USA; ⁷Department of Pediatrics, Connecticut Children's Medical Center, University of Connecticut, Farmington, CT 06030, USA; ⁸Department of Obstetrics and Gynecology, Kaplan Medical Center, Rehovot 76100, Israel; ⁹Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University, New York, NY 10032, USA; ¹¹New York Presbyterian Hospital, Columbia University Medical Center, New York, NY 10032, USA; ¹²Department of Maternal Fetal Medicine, Columbia University Medical Center, New York, NY 10032, USA; ¹³Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Texas Medical School at Houston, Houston, TX 77030, USA; ¹⁴Regional Obstetrical Consultants, Chattanooga, TN 37403, USA; ¹⁵Department of Genetics and Development, Columbia University, New York, NY 10032, USA; ¹⁶Department of Pediatrics, Columbia University, New York, NY 10032, USA; ¹⁶Department of Pediatrics, Columbia University, New York, NY 10032, USA; ¹⁶Department of Pediatrics, Clinical Genetics Services, New York University School of Medicine, New York, NY 10003, USA; ¹⁸Department of Genetics, Harvard Medical School, Boson, MA 02115, USA; ¹⁹Departments of Psychiatry and Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; ²⁰Department of Pathology, Brigham and Women's Hospital and Harvard Medic

*Correspondence: cmorton@partners.org

http://dx.doi.org/10.1016/j.ajhg.2016.08.022.

© 2016 American Society of Human Genetics.

Genomic Locus on 2q36.1	TAD and TBR Nucleotides (hESC, GRCh37/hg19) ¹⁸ (Size)	Structural Rearrangement (Associated Phenotype)
WATE HILLDES	TBR: 219,731,756–219,851,756 (120 kb),	inversion or duplication altering the 160 kb TBR and bringing the centromeric portion of the <i>EPHA4</i> -containing TAD into proximity with <i>WNT6</i> (F-syndrome [MIM: 102510])
WN16-IHH-DES	TBR: 220,251,756–220,411,756 (400 kb), TBR: 220,251,756–220,411,756 (160 kb)	duplication or deletion altering the 160 kb TBR and bringing <i>IHH</i> into proximity with the centromeric portion of the <i>EPHA4</i> -containing TAD (polydactyly)
EPHA4	TAD: 220,411,756–222,891,756 (2.48 Mb)	
PAX3	TAD: 222,891,756–223,491,756 (600 kb)	deletion involving the TBR at 222,891,756 (brachydactyly)

This table shows the pathological rewiring of genetic regulatory interactions of enhancer *EPHA4* through different structural rearrangements altering the TAD boundaries (data presented herein are modified from Lupiãnez et al.²⁰). Abbreviations are as follows: hESC, human embryonic stem cell; TAD, topologically associated domain; and TBR, topological boundary region.

phenotype and an apparently balanced chromosomal rearrangement.^{5–12} Massively parallel sequencing technologies can provide timely localization of chromosomal breakpoints with nucleotide-level precision in all apparently balanced rearrangements, along with information on the gain or loss of genomic material,^{13,14} which could substantially improve the prediction of phenotypic outcomes and support perinatal medical care.

Outcomes of structural rearrangements changing the copy number of a gene or directly disrupting a gene can be predicted from dosage effects. However, if a balanced rearrangement occurs in a non-coding region or the regulatory effect of the rearrangement is more pertinent to an abnormal phenotype than the directly affected gene, predicting pathogenic consequences can become challenging and even erroneous when only the gene(s) with copy-number changes or disrupted gene(s) are evaluated. This is particularly important in prenatal diagnosis, because for many key developmental genes, *cis*-regulatory elements can extend beyond the transcription unit with an estimated median regulator-target gene distance of 120 kb,¹⁵ which can range up to 1.5 Mb.^{16,17}

Topologically associated domains (TADs) have been elucidated as key elements of mammalian regulatory organization.^{18,19} TADs are highly conserved megabase-sized genomic segments that partition the genome into large units with frequent intra-domain interactions. They are separated by topological boundary regions (TBRs), which represent "genomic insulators" by blocking the interactions between adjacent TADs. Disruption of TBRs by structural rearrangements has been demonstrated to cause rewiring of genomic regulators in the WNT6-IHH-EPHA4-PAX3 locus (MIM: 604663, 600726, 602188, and 606597) and result in human limb malformations, as described by Lupiãnez et al. (Table 1 and Figure 1).²⁰ In this context, the developmental genes with historically well-known long-range regulation can be re-evaluated in relation to their TAD and TBR annotations (Table 2 and Figure 1). For example, disruption of PAX6 (MIM: 607108) and regulatory elements located in the same TAD as PAX6 (up

to 150 kb downstream) results in isolated aniridia,²¹ whereas haploinsufficiency of WT1 (MIM: 194070), which is located in the TAD adjacent to PAX6, causes genitourinary anomalies without aniridia.²³ Deletions of the contiguous locus containing both PAX6 and WT1, including the TBR between their two adjacent TADs, result in the autosomal-dominant WAGR syndrome (MIM: 194072) with both aniridia and genitourinary anomalies, supporting the "genomic insulator" role of TBRs. In addition, the size of an individual TAD can be relevant to the extent of long-range regulation. TWIST1 (MIM: 601622) is known to have long-range regulation up to 260 kb downstream, which is located within the same 440 kb TAD as TWIST1. Monoallelic disruption of both TWIST1 and its downstream regulatory region results in Saethre-Chotzen syndrome (MIM: 101400).²⁴ SOX9 (MIM: 608160) is reported to have long-range regulation up to 1.5 Mb upstream, which is located within the same 1.88 Mb TAD as SOX9. Monoallelic disruption of both SOX9 and its regulatory region is associated with campomelic dysplasia (MIM: 114290) and Pierre Robin sequence (MIM: 261800).^{25,28,29} There might also be phenotype-specific regulators within the same TAD for a developmental gene depending on their distance from the gene of interest. Monoallelic disruption of regulatory elements located within the same 1.6 Mb TAD as SHH (MIM: 600725) can result in type 3 holoprosencephaly (MIM: 142945) or preaxial polydactvlv (MIM: 174500), depending on the location (265 kb upstream or 1 Mb upstream of SHH, respectively).²⁶ Lastly, in addition to the genes showing a phenotype with monoallelic disruption, regulatory regions of developmental genes located on the X chromosome or imprinted genes should also be carefully analyzed, given that disruption of a single allele through balanced rearrangements could result in an abnormal phenotype in such cases. For instance, POU3F4 (MIM: 300039) is an X-linked recessively inherited gene with long-range regulation up to 900 kb upstream²⁷ in a 3.04 Mb TAD, and disruption of a single allele of POU3F4 or its regulatory region results in deafness in males. Overall, advances in the understanding of chromatin organization of the human genome, along with

Figure 1. Developmental Genes with Well-Known Long-Range Regulations

Schematic diagrams of representative developmental genes with well-known long-range regulations in relation to their TAD (red box) and TBR (dark-red vertical line if 0 bp or gray box if greater than 0 bp) annotations (genes in red: haploinsufficiency index < 10%).

the evolving databases of phenotypes associated with structural variation, could provide a conceptual framework for the interpretation of balanced-rearrangement breakpoints and their potential *cis*-regulatory effects.

Identifying breakpoints of balanced chromosomal rearrangements has been the foundation of the Developmental Genome Anatomy Project (DGAP), which has sequenced more than 200 subjects. As an extension of these efforts, in this study, we sequenced ten prenatal subjects with balanced chromosomal rearrangements by using customized large-insert libraries and used publicly available databases to interpret the breakpoints on the basis of convergent genomic evidence in light of previously annotated TADs and TBRs in human embryonic stem cells.²⁹

Material and Methods

Subjects

Ten subjects were enrolled after proper informed consent was acquired in accordance with an institutional-review-board protocol approved by Partners HealthCare System in Boston. These ten subjects represent the total of a consecutive series of DGAP prenatal referrals to date, and prior to enrollment, all had balanced chromosomal rearrangements according to karyotyping with normal CMA results. Two subjects (DGAP239 and DGAP259) have been reported in part previously.^{30,31}

Sequencing and Bioinformatic Analysis

Genomic DNA was extracted from amniocytes or chorionic villi with a Gentra Puregene Cell Kit (QIAGEN). Large-insert structural-variation sequencing was performed as previously described.^{12,26} In brief, after the production of large-insert libraries (target size of 2–3.5 kb) and quality control, massively parallel paired-end sequencing of 25 or 50 cycles was performed with an Illumina HiSeq 2000 or 2500. Reads were processed with our customized structural-variant sequencing pipelines, which include alignment, clustering of anomalous read pairs, extensive cluster filtering, and variant screening against known structural variants.^{32–35} Genome-wide physical coverage of inserts ranged from $35 \times$ to $68 \times$, and DNA input ranged from 900 ng to 5 µg. For all subjects with sufficient material, DNA was amplified by PCR with primers based on sequence reads supporting the rearrangement junction for confirmation of breakpoints.

Analysis of Convergent Genomic Evidence

In addition to genes located directly at breakpoints, phenotypic associations were evaluated in relation to previously annotated TADs and TBRs in human embryonic stem cells¹⁸ for positional effects on protein-coding genes through disruption of potential regulatory elements. DECIPHER was utilized for predicting the probability of haploinsufficiency, which was determined on the basis of genes known to produce a phenotype through haploinsufficiency and genes disrupted by unambiguous loss-of-function variants in at least two apparently healthy individuals. Low haploinsufficiency indices (<10%) indicate a high predicted probability that a gene will exhibit haploinsufficiency (i.e., disruption

Locus (Chromosome Band)	TAD and TBR Nucleotides (hESC, GRCh37/hg19) ¹⁸ (Size)	Genetic Alterations	Phenotype
		disruption of regulatory elements up to 150 kb downstream of <i>PAX6</i>	aniridia ²¹
<i>PAX6-WT1</i> (11p23)	TBR: 30,963,424–31,083,424 (120 kb), TAD: 31,083,424–32,323,424 (1.24 Mb), TAD: 32,323,424–32,643,424 (320 kb), TBR: 32,643,424–32,683,424 (40 kb),	deletions involving <i>PAX6</i> and <i>WT1</i> , which includes the TBR between the TADs of these genes	WAGR syndrome ²²
		haploinsufficiency of WT1	syndromes involving genitourinary anomalies without aniridia ²³
<i>TWIST1</i> (7p21.1)	TAD: 18,713,475–19,153,475 (440 kb), TAD: 19,153,475–19,713,475 (560 kb)	disruption of regulatory elements up to 260 kb downstream of <i>TWIST1</i>	Saethre-Chotzen syndrome ²⁴
<i>SOX9</i> (17q24.3)	TAD: 68,648,405–70,528,405 (1.88 Mb)	disruption of regulatory elements up to 1.5 Mb upstream of <i>SOX9</i>	Pierre Robin sequence ²⁵
SHH		disruption of regulatory elements up to 265 kb upstream of <i>SHH</i>	HPE3 ²⁶
(7q36.3)	TAD: 155,587,239–157,187,239 (1.6 Mb)	disruption of regulatory elements up to 1 Mb upstream of <i>SHH</i>	preaxial polydactyly ²⁶
POU3F4 (Xq21.1)	TAD: 80,073,344-83,113,344 (3.04 Mb)	disruption of regulatory elements up to 900 kb upstream of <i>POU3F4</i>	X-linked deafness ²⁷

boundary region; and WAGR, Wilms tumor, aniridia, genitourinary anomalies, and mental retardation.

of one allele might be pathogenic, also referred to as monoallelic).³⁶ Within the analyzed intervals, disrupted genes, genes with a haploinsufficiency index < 10%, hemizygous or imprinted genes, and genes associated with a phenotype were evaluated in detail for each subject in relation to the disrupted TADs and TBRs. Abnormal phenotypic associations of disrupted or dysregulated regions were reviewed in the scientific literature, OMIM,³⁷ OMIM Gene Map and Morbid Map,³⁷ DECIPHER,³⁸ and the Developmental Disorders Genotype-to-Phenotype (DDG2P) database.³⁹

Expression Studies

qRT-PCR was performed with RNA extracted from cultured prenatal cells of the available subjects (amniocytes from DGAP247 and chorionic villi from DGAP248 and DGAP288) and control samples (amniocytes or chorionic villi with a normal karyotype referred for advanced maternal age) or cord blood (DGAP247 and DGAP288). qRT-PCR was performed according to standard conditions of the CFX Real-Time PCR Detection System (Bio-Rad), and transcription levels were quantified with the $\Delta\Delta$ CT method.³⁰

Results

Prior to enrollment, karyotyping was performed for all pregnancies because they were considered to be high risk (e.g., advanced maternal age, abnormal first-trimester serum screening, and/or ultrasound abnormality) with normal CMA results during clinical assessment (see Supplemental Note). Among the ten subjects analyzed, four had reciprocal translocations, five had inversions, and one had a complex rearrangement according to karyotyping. Sequencing revised the initial karyotype by providing nucleotide-level resolution to the initially described chromosome bands with a size ranging from 2.8 to 53.6 Mb,

encompassing 63–1,032 genes and 16–358 phenotypeassociated loci for each rearrangement (Table 3 and Table S1).⁴⁰ In addition to refining breakpoints, including those in a subject with a very complex karyotype (DGAP259), sequencing revealed cryptic rearrangements unapparent by karyotyping in four subjects (DGAP258, DGAP268, DGAP290, and DGAP295). All rearrangements were located within a TAD, except for one that was located in a TBR at Xq28 (DGAP285) (Figures 2, 3, and 4; Tables 4, 5, and 6; and Table S2). Five subjects had abnormal clinical outcomes, three continue to be healthy, and two were terminated prior to detection of any potential abnormal findings (Table 7).

DGAP239

DGAP239³⁰ (46,XY,t(6;8)(q13;q13)dn.arr(1-22)x2,(XY)x1. seq[GRCh37/hg19] t(6;8)(q13;q12.2)dn) had multisystemic abnormalities detected by imaging studies starting in the second trimester and was diagnosed clinically with CHARGE syndrome (MIM: 214800) only after birth. Sequencing the prenatal DNA sample identified translocation breakpoints (designated as t(6;8)(q13;q13) by karyotyping) disrupting CHD7 (MIM: 608892) at 8q12.2 and LMBRD1 (MIM: 612625) at 6q13 (Figure 2A and Table 4). Whereas biallelic losses of LMBRD1 are associated with methylmalonic aciduria and homocystinuria, cblF type (MIM: 277380) (no phenotypic overlap with DGAP239),⁴² monoallelic loss of CHD7 is well known to be associated with CHARGE syndrome (it is mutated in more than 90% of subjects), correlating with the low haploinsufficiency index of CHD7 and the clinical outcome of DGAP239 (see Supplemental Note and Tables S3 and S4).43

Subject	Next-Gen Cytogenetic Nomenclature ⁴⁰ (Short System)	G-Band	Next-Gen Band	Revised Band Range: Nucleotides (Distance)	Genesª	Phenotype- Associated Loci ^b
DGAP239	46,XY,t(6;8)(q13;q13)dn.arr(1-22)x2,(XY)x1.	6q13	6q13	6q13: 70,000,001–75,900,000 (5.9 Mb)	63	16
	seq[GRCh37/hg19] t(6;8)(q13;q12.2)dn	8q13	8q12.2	8q12q21: 55,500,001–93,300,000 (37.8 Mb)	334	41
DGAP247	46,XY,inv(8)(q13q24.1)dn.arr(1-22)x2,(XY)x1.	8q13	8q11.21	8q11q21: 45,600,001–93,300,000 (47.7 Mb)	406	47
	seq[GRCh37/hg19] inv(8)(q11.21q24.23)dn	8q24.1	8q24.23	8q24: 117,700,001–146,364,022 (28.7 Mb)	306	47
DGAP248	46,XY,t(2;13)(p13;q14)dn.arr(1-22)x2,(XY)x1.	2p13	2p12	2p14p12: 64,100,001-83,300,000 (19.2 Mb)	225	32
	seq[GRCn37/hg19] t(2;13)(p12;q13.2)dn	13q14	13q13.2	13q13q21: 32,200,001-73,300,000 (41.1 Mb)	375	47
DGAP258	46,XY,inv(6)(p23q13)dn.arr(1-22)x2,(XY)x1.	6p23	6p25.3	6p25p22: 1-30,400,000 (30.4 Mb)	679	74
	seq[GRCn37/hg19] inv(6)(p25.3q16.1)dn ²	6q13	6q16.1	6q11q16: 61,000,001–105,500,000 (44.5 Mb)	293	44
		3p25	3p26.3 3p24.3	3p26p24:1-30,900,000 (30.9 Mb)	277	49
	46,XX,t(3;18;5;7)(p25;p11.2;q13.3;q32),t(9;18)(p22;q21)dn.arr(1-22,X)x2.	5q13.3	5q14.3	5q12q14: 58,900,001–92,300,000 (33.4 Mb)	323	358
DGAP259	seq[GRCh37/hg19](3,5,7,9,18)cx,der(3)t(3;7)(p24.3;q36.3)dn,der(5)t(5;7) (q14.3;q35)t(3;7)(p24.3;q36.3) t(3;18)(p26.3;p11.31)dn,der(7)t(5;7)dn,	7q32	7q35 7q36.3	7q31q36: 107,400,001–159,138,663 (51.8 Mb)	Ince) Genesa PA 63 1 334 4 406 4 306 4 225 3) 375 4 679 7) 293 4 323 3 b) 693 8 192 2 172 3 233 2 b) 467 8 274 6 192 6) 1,032 1 b) 313 5 b) 291 4	80
	der(9)t(9;18)(p23;q21.3)dn, der(18)t(3;18)inv(18)(p11.31q21.3)t(9;18)dn	9p22	9p23	9p23p21: 9,000,001–33,200,000 (24.2 Mb)		33
		18p11.2	18p11.31	18p11: 1–17,200,000 (17.2 Mb)	192	29
		18q21	18q21.3	18q21: 43,500,001–61,600,000 (18.1 Mb)	172	33
DGAP268	$\begin{array}{l} 46, XY, inv(10)(p13q24) dn. arr(1-22)x2, (XY)x1.\\ seq[GRCh37/hg19] inv(10)(p12.2p12.31)(p12.2q23.32) dn \end{array}$	10p13	10p12.31 10p12.2	10p14p12: 6,600,001–29,600,000 (23 Mb)	233	26
		10q24	10q23.32	10q23q25: 82,000,001–119,100,000 (37.1 Mb)	467	84
DGAP285	46,Y,inv(X)(p11.2q28).arr(1-22)X2,(XY)X1.	Xp11.2	Xp11.21	Xp11.2: 46,400,001–58,100,000 (11.7 Mb)	274	65
	seq[GRCn37/ng19] inv(X)(p11.2q28)	Xq28	Xq28	Xq28: 147,100,001–155,270,560 (8.2 Mb)	192	63
DGAP288	46,XX,t(6;17)(q13;q21)dn.arr(1-22,X)x2.	6q13	6q21	6q11q21: 61,000,001–114,600,000 (53.6 Mb)	404	57
	seq[GRCn37/hg19] t(6;17)(q21;q24.3)dn	17q21	17q24.3	17q11q24: 24,000,001–70,900,000 (46.9 Mb)	1,032	138
DGAP290	46,XY,t(2;7)(q33;q32)dn.arr(1-22)x2,(XY)x1.	2q33	2q32.3	2q32q34: 183,000,001–215,300,000 (32.3 Mb)	313	51
	seq[GRCn37/ng19](2,7)cx, der(2)t(2;7)(q32.3;q33) inv(7)(q33q33)dn,der(7)t(2;7)dn	7q32	7q33	7q31q33: 107,400,001–138,200,000 (30.8 Mb)	291	49
DGAP295	46,XY,t(2;11)(p13.1;p15.5)dn.arr(1-22)x2,(XY)x1.	2p13.1	2p13.3	2p13: 68,600,001–75,000,000 (6.4 Mb)	133	32
	seq[GKCn3//ng19](2,11)cx,der(2)inv(11)(p15.5)inv(11)(p15.5) t(2;11)(p13.3;p15.5)dn,der(11)t(2;11)dn	11p15.5	11p15.5	11p15.5: 1–2,800,000 (2.8 Mb)	114	31

^aNumber of genes for the presented nucleotide range (NCBI Map Viewer, annotation release 105 [GrCh37.p13]). ^bOMIM Phenotypic Series-specific entries for the presented nucleotide range (June 9, 2015). ^cCryptic paternal inversion is not included.

Figure 2. Diagrams of DGAP239, DGAP247, DGAP248, and DGAP258 Rearrangements

Schematic diagrams of the breakpoints of DGAP239 (A), DGAP247 (B), DGAP248 (C), and DGAP258 (D) in relation to their TAD (red box) and TBR (dark-red vertical line if 0 bp or gray box if greater than 0 bp) annotations (genes in red: haploinsufficiency index < 10%).

DGAP247

DGAP247 (46,XY,inv(8)(q13q24.1)dn.arr(1-22)x2,(XY)x1. seq[GRCh37/hg19] inv(8)(q11.21q24.23)dn) had normal prenatal findings without complications during the perinatal period. At 31 months of age, he continues to be healthy. Sequencing of the prenatal DNA sample identified inversion breakpoints (designated as inv(8)(q13q24.1) by karyotyping) within a non-genic region at 8q11.2 and disruption of KHDRBS3 (MIM: 610421) at 8q24.23 (Figure 2B and Table 4). Although KHDRBS3 has a borderline haploinsufficiency index and showed decreased RNA expression in the prenatal sample (see Supplemental Note, Figures S1 and S2, and Tables S5 and S6), it is not reported to be associated with a developmental role and/or abnormal phenotype, and no additional genes located in the rearranged TADs have been implicated in a phenotype or developmental role, correlating with the normal clinical phenotype.

DGAP248

DGAP248 (46,XY,t(2;13)(p13;q14)dn.arr(1-22)x2,(XY)x1. seq[GRCh37/hg19] t(2;13)(p12;q13.2)dn) had normal first-trimester screening. At 19.4 weeks, the pregnancy was terminated before the sequencing results were available. Sequencing of the prenatal DNA sample identified translocation breakpoints (designated as t(2;13)(p13;q14) by karyotyping) within a non-genic region at 2p12 and disrupting RFC3 (MIM: 600405) at 13q13.2 (Figure 1C). The 2p12 breakpoint is located within a TAD that includes LRRTM4 (MIM: 610870), a gene with a low haploinsufficiency index and no reported abnormal phenotypic association. However, structure and expression profiles of LRRTM mRNAs in mice suggest a role in development and maintenance of the vertebrate nervous system.⁴⁴ RFC3 has a low haploinsufficiency index and showed decreased RNA expression in the prenatal sample (Figure S3).³⁶ In addition, NBEA (MIM: 6084889), a candidate autism gene with a low

DGAP239: 6q13 Breakpoints on Rearrangement, A (70,405,86(7-8)) and Rearrangement, B (70,405,86(7-9)) ADGR83 69,345,259-70,099,403 adhesion G protein- coupled receptor B3 60284 - 3.02 no reported phenotype association and/dare for involvement in development in A/RGR83 ADGR80 70,385,694-70,507,003 LMBR1 domain containing 1 612625 + 12.92 bialdlei, loss of function function meetstyinastociated with meetstyinastociated with meetstyinastociated with DGAP239: 8q12.2 Breakpoints on Rearrangement_A (61,628,67(1-2)) and Rearrangement_B (61,628,66(7-9)) DCAP239: 8q12.2 Breakpoints on Rearrangement_A (51,889,501) and Rearrangement_B (61,628,66(7-9)) bialdlei, loss of function datasom in s90% oxitiated with 10,0000 CHD7 (disrupted) 61,591,337-61,779,465 chromodomain helicase DSA binding protein 7 608892 + 2.4 bialdlei, lorgatiditio repaired to be associated with C1MARE syndrome, such that mutations in s90% oxitiated with C1MARE syndrome during the postmutal period of DGAP239) DGAP247: 8q11.2 Breakpoints on Rearrangement A (136,495,820) and Rearrangement B (13,899,502) No significant gene within the same TAD as the breakpoints DGAP247: 8q24.23 Breakpoints on Rearrangement A (126,495,820) and Rearrangement B (13,809,801) no reported phenotype association structure and chrossops protein transduction associated 3 DGAP248: 2q12 Breakpoints on Rearrangement A (136,495,42,7121) and Rearrangement B (13,801,90(8-5)) no reported phenotype associ	Gene	Nucleotides (GRCh37/hg19)	Description	OMIM ³⁷	OMIM Morbid ³⁷	DDG2P ³⁹	HI (%) ³⁶	Notes
ADGRB3 69,345,259-70,099,403 adhesion G protein- coupled receptor B3 602.64 - - 3.02 no reported phenotype association homologous to ADXR9, an angiogenesis inhibitor that is a development of globlastoma ⁴¹ LMBD1 70,385,694-70,507,003 LMBR1 domain containing 1 612625 + + 12.92 balletic loss of function (autosom recessive) association in phenotype association meters and the phenotype association in phenotype association in phenotype association in phenotype association phenotype association in phenotype association phenotype association in phenotype association in anglobes meet diagnotic criteria of CHARGE syndome "(criteria of CHARGE syndome at the pentaphenotype association in pend of DCAP249; 8q12.2 Breakpoints on Rearrangement A (51,6495,820) and Rearrangement B (51,6495,823) D6AP247: 8q12.2 Breakpoints on Rearrangement A (34,649,701 in criteria and and and independent and maintenance of the vertebate nervous system" 10.52 no reported phenotype association in reacond and enopsein profile ore fuel development a	DGAP239:	: 6q13 Breakpoints on R	earrangement A (70,405	5,86{7-8})	and Rearra	angement	B (70,405,	86{7-9})
LARRDJ 70,385,694-70,507,003 LMBR1 domain containing 1 612625 + + 12.92 biallelic loss of function (autoom recessive) associated with the methylmalonic aciditria and homocystimura, cMF pyse ⁴⁴ (no phenotypic overlap with DCAP239; 8q12.2 Breakpoints on Rearrangement_A (61.628,67(1-2)) and Rearrangement_B (61.628,66(7-9)) DGAP239; 8q12.2 Breakpoints on Rearrangement_A (61.628,67(1-2)) and Rearrangement_B (61.628,66(7-9)) CHU7 61,591,337-61,779,465 chromodomain helicase DNA hinding protein 7 608892 + + 2.4 happinsufficiency (autoomai domain poster) CHU7 61,591,337-61,779,465 chromodomain helicase DNA hinding protein 7 608892 + + 2.4 happinsufficiency (autoomai domain poster) CHU7 61,591,337-61,779,465 chromodomain helicase DNA hinding protein 7 608892 + + 2.4 happinsufficiency (autoomai domain poster) DGAP247: 8q12.2 Breakpoints on Rearrangement_A (51,889,501) and Rearrangement_B (51,889,502) No subjects meet diagnost CHARGE syndrome domain the postnatal period of DGAP247 R04DP247: 8q24.23 Breakpoints on Rearrangement_A (136,495,820) and Rearrangement_B (136,495,823) No reported phenotype association function associated site of the avelopation associated site answatchion associated site answatch	ADGRB3	69,345,259–70,099,403	adhesion G protein- coupled receptor B3	602684	-	_	3.02	no reported phenotype association homologous to <i>ADGRB1</i> , an angiogenesis inhibitor that is a candidate for involvement in development of glioblastoma ⁴¹
DGAP239: 8q12.2 Breakpoints on Rearrangement_A (61,628,67[1-2]) and Rearrangement_B (61,628,66[7-9]) C/U7 (disrupted) 61,591,337-61,779,465 (b) binding protein 7 chromodomain helicase DNA binding protein 7 608892 + + 2.4 bindinmant, monallelicy reported to be associated with CHARCE syndrome, such that mutations in >00% of subjects meet doing subjects meet transduction associated 3 DGAP247: 8q24.23 Breakpoints on Rearrangement_A (136,495,820) and Rearrangement_B (136,495,823) RKHD binding, signal transduction associated 3 DGAP248: 2p12 Breakpoints on Rearrangement_A (78,301,91[1-2]) and Rearrangement_B (78,301,90[8-5]) LRKM4 76,974,845-77,820,445 leudre rich repeat transmibrane neuronal 4 610870 - - 7.26 no reported phenotype association structure and expression profile of LRKM mNAs in mice suggest riscurre and expression profile of LRKM mNAs in mice suggest riscure and expression profile of LRKM mNAs in mic	<i>LMBRD1</i> (disrupted)	70,385,694–70,507,003	LMBR1 domain containing 1	612625	+	+	12.92	biallelic loss of function (autosoma recessive) associated with methylmalonic aciduria and homocystinuria, cblF type ⁴² (no phenotypic overlap with DGAP239)
CHU7 (disrupted)61,591,337-61,779,465chromodomin helicae DNA binding protein 7608892++2.4haploinstificiency (autosmul dominant, monoallelio reported to be associated with CHARGE synchome **DGAP247: 8q11.2 Breakpoints on Rearrangement_A (51,889,501) and Rearrangement_B (51,889,502)In >90% of other with the current with the current with the same TAD as the breakpointsDGAP247: 8q24.23 Breakpoints on Rearrangement_A (136,495,820) and Rearrangement_B (136,495,823)RHDRBS3136,469,700-136,668,955KH domain containing, rangement_A (136,495,820) and Rearrangement_B (136,495,823)DGAP247: 8q24.23 Breakpoints on Rearrangement_A (136,495,820) and Rearrangement_B (136,495,823)RHDRBS3136,469,700-136,668,955KH domain containing, rangement_A (78,301,91(1-21) and Rearrangement_B (78,301,90(8-5))LRRTM476,974,845-77,820,445leucine rich repeat transmembrane neuronal 46108707,26DGAP248: 12q13.2 breakpoints on Rearrangement_A (34,542,73(2-11) and Rearrangement_B (34,542,77(20-23))RFC3 (disnupted)34,392,186-34,540,695replication factor C6004054.93NBEA35,516,424-36,247,159neurobeachin60848896.83disrupted in a subject with a disrupted in a subject with a disrupte	DGAP239:	: 8q12.2 Breakpoints on	Rearrangement_A (61,6	28,67{1-2}) and Rear	rangemen	nt_B (61,62	8,66{7-9})
DGAP247: 8q11.2 Breakpoints on Rearrangement_A (151,889,501) and Rearrangement_B (51,889,502) No significant gene within the same TAD as the breakpoints DGAP247: 8q24.23 Breakpoints on Rearrangement_A (136,495,820) and Rearrangement_B (136,495,823) KHDRBS3 136,469,700-136,668,965 KH domain containing, fold21 - 10.52 no reported phenotype association resociated 3 DGAP248: 2p12 Breakpoints on Rearrangement_A (78,301,91(1-2)) and Rearrangement_B (78,301,90(8-5)) LRRTM4 76,974,845-77,820,445 leucine rich repeat transmembrate neuronal 4 610870 - 7.26 no reported phenotype association structure and expression profile of LRRTM mRNAs in mice suggest rooke in development and maintenance of the vertebrate nervous system ¹⁴ DGAP248: 13q1.3 breakpoints on Rearrangement_A (34,542,73[2-1]) and Rearrangement_B (34,542,7[20-23]) RFC3 34,392,186-34,540,695 replication factor C subunit 3 600405 - - 4.93 no reported phenotype association subunit 3 NBEA 35,516,424-36,247,159 neurobeachin 6084889 - - 6.83 disrupted in a subject with a de novo translocation and dipolaption autism-like behaviors in animal models ^{46,47} DGAP248: 6p25.3 Breakpoints on Rearrangement_A (776,81(6))	CHD7 (disrupted)	61,591,337–61,779,465	chromodomain helicase DNA binding protein 7	608892	+	+	2.4	haploinsufficiency (autosomal dominant, monoallelic) reported to be associated with CHARGE syndrome, such that mutations in >90% of subjects meet diagnostic criteria of CHARGE syndrome ⁴³ (consistent with the clinical diagnosis of CHARGE syndrome during the postnatal period of DGAP239)
No significant gene within the same TAD as the breakpoints DGAP247: 8q24.23 Breakpoints on Rearrangement_A (136,495,820) and Rearrangement_B (136,495,823) KHDRBS3 136,469,700–136,668,965 KH domain containing, RNA binding, signal transduction associated 3 610421 - - 10.52 no reported phenotype association DGAP248: 2p12 Breakpoints on Rearrangement_A (78,301,91(1-2)) and Rearrangement_B (78,301,90(8-5)) Image: Comparison on the sociated 3 - 7.26 no reported phenotype association structure and expression profile of LRRTM area for the peat transmembrane neuronal 4 610870 - 7.26 no reported phenotype association structure and expression profile of LRTM mRNAs in mice suggest of a development and maintenance of the vertebrate neurous system ⁴⁴ DGAP248: 13q13.2 breakpoints on Rearrangement_A (34,542,73[2-1]) and Rearrangement_B (34,542,7[20-23]) RFC3 34,392,186-34,540,695 replication factor C subunit 3 600405 - 4.93 no reported phenotype association maintenance of the vertebrate neurous system ⁴⁴ DGAP248: 13q13.2 breakpoints on Rearrangement_A (34,542,73[2-1]) and Rearrangement_B (34,542,7[20-23]) RFC3 34,392,186-34,540,695 replication factor C subunit 3 600405 - 4.93 no reported phenotype association and idiopathic autism. ⁶ and haploinsufficiency causes autism. ¹ Lik behaviors in animal models ^{46,47} NBEA 35,516,424-36,247,	DGAP247:	: 8q11.2 Breakpoints on	Rearrangement_A (51,8	89,501) ar	nd Rearran	ngement_B	6 (51,889,5	02)
DGAP247: 8q24.23 Breakpoints on Rearrangement_A (136,495,820) and Rearrangement_B (136,495,823) KHDRBS3 136,469,700–136,668,965 KH domain containing, RNA binding, signal transduction associated 3 610421 - - 10.52 no reported phenotype association DGAP248: 2p12 Breakpoints on Rearrangement_A (78,301,91(1-2)) and Rearrangement_B (78,301,90(8-5)) Image: Construction associated 3 Image: Construction associated 3 LRRTM4 76,974,845–77,820,445 leucine rich repeat transmembrane neuronal 4 610870 - - 7.26 no reported phenotype association of tructure and expression profile of LRTM mRNAs in mice suggest role in development and neuronal 4 DGAP248: 13q1.2 breakpoints on Rearrangement_A (34,542,73(2-1)) and Rearrangement_B (34,542,7[20-23]) RFC3 34,392,186–34,540,695 replication factor C subunit 3 600405 - 4.93 no reported phenotype association and idiopathic autism, 5 and haploinsufficiency causes autism-like behaviors in animal models ^{60,47} NBEA 35,516,424–36,247,159 neurobeachin 6084889 - - 6.83 disrupted in a subject with a de nove translocation and idiopathic autism, 5 and haploinsufficiency causes autism-like behaviors in animal models ^{60,47} NBEA 35,516,424–36,247,159 neurobeachin 6084889 - - 6.8	No significa	ant gene within the same TA	AD as the breakpoints					
<i>RHDRBS3</i> 136,469,700–136,668,965 KH domain containing, RNA binding, signal transduction associated 3 610421 - - 10.52 no reported phenotype association DGAP248: 2p12 Breakpoints on Rearrangement_A (78,301,91[1-2]) and Rearrangement_B (78,301,90[8-5]) Image: Constraint of the synthesis of the synth	DGAP247:	: 8q24.23 Breakpoints or	n Rearrangement_A (136	5,495,820)	and Rearr	angement	:_B (136,49	5,823)
DGAP248: 2p12 Breakpoints on Rearrangement_A (78,301,91[1-2]) and Rearrangement_B (78,301,90[8-5]) LRRTM4 76,974,845-77,820,445 leucine rich repeat transmembrane neuronal 4 610870 - - 7.26 no reported phenotype association structure and expression profile of <i>LRRTM</i> mRNAs in mice suggest relevance and maintenance of the vertebrate nervous system ⁴⁴ DGAP248: 13q13.2 breakpoints on Rearrangement_A (34,542,73[2-1]) and Rearrangement_B (34,542,7[20-23]) RFC3 34,392,186-34,540,695 replication factor C subunit 3 600405 - - 4.93 no reported phenotype association disrupted NBEA 35,516,424-36,247,159 neurobeachin 6084889 - - 6.83 disrupted in a subject with a de novo translocation and idiopathic autism. ⁴⁵ and haploinsufficiency causes autism-like behaviors in animal models ^{46,47} DGAP258: 6p25.3 Breakpoints on Rearrangement_A (776,81(6)) and Rearrangement_B (776,787) No significant gene within the same TAD as the breakpoints DGAP258: 6p16.1 Breakpoints on Rearrangement_A (93,191,54[7]) and Rearrangement_B (93,191,545) No reported phenotype association protein kinase kinase f 2	KHDRBS3	136,469,700–136,668,965	KH domain containing, RNA binding, signal transduction associated 3	610421	-	-	10.52	no reported phenotype association
LRRTM4 76,974,845–77,820,445 leucine rich repeat transmembrane neuronal 4 610870 - 7.26 no reported phenotype association structure and expression profile of <i>LRRTM mRNAs</i> in mice suggest role in development and maintenance of the vertebrate nervous system ⁴⁴ DGAP248: 13q13.2 breakpoints on Rearrangement_A (34,542,73[2-1]) and Rearrangement_B (34,542,7[20-23]) no reported phenotype association structure and expression profile of development and maintenance of the vertebrate nervous system ⁴⁴ <i>RFC3</i> (disrupted) 34,392,186–34,540,695 replication factor C 600405 - - 4.93 no reported phenotype association and idiopathic autism, ⁴⁵ and haploinsufficiency causes autism-like behaviors in animal models ^{46,47} <i>NBEA</i> 35,516,424–36,247,159 neurobeachin 6084889 - - 6.83 disrupted in a subject with a devors in animal models ^{46,47} DGAP258: <i>cp25.3 Breakpoints on Rearrangement_A (776,81{6}) and Rearrangement_B (776,787)</i> Image: No significant gene within the same TAD as the breakpoints Image: No significant gene within the same TAD as the breakpoints 60261 - 2.75 no reported phenotype association profile in orbit many haploinsufficiency causes autism-like behaviors in animal models ^{40,47} MAP3K7 91,223,292–91,296,764 mitogen-activated profen kinase kinase ruse ruse ruse ruse ruse ruse ruse ru	DGAP248:	: 2p12 Breakpoints on R	earrangement_A (78,30]	1,91{1-2})	and Rearra	angement	_B (78,301,	90{8-5})
DGAP248: 13q13.2 breakpoints on Rearrangement_A (34,542,73{2-1}) and Rearrangement_B (34,542,7{20-23}) <i>RFC3</i> (disrupted) 34,392,186-34,540,695 replication factor C subunit 3 600405 - 4.93 no reported phenotype association <i>NBEA</i> 35,516,424-36,247,159 neurobeachin 6084889 - - 6.83 disrupted in a subject with a de novo translocation and idiopathic autism, ⁴⁵ and haploinsufficiency causes autism-like behaviors in animal models ^{46,47} DGAP258: 6p25.3 Breakpoints on Rearrangement_A (776,81{6}) and Rearrangement_B (776,787) No significant gene within the same TAD as the breakpoints DGAP258: 6q16.1 Breakpoints on Rearrangement_A (93,191,54{7}) and Rearrangement_B (93,191,545) MAP3K7 91,223,292-91,296,764 mitogen-activated protein kinase kinase kinase 7 602614 - 2.75 no reported phenotype association	LRRTM4	76,974,845–77,820,445	leucine rich repeat transmembrane neuronal 4	610870	_	_	7.26	no reported phenotype association; structure and expression profile of <i>LRRTM</i> mRNAs in mice suggest role in development and maintenance of the vertebrate nervous system ⁴⁴
<i>RFC3</i> (disrupted) 34,392,186–34,540,695 replication factor C subunit 3 600405 - 4.93 no reported phenotype association <i>NBEA</i> 35,516,424–36,247,159 neurobeachin 6084889 - - 6.83 disrupted in a subject with a de novo translocation and idiopathic autism, ⁴⁵ and haploinsufficiency causes autism-like behaviors in animal models ^{46,47} DGAP258: 6p25.3 Breakpoints on Rearrangement_A (776,81[6]) and Rearrangement_B (776,787) No significant gene within the same TAD as the breakpoints DGAP258: 6q16.1 Breakpoints on Rearrangement_A (93,191,54[7]) and Rearrangement_B (93,191,545) MAP3K7 91,223,292–91,296,764 mitogen-activated protein kinase kinase kinase kinase rearrange 602614 - 2.75 no reported phenotype association	DGAP248:	: 13q13.2 breakpoints or	n Rearrangement_A (34,	542,73{2-1) and Rea	rrangeme	nt_B (34,5	42,7{20-23})
NBEA 35,516,424–36,247,159 neurobeachin 6084889 – – 6.83 disrupted in a subject with a de novo translocation and idiopathic autism, 45 and haploinsufficiency causes autism-like behaviors in animal models 46,47 DGAP258: 6p25.3 Breakpoints on Rearrangement_A (776,81{6}) and Rearrangement_B (776,787) No significant gene within the same TAD as the breakpoints – – 8 (93,191,545) DGAP258: 6q16.1 Breakpoints on Rearrangement_A (93,191,54{7}) and Rearrangement_B (93,191,545) MAP3K7 91,223,292–91,296,764 mitogen-activated protein kinase kinase kinase kinase kinase 7 602614 – – 2.75 no reported phenotype association	<i>RFC3</i> (disrupted)	34,392,186–34,540,695	replication factor C subunit 3	600405	-	-	4.93	no reported phenotype association
DGAP258: 6p25.3 Breakpoints on Rearrangement_A (776,81{6}) and Rearrangement_B (776,787) No significant gene within the same TAD as the breakpoints DGAP258: 6q16.1 Breakpoints on Rearrangement_A (93,191,54{7}) and Rearrangement_B (93,191,545) MAP3K7 91,223,292–91,296,764 mitogen-activated protein kinase kinase kinase kinase kinase 7 602614 – 2.75 no reported phenotype association	NBEA	35,516,424–36,247,159	neurobeachin	6084889	-	_	6.83	disrupted in a subject with a de novo translocation and idiopathic autism, ⁴⁵ and haploinsufficiency causes autism-like behaviors in animal models ^{46,47}
No significant gene within the same TAD as the breakpoints DGAP258: 6q16.1 Breakpoints on Rearrangement_A (93,191,54{7}) and Rearrangement_B (93,191,545) MAP3K7 91,223,292–91,296,764 mitogen-activated 602614 – 2.75 no reported phenotype association protein kinase kinase kinase kinase 7	DGAP258:	: 6p25.3 Breakpoints on	Rearrangement_A (776,	81{6}) and	l Rearrang	gement_B ((776,787)	
DGAP258: 6q16.1 Breakpoints on Rearrangement_A (93,191,54{7}) and Rearrangement_B (93,191,545) MAP3K7 91,223,292–91,296,764 mitogen-activated for the protein kinase k	No significa	ant gene within the same TA	AD as the breakpoints					
MAP3K7 91,223,292–91,296,764 mitogen-activated 602614 – – 2.75 no reported phenotype association protein kinase kinase kinase 7	DGAP258:	: 6q16.1 Breakpoints on	Rearrangement_A (93,1	91,54{7}) a	and Rearra	angement	_B (93,191,	545)
	MAP3K7	91,223,292–91,296,764	mitogen-activated protein kinase kinase kinase 7	602614	_	-	2.75	no reported phenotype association

haploinsufficiency score,^{45,46} is located within the same 2.16 Mb TAD and 973 kb downstream of the breakpoints (Figure 2C and Table 4). Given the presence of two genes

with low haploinsufficiency indices—one associated with a phenotype and located within the 13q13.2 rearrangement TAD (*NBEA*) and the other implicated in nervous system development and located within the 2p12 rearrangement TAD (*LRRTM4*)—but the lack of strong evidence for a phenotypic correlation, these results are interpreted as "unknown clinical significance. Clinical follow-up was not possible because the pregnancy was terminated (see Supplemental Note and Tables S7 and S8). Of note, the pregnancy was terminated prior to communication of the sequencing results on the basis of an informed decision after karyotyping, CMA, and genetic counseling.

DGAP258

DGAP258 (46,XY,inv(6)(p23q13)dn.arr(1-22)x2,(XY)x1. seq[GRCh37/hg19] inv(6)(p25.3q16.1)dn(q15q15)pat or 46,XY,inv(6)(p23q13)dn.arr(1-22)x2,(XY)x1.seq[GRCh37/ hg19] inv(6)(p25.3q16.1)dn,inv(6)(q15q15)pat) was a monozygotic twin pregnancy, and amniocentesis was performed as a result of abnormal first-trimester serum screening. Other than minor complications due to a twin pregnancy, there were no abnormal clinical findings during the perinatal period. At 2.5 years of age, the twins continue to be healthy. Sequencing of the prenatal DNA sample identified inversion breakpoints (designated as inv(6)(p23q13) by karyotyping) within non-genic regions at both 6p25.3 and 6q16.1. In addition, a paternally inherited cryptic non-genic rearrangement at 6q15 was detected (Figure 2D and Table 4). Because of the length of the sequencing reads, it was not possible to determine whether both of the breakpoints on 6q reside in the same paternally inherited chromosome; however, given their relative proximity and localization within the same 2.21 Mb TAD, this is a likely possibility. Analysis of protein-coding genes localized in the same TAD as the breakpoints did not reveal any additional genes associated with an abnormal phenotype or a developmental role, correlating with the normal clinical phenotype of DGAP258 (see Supplemental Note and Tables S9 and **S10**).

DGAP259

DGAP259³¹ (46,XX,t(3;18;5;7)(p25;p11.2;q13.3;q32),t(9;18) (p22;q21)dn.arr(1-22,X)x2.seq[GRCh37/hg19](3,5,7,9,18) cx,der(3)t(3;7)(p24.3;q36.3)dn,der(5)t(5;7)(q14.3;q35)t(3;7) (p24.3;q36.3)t(3;18)(p26.3;p11.31)dn,der(7)t(5;7)dn,der(9) t(9;18)(p23;q21.3)dn,der(18)t(3;18)inv(18)(p11.31q21.3) t(9;18)dn) had abnormal prenatal findings of bilateral ventriculomegaly and colpocephaly with partial agenesis of the corpus callosum and a complex amniotic fluid karyotype designated as 46,XX,t(3;18;5;7)(p25;p11.2;q13.3; q32),t(9;18)(p22;q21)dn. The pregnancy was terminated at 22 weeks as a result of the abnormal findings. Sequencing of the prenatal DNA sample identified nine rearrangement sequences located at 3p26.3, 3p24.3, 5q14.3, 7q35, 7q36.3, 9p23, 18p11.31, and 18q21.3 with small deletions and duplications less than 1 kb (Figure 3 and Table 5). Among six disrupted protein-coding genes, TBC1D5 (MIM: 615740) and CNTNAP2 (MIM: 604569) reside in the vicinity of well-known genome-organizer- and chromatin-

regulator-encoding regions—SATB1 (MIM: 602075)⁵⁰ and EZH2 (MIM: 601573)⁶¹ at 3p24.3 and 7q35, respectively-which might be relevant to the complex chromosomal aberration of DGAP259 (all four of these genes are predicted to have low haploinsufficiency indices). Breakpoints at 7q36.3 disrupt the regulatory region of SHH, which has a low haploinsufficiency index. Monoallelic disruption of this SHH regulatory region is associated with holoprosencephaly,²⁶ which is consistent with the cerebral malformation phenotype of DGAP259. Breakpoints at 5q14.3 are located within the same TAD as MEF2C (MIM: 600662), another gene that has a low haploinsufficiency index and is associated with cerebral malformation and hypoplastic corpus callosum,^{47,54} as observed in DGAP259 (see Supplemental Note and Tables S11-S18).

DGAP268

DGAP268 (46,XY,inv(10)(p13q24)dn.arr(1-22)x2,(XY)x1. seq[GRCh37/hg19] inv(10)(p12.2p12.31)(p12.2q23.32)dn) had abnormal nuchal translucency detected in the first trimester, and there were no complications during the perinatal period. At 1 year of age, he continues to be healthy. Sequencing of the prenatal DNA sample identified a complex inversion with breakpoints (designated as inv(10)(p13q24) by karyotyping) within non-genic regions at 10p12.31 and 10p12.2 and disruption CPEB3 (MIM: 610606) at 10q23.32 (Figure 4A and Table 6). CPEB3 does not have a low haploinsufficiency index and does not have any abnormal phenotypic association. Analysis of protein-coding genes localized in the same TAD as the breakpoints also did not reveal any genes associated with an abnormal phenotype, correlating with the normal clinical phenotype of DGAP268 (see Supplemental Note and Tables S19-S21).

DGAP285

DGAP285 (46,Y,inv(X)(p11.2q28).arr(1-22)x2,(XY)x1.seq [GRCh37/hg19] inv(X)(p11.21q28)) showed abnormal prenatal imaging findings, including hydrocephalus, starting at 22.5 weeks and fetal demise at 31.4 weeks after decreased fetal movements. Sequencing of the prenatal DNA sample identified inversion breakpoints (designated as inv(X)(p11.2q28) by karyotyping) disrupting FAM104B at Xp11.21 and within a non-genic region at Xq28 (Figure 4B and Table 6). Breakpoints at Xq28 disrupt a TBR, which could result in genomic rewiring of the surrounding TADs and TBRs. MTM1 (MIM: 300415) is an X-linked recessively inherited gene associated with centronuclear myopathy (MIM: 310400), a prenatalonset fatal disease with clinical findings including decreased fetal movements, hydrocephalus, and stillbirth.^{73–75} MTM1 is located in a TBR upstream of the TBR at the Xq28 rearrangement, and therefore dysregulation of MTM1 might contribute to the phenotype of DGAP285 (see Supplemental Note and Tables S22 and **S23**).

Figure 3. Diagrams of DGAP259 Rearrangements

Schematic diagrams of the breakpoints of DGAP259 in relation to their TAD (red box) and TBR (dark-red vertical line if 0 bp or gray box if greater than 0 bp) annotations (genes in red: haploinsufficiency index < 10%).

DGAP288

DGAP288 (46,XX,t(6;17)(q13;q21)dn.arr(1-22,X)x2.seq [GRCh37/hg19] t(6;17)(q21;q24.3)dn) had cystic hygroma at 11.1 weeks, followed by prenatal imaging findings consistent with Pierre Robin sequence, which were confirmed during the postnatal period. Sequencing of the prenatal DNA sample identified translocation breakpoints (designated as t(6;17)(q13;q21) by karyotyping) within non-genic regions at 6q21 and 17q24.3 (Figure 4C and Table 6). Breakpoints at 17q24.3 were in a 1.88 Mb TAD corresponding to an upstream *cis*-regulatory region of *SOX9* (MIM: 608160), a region known to be associated with Pierre Robin sequence as a result of dysregulation of *SOX9*, an autosomal-dominantly inherited gene with a low haploinsufficiency index.^{25,28,29} The prenatal sample showed decreased RNA expression of *SOX9* (Figure 5), correlating with the clinical outcome of DGAP288 (see Supplemental Note and Tables S24 and S25).

DGAP290

DGAP290 (46,XY,t(2;7)(q33;q32)dn.arr(1-22)x2,(XY)x1. seq[GRCh37/hg19](2,7)cx,der(2)t(2;7)(q32.3;q33)inv(7) (q33q33)dn,der(7)t(2;7)dn) was a high-risk pregnancy according to first-trimester screening, which showed normal imaging up to 18 weeks. The parents decided to terminate the pregnancy at 23 weeks because of uncertainty of the clinical significance of the balanced rearrangement. Sequencing of the prenatal DNA sample identified translocation breakpoints (designated as t(2;7)(q33;q32) by karyotyping) disrupting *HECW2* at 2q32.3 and *NUP205*

Table 5.	OGAP259: Significant Prote	in-Coding Genes Surrounding th	e Breakpoint	s according t	to TADs and	Convergent	Genomic Evidence
Gene	Nucleotides (GRCh37/hg19)	Description	OMIM ³⁷	OMIM Morbid ³⁷	DDG2P ³⁹	HI (%) ³⁶	Notes
3p26.3 Bre	akpoints on Rearrangem	ent_D (1,408,99{6}) and Rearra	ngement_G ((1,408,984)			
CNTN6 (disrupted)	1,134,260–1,445,901	contactin 6	607220	_	_	39.69	no reported phenotype association; neural adhesion molecule ⁴⁸
CNTN4	2,140,497–3,099,645	contactin 4	607280	_	_	6.9	disrupted in a subject with a 3p deletion syndrome (autosomal-dominant) phenotype ⁴⁹ (cerebral and renal malformation phenotype of DGAP259)
3p26.3 Bre	akpoints on Rearrangeme	ent_D (1,408,99{6}) and Rearra	ngement_G ((1,408,984)			
<i>TBC1D5</i> (disrupted)	17,198,654–18,486,309	TBC1 domain family member 5	615740	_	_	5.84	no reported phenotype association
SATB1 ^a	18,386,879–18,487,080	SATB homeobox 1	602075	_	_	2.15	global genome organizer ^{\$0,51} (complex chromosomal rearrangement of DGAP259); role in neuronal plasticity of cortical neurons and regulation of key neuronal genes ^{\$2,53} (cerebral malformation phenotype of DGAP259)
5q14.3 Bre	akpoints on Rearrangem	ent_B (88,756,2{48-56}) and Rea	arrangement	t_E (88,756,2	{39-40})		
MEF2C	88,013,975–88,199,922	myocyte enhancer factor 2C	600662	+	+	0.26	haploinsufficiency (autosomal dominant, monoallelic) associated with mental retardation, stereotypic movements, epilepsy, and cerebral malformations (MIM: 613443) ^{47,54} (cerebral malformation and hypoplastic corpus callosum phenotype of DGAP259); role in synaptic plasticity and hippocampal-dependent learning and memory ⁵⁵ (9p23 breakpoints of DGAP259 disrupt <i>PTPRD1</i> with similar role)
CETN3	89,688,078-89,705,603	centrin 3	602907	_	_	5.94	present in centrosomes and important role in early cleavage of frog embryos ⁵⁶ (complex chromosomal rearrangement of DGAP259)
7q35 Breal	kpoints on Rearrangemen	t_B (147,718,91{1-9}) and Rear	rangement_l	E (147,718,9	D{7-8})		
<i>CNTNAP2</i> (disrupted)	145,813,453–148,118,090	contactin associated protein-like 2	604569	+	+	4.94	susceptibility to autism type 15; ⁵⁷ homozygous or compound- heterozygous mutations cause Pitt-Hopkins-like syndrome 1 (MIM: 610042) ⁵⁸ (cerebral malformation phenotype of DGAP259; 18q21 breakpoints are one TAD downstream of <i>TCF4</i> , associated with Pitt-Hopkins syndrome)
CUL1 ^a	148,395,006–148,498,128	cullin 1	603134	_	_	4.3	regulates the mammalian G1/S transition ⁵⁹
EZH2ª	148,504,475–148,581,413	enhancer of zeste 2 polycomb repressive complex 2 subunit	601573	+	+	3.07	has a critical role during normal and perturbed development of the hematopoietic and central nervous systems, ⁶⁰ maintains homeotic gene repression, and is thought to control gene expression by regulating chromatin ⁶¹ (cerebral malformation and complex chromosomal rearrangement of DGAP259)

(Continued on next page)

Table 5. C	Continued						
Gene	Nucleotides (GRCh37/hg19)	Description	OMIM ³⁷	OMIM Morbid ³⁷	DDG2P ³⁹	HI (%) ³⁶	Notes
7q36.3 Bre	akpoints on Rearrangeme	ent_A (155,701,797) and Rearran	gement_C	(155,700,873			
SHH	155,592,680–155,604,967	sonic hedgehog	600725	+	+	0.66	haploinsufficiency (autosomal dominant, monoallelic) associated with HPE3, ⁶² which has a long-range regulation-associated phenotype ⁶³ (cerebral malformation phenotype of DGAP259)
9p23 Breal	kpoints on Rearrangemen	t_F (9,646,47{5}) and Rearranger	nent_I (9,6	46,471)			
PTPRD (disrupted)	8,314,246–10,612,723	protein tyrosine phosphatase, receptor type D	601598	_	_	0.14	homozygous microdeletion causes trigonocephaly, hearing loss, and intellectual disability, which overlap the autosomal-dominant 9p deletion syndrome ⁶⁴ (cerebral malformation phenotype of DGAP259); role in synaptic plasticity and hippocampal-dependent learning and memory ⁶⁵ (5q14.3 breakpoints are within the same TAD as <i>MEF2C</i> with similar role)
18p11.31 B	Breakpoints on Rearrange	ment_D (6,375,05{1}), Rearrange	ment_G (6	,559,611), an	d Rearrang	ement_H (6	5,375,0{52-48} and 6,559,{598-602})
<i>L3MBTL4</i> (disrupted)	5,954,705-6,415,236	L(3)Mbt-like 4 (Drosophila)	_	-	_	59.07	no reported phenotype association
18q21.3 Br	eakpoints on Rearrangen	1ent_F (54,660,13{8}) and Rearra	ngement_I	(54,660,136)			
TCF4 ^a	52,889,562–53,332,018	transcription factor 4	602272	+	+	0.38	haploinsufficiency (autosomal dominant, monoallelic) is associated with Pitt-Hopkins syndrome ⁶⁶ (cerebral malformation phenotype of DGAP259, 7q35 breakpoints disrupt <i>CNTNAP2</i> , related to Pitt-Hopkins-like syndrome ⁵⁸)
WDR7 (disrupted)	54,318,574–54,698,828	WD repeat domain 7	613473	_	_	14.85	no reported phenotype association; localized to synaptic vesicles in rat and mouse brain ⁶⁷
NEDD4L ^a	55,711,599–56,068,772	neural precursor cell expressed, developmentally down-regulated 4-like, E3 ubiquitin protein ligase	606384	_	_	8.66	regulator of renal sodium channels; involved in induction of mesoendodermal fates in mouse embryonic stem cells ⁶⁸ (renal malformation phenotype of DGAP259)

Abbreviations are as follows: DDG2P, Developmental Disorders Genotype-to-Phenotype database; HI, haploinsufficiency index; and HPD3, holoprosencephaly type 3. ^aAlthough not located within the same hESC TAD¹⁸ as the breakpoint, these genes might be relevant to the phenotype of DGAP259 given the complexity of the rearrangement.

Figure 4. Diagrams of DGAP268, DGAP285, DGAP288, DGAP290, and DGAP290 Rearrangements Schematic diagrams of the breakpoints of DGAP268 (A), DGAP285 (B), DGAP288 (C), DGAP290 (D), and DGAP290 (E) in relation to their TAD (red box) and TBR (dark-red vertical line if 0 bp or gray box if greater than 0 bp) annotations (genes in red: haploinsufficiency index < 10%; green: imprinted).

(MIM: 614352) at 7q33 and an additional non-genic disruption at 7q33 (Figure 4D and Table 6). Neither disrupted gene had a low haploinsufficiency index, and analysis of proteincoding genes in the same TAD as the breakpoints did not reveal any genes associated with an abnormal phenotype. These results are interpreted as "unknown clinical significance, likely to be benign"; however, clinical correlation was not possible because the pregnancy was terminated (see Supplemental Note and Tables S26 and S27).

DGAP295

DGAP295 (46,XY,t(2;11)(p13.1;p15.5)dn.arr(1-22)x2,(XY) x1.seq[GRCh37/hg19](2,11)cx,der(2)inv(11)(p15.5)inv(11) (p15.5)t(2;11)(p13.3;p15.5)dn,der(11)t(2;11)dn) had abnormal first-trimester screening, which showed an abnormal prenatal imaging finding of growth restriction starting from 19 weeks, and weighed 450 g upon delivery at 31 weeks. Sequencing of the prenatal DNA sample identified translocation breakpoints (designated as t(2;11)(p13.1;p15.5) by karyotyping) disrupting GFPT1 (MIM: 138292) at 2p13.3 and multiple non-genic regions at 11p15.5 within a 70 kb distribution (Figure 4E and Table 6). The complex breakpoints at 11p15.5 are within the same 600 kb TAD as IGF2 (MIM: 147470), an imprinted region known to be associated with growth restriction with distinctive facies (GRDF [MIM: 616489])⁷¹ and SilverRussell syndrome (MIM: 180860),⁷² consistent with the growth restricted phenotype of DGAP295 (see Supplemental Note and Tables S28 and S29).

Discussion

We report whole-genome sequencing of ten prenatal subjects with balanced chromosomal rearrangements with "normal" CMA results and their phenotypic interpretation through publicly available resources. Each subject has contributed uniquely to our experience in the evolution of this approach to a new standard of care in prenatal diagnosis by providing further insight into prognosis through incorporation of an understanding of the regulatory genome (Table 7).

In the evaluation of the pathogenic outcomes of balanced rearrangements, disruption or dysregulation of a single allele is of particular significance when it involves a region known to be hemizygous for X-linked traits, haploinsufficient (autosomal dominant), or imprinted and associated with an abnormal phenotype. Next-generation sequencing can identify the disrupted regions at the nucleotide level; however, predicting the dysregulation of the genes in the vicinity of the breakpoints is more challenging. Advances in the understanding of large-scale regulatory chromatin

Table 6. DO	GAP268, DGAP285, DGAP288, D	GAP290, and DGAP295: Significant	Protein-Coding	g Genes Surroun	ding the Breakp	oints according	g to TADs and Convergent Genomic Evidence
Gene	Nucleotides (GRCh37/hg19)	Description	OMIM ³⁷	OMIM Morbid ³⁷	DDG2P ³⁹	HI (%) ³⁶	Notes
DGAP268: 1	0p12.31 Breakpoints on Rear	rangement_B (21,606,655) and Rea	nrrangement_	C (21,606,63{4-2	})		
No significant	t gene within the same TAD as the	breakpoints					
DGAP268: 1	0p12.2 Breakpoints on Rearra	angement_A (23,659,495~) and Rea	arrangement_	C (23,659,20{0-2	})		
No significant	t gene within the same TAD as the	e breakpoints					
DGAP268: 1	0q23.32 Breakpoints on Rear	rangement_A (93,983,897~) and Re	earrangement	_B (93,982,408)			
<i>CPEB3</i> (disrupted)	93,806,449–94,050,844	cytoplasmic polyadenylation element binding protein 3	610606	_	-	12.96	no reported phenotype association
DGAP285: X	p11.21 Breakpoints on Rearr	angement_A (55,174,723~) and Re	arrangement_	B (55,174,381~)			
FAM104B (disrupted)	55,169,535–55,187,743	family with sequence similarity 104 member B	-	_	-	93.08	no reported phenotype association
DGAP285: X	q28 Breakpoints on Rearrang	gement_A (150,286,207~) and Rear	rangement_B	(150,284,569~)			
MTM1	149,737,069–149,841,795	myotubularin 1	300415	+	+	12.54	hemizygous loss of function (X-linked recessive) associated with X-linked myotubular myopathy ⁶⁹ (overlapping the phenotype of DGAP285)
DGAP288: 6	q21 Breakpoints on Rearrang	 gement_A (112,976,04{2-4}) and Re	arrangement_	B (112,976,031)			
No significant	t gene within the same TAD as the	e breakpoints					
DGAP288: 1	7q24.3 Breakpoints on Rearra	angement_A (69,728,01{7-9}) and F	learrangemen	t_B (69,728,006))		
SOX9	70,117,161–70,122,561	SRY-box 9	608160	+	+	0.56	haploinsufficient (autosomal dominant, monoallelic) long-range <i>cis</i> -regulation associated with Pierre Robin sequence ²⁸ (overlapping the phenotype of DGAP288)
DGAP290: 2	q32.3 Breakpoints on Rearra	ngement_A (197,164,194) and Rear	rangement_B	(197,164,206)			
HECW2 (disrupted)	197,059,094–197,458,416	HECT, C2, and WW domain containing E3 ubiquitin protein ligase 2	_	_	_	18.5	no reported phenotype association
DGAP290: 7	q33 Breakpoints on Rearrang	gement_A (135,905,923), Rearrange	ement_B (135,	299,810), and R	earrangement_	_C (135,299,81{	2} and 135,905,92{4})
NUP205 (disrupted)	135,242,667–135,333,505	nucleoporin 205	614352	_	_	11.41	no reported phenotype association

Table 6.	Continued						
Gene	Nucleotides (GRCh37/hg19)	Description	0MIM ³⁷	OMIM Morbid ³⁷	DDG2P ³⁹	ж(%) IH	Notes
DGAP29	5: 2p13.3 Breakpoints on Rearra	ngement_D (69,588,420~) and Rearr	angement_E	(69,588,264~)			
<i>GFPT1</i> (disruptec	69,546,905–69,614,382 ()	glutamine-fructose-6-phosphate transaminase 1	138292	+	I	22.36	biallelic loss of function (autosomal recessive) associated with congenital myasthenia type 12^{70} (no overlap with the phenotype of DGAP295)
DGAP29 1,961,36	5: 11p15.5 Breakpoints on Rear 1~), Rearrangement_D (1,984,89	angement_A (1,915,057~ and 1,936,9 5~), and Rearrangement_E (1,985,01;	93~), Rearraı 9~)	ngement_B (1,9	60,727~ and 1,	936,668~), Real	rangement_C (1,915,843~ and
IGF2	2,150,342-2,170,833	insulin-like growth factor 2	147470	+	+	79.01	imprinted loss of function (epimutation) associated with $GRDF^{71}$ and $Silver-Russell syndrome72 (overlapping the phenotype of DGAP295)$
Abbreviati	ons are as follows: DDG2P, Developme	intal Disorders Genotype-to-Phenotype data	abase; GRDF, gro	owth restriction wi	ith distinctive facie	es; and HI, haploir	sufficiency index.

Figure 5. SOX9 Expression of DGAP288

Decreased expression of *SOX9* in the chorionic villus sample (CVS) of DGAP288 in comparison to three CVS controls (three different primer sets were used for the expression assessment of exons 1 and 2 out of 3, normalized to *GAPDH*). Error bars represent the SE of the normalized ratios.

domains (TADs) contribute to overcoming this obstacle. A recent study analyzing the WNT6-IHH-EPHA4-PAX3 locus and three related congenital genetic disorders has provided multiple layers of evidence for the significance of these megabase-sized regulatory domains and their contribution to abnormal phenotypes through genomic rewiring of the regulatory boundaries resulting from structural rearrangements.²⁰ It is well established that the *cis*-regulatory elements for many key developmental genes can extend beyond the transcription unit in the range of 120 kb to 1.5 Mb,^{15–17,76,77} which could be explained by these regulatory associations. Therefore, we analyzed the aforementioned characteristics (hemizygosity, haploinsufficiency, and imprinting) of the disrupted genes at the breakpoints, as well as the protein-coding genes located in the regulatory domains and boundaries (TADs and TBRs, respectively) associated with the breakpoints to identify the dysregulated regions. Then, we evaluated the phenotypic and developmental significance of these genes of interest. None of the three subjects with normal outcomes (DGAP247, DGAP258, and DGAP268) had disrupted genes or were predicted to have dysregulated genes involved with an abnormal phenotype. Among five subjects with abnormal outcomes, one (DGAP239) had a disrupted syndromic gene with a low haploinsufficiency index, one (DGAP285) had a disrupted TBR and was predicted to have a dysregulated X-linked recessively inherited syndromic gene, one (DGAP288) had a dysregulated gene involved with an abnormal phenotype, one (DGAP295) was predicted to have a dysregulated imprinted gene involved with a syndrome, and lastly, in one chromothripsis-affected subject (DGAP259), multiple genes associated with CNS malformations and genomic organization were disrupted and predicted to be dysregulated. All showed abnormal phenotypes overlapping the

Subject	Gene(s) of Interest according to Sequencing Results	Interpretation of the Sequencing Results	Clinical Significance	Clinical Outcome
DGAP239	CHD7 (disrupted), LMBRD1 (disrupted)	disruption of an autosomal-dominant gene with a low haploinsufficiency index and associated with CHARGE syndrome (pathogenic) and an autosomal-recessive gene (non-contributory)	pathogenic	CHARGE syndrome
DGAP247	KHDRBS3 (disrupted)	disruption of a single gene without pathogenicity	unknown, likely to be benign	healthy newborn
DGAP248	<i>LRRTM4, RFC3</i> (disrupted), <i>NBEA</i>	disruption of a gene with a low haploinsufficiency index but no reported pathogenicity; potential dysregulation of an additional gene with a low haploinsufficiency index and reported to be associated with autism-like behaviors in animal models and disrupted in a subject with idiopathic autism ^{45,46}	unknown	termination prior to communication of sequencing results
DGAP258	-	non-genic breakpoints with cryptic paternal inversion not at the karyotypically detected breakpoint	unknown, likely to be benign	healthy newborns
DGAP259	CNTN6 (disrupted), CNTN4, TBC1D5 (disrupted), SATB1, MEF2C, CETN3, CNTNAP2 (disrupted), CUL1, EZH2, SHH, PTPRD (disrupted), L3MBTL4 (disrupted), TCF4, WDR7 (disrupted), NEDD4L	complex rearrangement with potential dysregulation of genes with a low haploinsufficiency index and associated with malformation in the CNS and chromatin organization	pathogenic	termination due to multiple abnormal prenatal findings (bilateral ventriculomegaly and colpocephaly with partial agenesis of the corpus callosum)
DGAP268	CPEB3 (disrupted)	disruption of a single gene without known pathogenicity and a cryptic inversion at non-genic breakpoints	unknown, likely to be benign	healthy newborn
DGAP285	FAM104B (disrupted), MTM1	disruption of a single gene without known pathogenicity; disruption of a TBR with potential dysregulation of a gene associated with X-linked myotubular myopathy, a prenatal-onset fatal disease	unknown, likely to be pathogenic	intrauterine fetal demise (overlapping findings with X-linked myotubular myopathy include decreased fetal movements, hydrocephalus, and stillbirth)
DGAP288	SOX9	non-genic breakpoints with dysregulation of a gene with a low haploinsufficiency index and known to be associated with Pierre Robin sequence	pathogenic	Pierre Robin sequence
DGAP290	HECW2 (disrupted), NUP205 (disrupted)	disruption of two genes without known pathogenicity; non-genic cryptic inversion in one of the breakpoints	unknown, likely to be benign	termination after communication of sequencing results
DGAP295	GFPT1 (disrupted), IGF2	complex rearrangement with potential dysregulation of an imprinted gene associated with Silver-Russell syndrome (pathogenic) and a recessively inherited syndromic gene (noncontributory)	pathogenic	small birth weight and failure to thrive (findings consistent with Silver-Russell syndrome)

predicted outcomes of the sequencing results. Of note, two of the five subjects with abnormal phenotypes (DGAP239 and DGAP295) had additional disrupted genes involved in autosomal-recessive syndromes and did not show any clinical features associated with these syndromes. However, in such cases, a potential "carrier" status for the relevant syndromes might be considered in future genetic counseling of the newborn if the outcome is otherwise normal. Among the two terminated pregnancies without any abnormal phenotypes prior to termination, one subject (DGAP248) is interpreted as having a rearrangement predicted to be of unknown clinical significance, and the other (DGAP290) is interpreted has having a rearrangement predicted to be likely benign. Although karyotyping remains the standard of care for prenatal diagnosis, advances in genomic technologies are rapidly transitioning into clinical practice. Non-invasive cfDNA screening and CMA in invasive testing are increasingly popular methods in the field of prenatal genetics.^{78–80} Non-invasive prenatal testing of cfDNA offers tremendous potential as a screening tool, particularly for fetal aneuploidies. Although this next-generationsequencing-based approach has been shown to reliably demonstrate copy-number variations greater than 5 Mb,⁸¹ it currently remains a screening method.^{2,3} Current guidelines recommend offering CMA to any woman choosing to undergo prenatal invasive diagnostic testing and recommend CMA as the primary test (replacing conventional karyotype) if the prenatal diagnostic test is performed for an indication of a structural abnormality detected by prenatal imaging studies.³³ Nonetheless, CMA cannot assess balanced rearrangements and, if performed alone in the present study, would have "missed" all five prenatal subjects with abnormal outcomes (each of whom had abnormal prenatal imaging findings), including a subject with complex chromothripsis (DGAP259).

Karyotyping remains superior to CMA for the detection of balanced rearrangements, despite its megabase-sized resolution. Next-generation sequencing using large-insert libraries provides precise delineation of the breakpoints of structural rearrangements while detecting additional high-resolution cryptic rearrangements, as well as copynumber alterations that could potentially be detected by CMA and not karyotyping. Although cfDNA screening is also a sequence-based approach, given the fragmented nature of cell-free DNA, it would be cumbersome to analyze truly balanced rearrangements with the current cfDNA technology. Another sequence-based approach in the field of prenatal genetics is whole-exome sequencing.^{82,83} Although this method provides higher nucleotide-level coverage and therefore can more reliably detect nucleotide-level mutations in the exome than our large-insert library method, given the presence of non-genic breakpoints in structural rearrangements, a whole-genome paired-end sequencing approach using large-insert libraries, as presented herein, would be most useful in detecting structural rearrangements. Currently, we would recommend using this method in subjects with a normal CMA and a karyotype with a balanced rearrangement (the order of CMA and karyotyping depends on the clinical scenario). In subjects with an abnormal CMA and/or a karyotype without a balanced rearrangement that fails to explain an abnormal phenotype, our method could still be valuable for identifying cryptic rearrangements in the appropriate clinical setting. We believe next-generation sequencing technologies will eventually be proposed as a first-line diagnostic method because they can provide details on structural rearrangements that cannot be detected by either karyotyping or CMA.

As with other genomic testing methods, whole-genome sequencing also raises the issue of variants of unknown clinical significance. The topic of "unknown clinical significance" is not a new problem for the field of prenatal diagnosis, whether it be a subtle imaging finding such as mildly enlarged ventricles or the detection of a balanced chromosomal rearrangement by karyotyping. Sequencing provides additional understanding of the breakpoints involved in a balanced chromosomal rearrangement. Although this information could fundamentally influence genetic counseling, clinical management, and decision making, it could also bring additional pressure to managing unknown findings on the basis of current genomic evidence. Eventually, evolving annotation of the human genome-including the discovery of disease-associated genes or other predictors of regulatory effect, such as pathogenic increases in gene expression—along with guidelines from expert committees, could close these gaps of interpretation, as has been the case with improved clinical reporting of CMA results over the past decade.⁸⁴

In conclusion, detecting balanced chromosomal rearrangements with whole-genome sequencing provides nucleotide-level precision incomparable to currently employed prenatal genetic-testing methods, thus enabling the regulatory genome to be evaluated in such a way that could prove invaluable in clinical interpretation.

Supplemental Data

Supplemental Data include a Supplemental Note, 3 figures, and 29 tables and can be found with this article online at http://dx.doi. org/10.1016/j.ajhg.2016.08.022.

Acknowledgments

We are grateful to the families of the subjects for their participation. We thank Christina Jabbour, Amelia Lindgren, Samantha Schilit, and Drs. Ozden Altiok Clark and Frederick Bieber for their contributions. We dedicate this article in loving memory of Dorothy Warburton, a co-author on this study and the author of an article also published in *The Journal*,⁴ which has served as a foundation for the Developmental Genome Anatomy Project. This study was funded by the NIH (GM061354 to C.C.M., M.E.T., and J.F.G.; HD081256 and March of Dimes 6-FY15-255 to M.E.T.).

Received: June 19, 2016 Accepted: August 26, 2016 Published: October 13, 2016

Web Resources

DECIPHER, https://decipher.sanger.ac.uk/ DGAP, http://www.bwhpathology.org/dgap/ OMIM, http://www.omim.org

References

- 1. American College of Obstetricians and Gynecologists Committee on Genetics (2013). Committee Opinion No. 581: the use of chromosomal microarray analysis in prenatal diagnosis. Obstet. Gynecol. *122*, 1374–1377.
- 2. (2016). Practice Bulletin No. 162 Summary: Prenatal Diagnostic Testing for Genetic Disorders. Obstet. Gynecol. 127, 976–978.
- 3. (2016). Practice Bulletin No. 163: Screening for Fetal Aneuploidy. Obstet. Gynecol. 127, e123–e137.
- 4. Warburton, D. (1991). De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am. J. Hum. Genet. *49*, 995–1013.
- 5. Gribble, S.M., Prigmore, E., Burford, D.C., Porter, K.M., Ng, B.L., Douglas, E.J., Fiegler, H., Carr, P., Kalaitzopoulos, D., Clegg, S., et al. (2005). The complex nature of constitutional de novo apparently balanced translocations in patients presenting with abnormal phenotypes. J. Med. Genet. *42*, 8–16.
- 6. De Gregori, M., Ciccone, R., Magini, P., Pramparo, T., Gimelli, S., Messa, J., Novara, F., Vetro, A., Rossi, E., Maraschio, P., et al.

(2007). Cryptic deletions are a common finding in "balanced" reciprocal and complex chromosome rearrangements: a study of 59 patients. J. Med. Genet. *44*, 750–762.

- 7. Sismani, C., Kitsiou-Tzeli, S., Ioannides, M., Christodoulou, C., Anastasiadou, V., Stylianidou, G., Papadopoulou, E., Kanavakis, E., Kosmaidou-Aravidou, Z., and Patsalis, P.C. (2008). Cryptic genomic imbalances in patients with de novo or familial apparently balanced translocations and abnormal phenotype. Mol. Cytogenet. *1*, 15.
- 8. Baptista, J., Mercer, C., Prigmore, E., Gribble, S.M., Carter, N.P., Maloney, V., Thomas, N.S., Jacobs, P.A., and Crolla, J.A. (2008). Breakpoint mapping and array CGH in translocations: comparison of a phenotypically normal and an abnormal cohort. Am. J. Hum. Genet. *82*, 927–936.
- **9.** Higgins, A.W., Alkuraya, F.S., Bosco, A.F., Brown, K.K., Bruns, G.A., Donovan, D.J., Eisenman, R., Fan, Y., Farra, C.G., Ferguson, H.L., et al. (2008). Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project. Am. J. Hum. Genet. *82*, 712–722.
- 10. Schluth-Bolard, C., Delobel, B., Sanlaville, D., Boute, O., Cuisset, J.M., Sukno, S., Labalme, A., Duban-Bedu, B., Plessis, G., Jaillard, S., et al. (2009). Cryptic genomic imbalances in de novo and inherited apparently balanced chromosomal rearrangements: array CGH study of 47 unrelated cases. Eur. J. Med. Genet. *52*, 291–296.
- Gijsbers, A.C., Bosch, C.A., Dauwerse, J.G., Giromus, O., Hansson, K., Hilhorst-Hofstee, Y., Kriek, M., van Haeringen, A., Bijlsma, E.K., Bakker, E., et al. (2010). Additional cryptic CNVs in mentally retarded patients with apparently balanced karyotypes. Eur. J. Med. Genet. *53*, 227–233.
- 12. Feenstra, I., Hanemaaijer, N., Sikkema-Raddatz, B., Yntema, H., Dijkhuizen, T., Lugtenberg, D., Verheij, J., Green, A., Hordijk, R., Reardon, W., et al. (2011). Balanced into array: genome-wide array analysis in 54 patients with an apparently balanced de novo chromosome rearrangement and a meta-analysis. Eur. J. Hum. Genet. *19*, 1152–1160.
- **13.** Korbel, J.O., Urban, A.E., Affourtit, J.P., Godwin, B., Grubert, F., Simons, J.F., Kim, P.M., Palejev, D., Carriero, N.J., Du, L., et al. (2007). Paired-end mapping reveals extensive structural variation in the human genome. Science *318*, 420–426.
- 14. Talkowski, M.E., Ernst, C., Heilbut, A., Chiang, C., Hanscom, C., Lindgren, A., Kirby, A., Liu, S., Muddukrishna, B., Ohsumi, T.K., et al. (2011). Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research. Am. J. Hum. Genet. 88, 469–481.
- **15.** Sanyal, A., Lajoie, B.R., Jain, G., and Dekker, J. (2012). The long-range interaction landscape of gene promoters. Nature *489*, 109–113.
- **16.** Bhatia, S., and Kleinjan, D.A. (2014). Disruption of long-range gene regulation in human genetic disease: a kaleidoscope of general principles, diverse mechanisms and unique phenotypic consequences. Hum. Genet. *133*, 815–845.
- **17.** Kleinjan, D.A., and van Heyningen, V. (2005). Long-range control of gene expression: emerging mechanisms and disruption in disease. Am. J. Hum. Genet. *76*, 8–32.
- 18. Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., and Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380.
- Sexton, T., and Cavalli, G. (2015). The role of chromosome domains in shaping the functional genome. Cell 160, 1049–1059.

- 20. Lupiáñez, D.G., Kraft, K., Heinrich, V., Krawitz, P., Brancati, F., Klopocki, E., Horn, D., Kayserili, H., Opitz, J.M., Laxova, R., et al. (2015). Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell *161*, 1012–1025.
- **21.** Bhatia, S., Bengani, H., Fish, M., Brown, A., Divizia, M.T., de Marco, R., Damante, G., Grainger, R., van Heyningen, V., and Kleinjan, D.A. (2013). Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am. J. Hum. Genet. *93*, 1126–1134.
- **22.** Yamamoto, T., Togawa, M., Shimada, S., Sangu, N., Shimojima, K., and Okamoto, N. (2014). Narrowing of the responsible region for severe developmental delay and autistic behaviors in WAGR syndrome down to 1.6cMb including PAX6, WT1, and PRRG4. Am. J. Med. Genet. A. *164A*, 634–638.
- 23. Lehnhardt, A., Karnatz, C., Ahlenstiel-Grunow, T., Benz, K., Benz, M.R., Budde, K., Büscher, A.K., Fehr, T., Feldkötter, M., Graf, N., et al. (2015). Clinical and molecular characterization of patients with heterozygous mutations in wilms tumor suppressor gene 1. Clin. J. Am. Soc. Nephrol. *10*, 825–831.
- 24. Cai, J., Goodman, B.K., Patel, A.S., Mulliken, J.B., Van Maldergem, L., Hoganson, G.E., Paznekas, W.A., Ben-Neriah, Z., Sheffer, R., Cunningham, M.L., et al. (2003). Increased risk for developmental delay in Saethre-Chotzen syndrome is associated with TWIST deletions: an improved strategy for TWIST mutation screening. Hum. Genet. *114*, 68–76.
- 25. Gordon, C.T., Tan, T.Y., Benko, S., Fitzpatrick, D., Lyonnet, S., and Farlie, P.G. (2009). Long-range regulation at the SOX9 locus in development and disease. J. Med. Genet. 46, 649–656.
- **26.** Fernandez, B.A., Siegel-Bartelt, J., Herbrick, J.A., Teshima, I., and Scherer, S.W. (2005). Holoprosencephaly and cleidocranial dysplasia in a patient due to two position-effect mutations: case report and review of the literature. Clin. Genet. *68*, 349–359.
- de Kok, Y.J., Vossenaar, E.R., Cremers, C.W., Dahl, N., Laporte, J., Hu, L.J., Lacombe, D., Fischel-Ghodsian, N., Friedman, R.A., Parnes, L.S., et al. (1996). Identification of a hot spot for microdeletions in patients with X-linked deafness type 3 (DFN3) 900 kb proximal to the DFN3 gene POU3F4. Hum. Mol. Genet. *5*, 1229–1235.
- 28. Benko, S., Fantes, J.A., Amiel, J., Kleinjan, D.J., Thomas, S., Ramsay, J., Jamshidi, N., Essafi, A., Heaney, S., Gordon, C.T., et al. (2009). Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nat. Genet. 41, 359–364.
- **29.** Amarillo, I.E., Dipple, K.M., and Quintero-Rivera, F. (2013). Familial microdeletion of 17q24.3 upstream of SOX9 is associated with isolated Pierre Robin sequence due to position effect. Am. J. Med. Genet. A. *161A*, 1167–1172.
- **30.** Talkowski, M.E., Ordulu, Z., Pillalamarri, V., Benson, C.B., Blumenthal, I., Connolly, S., Hanscom, C., Hussain, N., Pereira, S., Picker, J., et al. (2012). Clinical diagnosis by whole-genome sequencing of a prenatal sample. N. Engl. J. Med. *367*, 2226–2232.
- 31. Macera, M.J., Sobrino, A., Levy, B., Jobanputra, V., Aggarwal, V., Mills, A., Esteves, C., Hanscom, C., Pereira, S., Pillalamarri, V., et al. (2015). Prenatal diagnosis of chromothripsis, with nine breaks characterized by karyotyping, FISH, microarray and whole-genome sequencing. Prenat. Diagn. 35, 299–301.
- 32. Mills, R.E., Walter, K., Stewart, C., Handsaker, R.E., Chen, K., Alkan, C., Abyzov, A., Yoon, S.C., Ye, K., Cheetham, R.K., et al.;

1000 Genomes Project (2011). Mapping copy number variation by population-scale genome sequencing. Nature *470*, 59–65.

- **33.** Sudmant, P.H., Rausch, T., Gardner, E.J., Handsaker, R.E., Abyzov, A., Huddleston, J., Zhang, Y., Ye, K., Jun, G., Hsi-Yang Fritz, M., et al.; 1000 Genomes Project Consortium (2015). An integrated map of structural variation in 2,504 human genomes. Nature *526*, 75–81.
- 34. Brand, H., Collins, R.L., Hanscom, C., Rosenfeld, J.A., Pillalamarri, V., Stone, M.R., Kelley, F., Mason, T., Margolin, L., Eggert, S., et al. (2015). Paired-Duplication Signatures Mark Cryptic Inversions and Other Complex Structural Variation. Am. J. Hum. Genet. 97, 170–176.
- 35. Brand, H., Pillalamarri, V., Collins, R.L., Eggert, S., O'Dushlaine, C., Braaten, E.B., Stone, M.R., Chambert, K., Doty, N.D., Hanscom, C., et al. (2014). Cryptic and complex chromosomal aberrations in early-onset neuropsychiatric disorders. Am. J. Hum. Genet. 95, 454–461.
- **36.** Huang, N., Lee, I., Marcotte, E.M., and Hurles, M.E. (2010). Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. *6*, e1001154.
- **37.** Amberger, J.S., Bocchini, C.A., Schiettecatte, F., Scott, A.F., and Hamosh, A. (2015). OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. *43*, D789–D798.
- 38. Firth, H.V., Richards, S.M., Bevan, A.P., Clayton, S., Corpas, M., Rajan, D., Van Vooren, S., Moreau, Y., Pettett, R.M., and Carter, N.P. (2009). DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am. J. Hum. Genet. 84, 524–533.
- **39.** Bragin, E., Chatzimichali, E.A., Wright, C.F., Hurles, M.E., Firth, H.V., Bevan, A.P., and Swaminathan, G.J. (2014). DECIPHER: database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation. Nucleic Acids Res. *42*, D993–D1000.
- Ordulu, Z., Wong, K.E., Currall, B.B., Ivanov, A.R., Pereira, S., Althari, S., Gusella, J.F., Talkowski, M.E., and Morton, C.C. (2014). Describing sequencing results of structural chromosome rearrangements with a suggested next-generation cytogenetic nomenclature. Am. J. Hum. Genet. 94, 695–709.
- **41.** Shiratsuchi, T., Nishimori, H., Ichise, H., Nakamura, Y., and Tokino, T. (1997). Cloning and characterization of BAI2 and BAI3, novel genes homologous to brain-specific angiogenesis inhibitor 1 (BAI1). Cytogenet. Cell Genet. *79*, 103–108.
- 42. Rutsch, F., Gailus, S., Miousse, I.R., Suormala, T., Sagné, C., Toliat, M.R., Nürnberg, G., Wittkampf, T., Buers, I., Sharifi, A., et al. (2009). Identification of a putative lysosomal cobalamin exporter altered in the cbIF defect of vitamin B12 metabolism. Nat. Genet. 41, 234–239.
- **43.** Janssen, N., Bergman, J.E., Swertz, M.A., Tranebjaerg, L., Lodahl, M., Schoots, J., Hofstra, R.M., van Ravenswaaij-Arts, C.M., and Hoefsloot, L.H. (2012). Mutation update on the CHD7 gene involved in CHARGE syndrome. Hum. Mutat. *33*, 1149–1160.
- 44. Laurén, J., Airaksinen, M.S., Saarma, M., and Timmusk, T. (2003). A novel gene family encoding leucine-rich repeat transmembrane proteins differentially expressed in the nervous system. Genomics 81, 411–421.
- **45.** Castermans, D., Wilquet, V., Parthoens, E., Huysmans, C., Steyaert, J., Swinnen, L., Fryns, J.P., Van de Ven, W., and Devriendt, K. (2003). The neurobeachin gene is disrupted by a translocation in a patient with idiopathic autism. J. Med. Genet. *40*, 352–356.

- 46. Wise, A., Tenezaca, L., Fernandez, R.W., Schatoff, E., Flores, J., Ueda, A., Zhong, X., Wu, C.F., Simon, A.F., and Venkatesh, T. (2015). Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, and impaired adult social behavior and activity patterns. J. Neurogenet. *29*, 135–143.
- **47.** Nuytens, K., Gantois, I., Stijnen, P., Iscru, E., Laeremans, A., Serneels, L., Van Eylen, L., Liebhaber, S.A., Devriendt, K., Balschun, D., et al. (2013). Haploinsufficiency of the autism candidate gene Neurobeachin induces autism-like behaviors and affects cellular and molecular processes of synaptic plasticity in mice. Neurobiol. Dis. *51*, 144–151.
- **48.** Lee, S., Takeda, Y., Kawano, H., Hosoya, H., Nomoto, M., Fujimoto, D., Takahashi, N., and Watanabe, K. (2000). Expression and regulation of a gene encoding neural recognition molecule NB-3 of the contactin/F3 subgroup in mouse brain. Gene *245*, 253–266.
- 49. Fernandez, T., Morgan, T., Davis, N., Klin, A., Morris, A., Farhi, A., Lifton, R.P., and State, M.W. (2004). Disruption of contactin 4 (CNTN4) results in developmental delay and other features of 3p deletion syndrome. Am. J. Hum. Genet. 74, 1286–1293.
- **50.** Kohwi-Shigematsu, T., Kohwi, Y., Takahashi, K., Richards, H.W., Ayers, S.D., Han, H.J., and Cai, S. (2012). SATB1-mediated functional packaging of chromatin into loops. Methods *58*, 243–254.
- Alvarez, J.D., Yasui, D.H., Niida, H., Joh, T., Loh, D.Y., and Kohwi-Shigematsu, T. (2000). The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev. 14, 521–535.
- 52. Balamotis, M.A., Tamberg, N., Woo, Y.J., Li, J., Davy, B., Kohwi-Shigematsu, T., and Kohwi, Y. (2012). Satb1 ablation alters temporal expression of immediate early genes and reduces dendritic spine density during postnatal brain development. Mol. Cell. Biol. *32*, 333–347.
- **53.** Close, J., Xu, H., De Marco García, N., Batista-Brito, R., Rossignol, E., Rudy, B., and Fishell, G. (2012). Satb1 is an activity-modulated transcription factor required for the terminal differentiation and connectivity of medial ganglionic eminence-derived cortical interneurons. J. Neurosci. *32*, 17690–17705.
- 54. Le Meur, N., Holder-Espinasse, M., Jaillard, S., Goldenberg, A., Joriot, S., Amati-Bonneau, P., Guichet, A., Barth, M., Charollais, A., Journel, H., et al. (2010). MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations. J. Med. Genet. 47, 22–29.
- 55. Barbosa, A.C., Kim, M.S., Ertunc, M., Adachi, M., Nelson, E.D., McAnally, J., Richardson, J.A., Kavalali, E.T., Monteggia, L.M., Bassel-Duby, R., and Olson, E.N. (2008). MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function. Proc. Natl. Acad. Sci. USA 105, 9391–9396.
- 56. Middendorp, S., Paoletti, A., Schiebel, E., and Bornens, M. (1997). Identification of a new mammalian centrin gene, more closely related to Saccharomyces cerevisiae CDC31 gene. Proc. Natl. Acad. Sci. USA 94, 9141–9146.
- Arking, D.E., Cutler, D.J., Brune, C.W., Teslovich, T.M., West, K., Ikeda, M., Rea, A., Guy, M., Lin, S., Cook, E.H., and Chakravarti, A. (2008). A common genetic variant in the neurexin

superfamily member CNTNAP2 increases familial risk of autism. Am. J. Hum. Genet. *82*, 160–164.

- 58. Zweier, C., de Jong, E.K., Zweier, M., Orrico, A., Ousager, L.B., Collins, A.L., Bijlsma, E.K., Oortveld, M.A., Ekici, A.B., Reis, A., et al. (2009). CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. Am. J. Hum. Genet. 85, 655–666.
- **59.** Yu, Z.K., Gervais, J.L., and Zhang, H. (1998). Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc. Natl. Acad. Sci. USA *95*, 11324–11329.
- **60.** Di Meglio, T., Kratochwil, C.F., Vilain, N., Loche, A., Vitobello, A., Yonehara, K., Hrycaj, S.M., Roska, B., Peters, A.H., Eichmann, A., et al. (2013). Ezh2 orchestrates topographic migration and connectivity of mouse precerebellar neurons. Science *339*, 204–207.
- **61.** Chen, H., Rossier, C., and Antonarakis, S.E. (1996). Cloning of a human homolog of the Drosophila enhancer of zeste gene (EZH2) that maps to chromosome 21q22.2. Genomics *38*, 30–37.
- **62.** Belloni, E., Muenke, M., Roessler, E., Traverso, G., Siegel-Bartelt, J., Frumkin, A., Mitchell, H.F., Donis-Keller, H., Helms, C., Hing, A.V., et al. (1996). Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nat. Genet. *14*, 353–356.
- **63.** Anderson, E., Devenney, P.S., Hill, R.E., and Lettice, L.A. (2014). Mapping the Shh long-range regulatory domain. Development *141*, 3934–3943.
- 64. Choucair, N., Mignon-Ravix, C., Cacciagli, P., Abou Ghoch, J., Fawaz, A., Mégarbané, A., Villard, L., and Chouery, E. (2015). Evidence that homozygous PTPRD gene microdeletion causes trigonocephaly, hearing loss, and intellectual disability. Mol. Cytogenet. *8*, 39.
- Uetani, N., Kato, K., Ogura, H., Mizuno, K., Kawano, K., Mikoshiba, K., Yakura, H., Asano, M., and Iwakura, Y. (2000). Impaired learning with enhanced hippocampal longterm potentiation in PTPdelta-deficient mice. EMBO J. 19, 2775–2785.
- **66.** Zweier, C., Peippo, M.M., Hoyer, J., Sousa, S., Bottani, A., Clayton-Smith, J., Reardon, W., Saraiva, J., Cabral, A., Gohring, I., et al. (2007). Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt-Hopkins syndrome). Am. J. Hum. Genet. *80*, 994–1001.
- **67.** Kawabe, H., Sakisaka, T., Yasumi, M., Shingai, T., Izumi, G., Nagano, F., Deguchi-Tawarada, M., Takeuchi, M., Nakanishi, H., and Takai, Y. (2003). A novel rabconnectin-3-binding protein that directly binds a GDP/GTP exchange protein for Rab3A small G protein implicated in Ca(2+)-dependent exocytosis of neurotransmitter. Genes Cells *8*, 537–546.
- 68. Gao, S., Alarcón, C., Sapkota, G., Rahman, S., Chen, P.Y., Goerner, N., Macias, M.J., Erdjument-Bromage, H., Tempst, P., and Massagué, J. (2009). Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Mol. Cell 36, 457–468.
- **69.** Buj-Bello, A., Biancalana, V., Moutou, C., Laporte, J., and Mandel, J.L. (1999). Identification of novel mutations in the MTM1 gene causing severe and mild forms of X-linked myotubular myopathy. Hum. Mutat. *14*, 320–325.
- Senderek, J., Müller, J.S., Dusl, M., Strom, T.M., Guergueltcheva, V., Diepolder, I., Laval, S.H., Maxwell, S., Cossins, J.,

Krause, S., et al. (2011). Hexosamine biosynthetic pathway mutations cause neuromuscular transmission defect. Am. J. Hum. Genet. *88*, 162–172.

- Begemann, M., Zirn, B., Santen, G., Wirthgen, E., Soellner, L., Büttel, H.M., Schweizer, R., van Workum, W., Binder, G., and Eggermann, T. (2015). Paternally Inherited IGF2 Mutation and Growth Restriction. N. Engl. J. Med. *373*, 349–356.
- 72. Gicquel, C., Rossignol, S., Cabrol, S., Houang, M., Steunou, V., Barbu, V., Danton, F., Thibaud, N., Le Merrer, M., Burglen, L., et al. (2005). Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver-Russell syndrome. Nat. Genet. *37*, 1003–1007.
- **73.** Jungbluth, H., Wallgren-Pettersson, C., and Laporte, J. (2008). Centronuclear (myotubular) myopathy. Orphanet J. Rare Dis. *3*, 26.
- 74. Joseph, M., Pai, G.S., Holden, K.R., and Herman, G. (1995). X-linked myotubular myopathy: clinical observations in ten additional cases. Am. J. Med. Genet. 59, 168–173.
- **75.** Starr, J., Lamont, M., Iselius, L., Harvey, J., and Heckmatt, J. (1990). A linkage study of a large pedigree with X linked centronuclear myopathy. J. Med. Genet. *27*, 281–283.
- **76.** Jeong, Y., El-Jaick, K., Roessler, E., Muenke, M., and Epstein, D.J. (2006). A functional screen for sonic hedgehog regulatory elements across a 1 Mb interval identifies long-range ventral forebrain enhancers. Development *133*, 761–772.
- 77. Gordon, C.T., Attanasio, C., Bhatia, S., Benko, S., Ansari, M., Tan, T.Y., Munnich, A., Pennacchio, L.A., Abadie, V., Temple, I.K., et al. (2014). Identification of novel craniofacial regulatory domains located far upstream of SOX9 and disrupted in Pierre Robin sequence. Hum. Mutat. 35, 1011–1020.
- 78. Bianchi, D.W., Parker, R.L., Wentworth, J., Madankumar, R., Saffer, C., Das, A.F., Craig, J.A., Chudova, D.I., Devers, P.L., Jones, K.W., et al.; CARE Study Group (2014). DNA sequencing versus standard prenatal aneuploidy screening. N. Engl. J. Med. 370, 799–808.
- 79. Norton, M.E., Jacobsson, B., Swamy, G.K., Laurent, L.C., Ranzini, A.C., Brar, H., Tomlinson, M.W., Pereira, L., Spitz, J.L., Hollemon, D., et al. (2015). Cell-free DNA analysis for noninvasive examination of trisomy. N. Engl. J. Med. *372*, 1589– 1597.
- 80. Wapner, R.J., Martin, C.L., Levy, B., Ballif, B.C., Eng, C.M., Zachary, J.M., Savage, M., Platt, L.D., Saltzman, D., Grobman, W.A., et al. (2012). Chromosomal microarray versus karyotyping for prenatal diagnosis. N. Engl. J. Med. 367, 2175–2184.
- **81.** Arbabi, A., Rampášek, L., and Brudno, M. (2016). Cell-free DNA fragment-size distribution analysis for non-invasive prenatal CNV prediction. Bioinformatics *32*, 1662–1669.
- **82.** Drury, S., Williams, H., Trump, N., Boustred, C., Lench, N., Scott, R.H., and Chitty, L.S.; GOSGene (2015). Exome sequencing for prenatal diagnosis of fetuses with sonographic abnormalities. Prenat. Diagn. *35*, 1010–1017.
- **83.** Pangalos, C., Hagnefelt, B., Lilakos, K., and Konialis, C. (2016). First applications of a targeted exome sequencing approach in fetuses with ultrasound abnormalities reveals an important fraction of cases with associated gene defects. PeerJ *4*, e1955.
- 84. Kearney, H.M., Thorland, E.C., Brown, K.K., Quintero-Rivera, F., and South, S.T.; Working Group of the American College of Medical Genetics Laboratory Quality Assurance Committee (2011). American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet. Med. 13, 680–685.

The American Journal of Human Genetics, Volume 99

Supplemental Data

Structural Chromosomal Rearrangements

Require Nucleotide-Level Resolution: Lessons

from Next-Generation Sequencing in Prenatal Diagnosis

Zehra Ordulu, Tammy Kammin, Harrison Brand, Vamsee Pillalamarri, Claire E. Redin, Ryan L. Collins, Ian Blumenthal, Carrie Hanscom, Shahrin Pereira, India Bradley, Barbara F. Crandall, Pamela Gerrol, Mark A. Hayden, Naveed Hussain, Bibi Kanengisser-Pines, Sibel Kantarci, Brynn Levy, Michael J. Macera, Fabiola Quintero-Rivera, Erica Spiegel, Blair Stevens, Janet E. Ulm, Dorothy Warburton, Louise E. Wilkins-Haug, Naomi Yachelevich, James F. Gusella, Michael E. Talkowski, and Cynthia C. Morton

Case Reports

DGAP239¹

46,XY,t(6;8)(q13;q13)dn.arr(1-22)x2,(XY)x1.seq[GRCh37/hg19] t(6;8)(q13;q12.2)dn

Prenatal History: A 37 year-old G2P0SAB1 female conceived after *in vitro* fertilization (IVF) and had normal first trimester screening. Starting in the second trimester, the following abnormal findings were detected: hypoplastic right ventricle and tricuspid atresia (18.8 weeks), polyhydramnios with a small, intermittently undetected stomach and suspicion of esophageal atresia (27.3 and 30.4 weeks), flexed extremities, protruding upper lip, and micrognathia with initiation of multiple periodic therapeutic amnioreductions (33.3 weeks), and undescended right testicle (35.3 weeks). The differential diagnosis during the prenatal period included arthrogryposis, Stickler syndrome, and trisomy 18. A sample of the initial therapeutic amniocentesis fluid at 33.3 weeks was collected for cytogenetic analysis and DNA extraction.

Postnatal History: At 36.2 weeks, during a therapeutic amnioreduction for polyhydramnios, poor fetal movements were noted and an emergent C-section was performed. The birth weight was 2985 grams (68th percentile), length was 45 cm (21st percentile), and head circumference was 33.5 cm (78th percentile). General examination showed a dusky, lethargic male on the ventilator with generalized edema. The chin was slightly retrognathic and there was a high arched palate. Ears were slightly retroverted with 'snipped off' helix. prominent antihelix and patent canals. Neck was short and edematous. Genitalia appeared male, with an underdeveloped male phallus and impalpable testes. Extremities had low tone with weak grasp and clenched fists with cortical thumb. Skin showed scattered ecchymoses and duskiness. After initial stabilization of respiratory and cardiac status, the newborn was transported to the Neonatal Intensive Care Unit (NICU) for further care. Choanal atresia was confirmed by maxillofacial CT scan. Esophageal atresia and tracheoesophageal fistula were confirmed by chest radiography and CT scan. Bilateral optic nerve hypoplasia was noted on ophthalmic examination, absence of the semicircular canals was detected in the ear complex after CT, and mild bilateral hydronephrosis was noted by ultrasound. Cardiovascular system evaluation with echocardiogram revealed tricuspid atresia, hypoplastic right ventricle, atrial and ventricular septal defects with mostly left to right flow, patent ductus arteriosus, small pulmonic valve annulus and normal branch pulmonary arteries. Neurologically, the newborn initially presented with poor tone and showed signs of encephalopathy (detected by EEG) with intermittent decorticate posturing. Clinical seizure activity was not observed. Cranial MRI suggested malformation of the brain including simplicity of the gyri in the frontal and prefrontal areas and also migrational defects. The infant's cardiopulmonary status started to deteriorate by day 8, and on day 10, the infant was removed from the ventilator to allow a natural death.

The spectrum of the infant's clinical findings detected in the postnatal period was consistent with a diagnosis of CHARGE syndrome.²⁻⁴ Of note, optic nerve hypoplasia can be considered in the spectrum of ocular coloboma, a major characteristic finding in CHARGE syndrome.⁵⁻⁷ On the basis of the newborn screening and metabolic tests, the presence of any metabolic disease was excluded.

Sequencing Results and Interpretation of Convergent Genomic Evidence: Sequencing of the prenatal DNA sample identified the translocation breakpoints directly disrupting *CHD7* at 8q12.2 and *LMBRD1* at 6q13. While biallelic losses of *LMBRD1* are associated with methylmalonic aciduria and homocystinuria, cblF type (a metabolic syndrome without any phenotypic overlap with DGAP239), haploinsufficiency of *CHD7* is well known to be associated with CHARGE syndrome (mutated in more than 90% of the cases), correlating with the postnatal diagnosis of CHARGE syndrome in DGAP239. An analysis of the protein-coding genes localized in

the same TAD as the breakpoints did not reveal any additional monoallelic or imprinted genes associated with an abnormal phenotype (Figure 2A, Table 4).

BLA(S)T Outputs of Sequencing Results:

Rearrangement_A (on der(6))

L			-	-			\ /				
ſ	183	358	540	549	100%	8	(+)	61628671	6162885	53	183
	357	1	359	540	99.8%	6	(+)	70405510	7040586	8	359
	Score	Start	End	qSize	Identity	Chro	Strand	Start	End		Span
	481 G	IGTTGCC	TG	CAGTCTI	TCC AA	TGTTAG	CA GTO	CAAAGTCA 1	CTCTCAGAG	С	CAGAGCTGG
	421 CC	CTTTTTT	'CC	TTGCCGG	TGT TA	CTGCAG	TA GCI	CCCCTAC 1	GCTCTCCCT	G	CTGTTGCCT
	361 TA	AAAGTAT	'AT	GCAGAGI	CTG AT	ACCTTT	TC TCI	CCACTTC 1	ACCACCCGG	G	TCCAAGTGG
	301 AC	CTGCAAC	TT	CCACCTC	CCA GG	TTCAAG	TG ATI	CTCCTGC C	TCAGCCTCC	CAA	GTAG{CT} <mark>T</mark>
	241 CC	CCTGAGA	CA	GAGTCTI	GCC CT	GTCGCC	TG GG1	CAGAGTG C	CAGTGGCACG	A	TCTCAGCTC
	181 AC	GTCAACT	'AA	TCATTTI	TTT TT	ACAATT	TT TCI	TAACCTTA G	TACTTTTTT	Т	TTTTTTTTT
	121 GC	GCTAACT	GT	ATACCCA	ACT GC	TTATGA	GA CCI	CCACCTG A	ACATTTTTG	A	GACATCTCA
	61 CA	AAATTAT	TT	CTGACCC	CAAA GT	TGGCTG.	AA TCC	CATGGATC 1	GGAACCCAT	Т	AATATGGAG
	1 G1	TTGTTGT	AT	TGCTTTT	TGT GT	TTTTTT	TA AAT	TGTTTCT 1	TGTTATCTT	Т	TATTTTTCC

BLA(S)T Output: 6q13(+)(70,405,86{7-8})::8q12.2(+)(61,628,67{1-2})

Figure S-DGAP239. BLA(S)T Output, Rearrangement_A on der(6): Circled mismatch represents a SNP (dbSNP build 141, rs2502556).

Rearrangement_B (on der(8))

E E C	6 1	EEC	005	1000/	0	(1)	61600111	6160966	20	FEC
Sco	re Star	t End	qSize	Identity	Chro	Strand	Start	End		Span
901	CTAAG						-			
841	GACCAC	IGTT	TAGTTCA	GGC T	FTCAACT	CT CT	IGGATTAT	TTTAGATAGC	Т	СТСССТССС
781	TACAAC	CAAT	CAGAAAT	TCT T	FCAATTT	AC TT	CTTAAATT	GCTTTATTTC	А	CACCCTCAT
721	TCAAAG	TACT	CAGTAAC	TAG AG	GTGTCAT	GC TAC	GAATCTTC	TGTTTCTCTC	А	CCATTGCTC
661	GATCCG	CCTG	CCTCGGC	CTC CC	CAGTGTA	TT TT	ГТАТСТСА	GCTGGTAACA	С	СААААТТАА
601	TTAGTA	GAGA	CAAAGTT	TCG CO	CATGTTG	GC CA	GGCTGGTC	TCAAACTCCT	G.	ACCTAAGGT
541	AAAGCC	CTG G	GCT { CTG }	GGAT TA	ACAGGGG	TG CCO	CCACCACC	CTCAACTAGT	Т	TTTGTATTT
481	GGTATT	AGAA	ACCTTGG	AGT CO	CTCCTTG	AC TC	ITTCACAA	GCTACATTGA	А	TTTGTTCTC
421	AGACAG	CAGA	TGTTAAA	GTA CO	CTTCCGA	GA CCA	ATTGTTTC	CAGAACCTTC	А	TCACATTGT
361	CGTGAA	AGGT	GGTGACA	CTG TA	ACCTTCA	CA GCO	CTACTTCA	TAGGACTTTG	G	TGTAAAATG
301	TTCTAA	TACC	ACTATGT	ATA TO	GGACAGA	AC AG	FTAACTGT	CCACGCCCTG	Т	GTCTTCCTT
241	ACATGG	TATA	ATGGAAA	AAA AO	СССТААА	CT TG	GGCTAGAA	AATATAGGCC	А	CTATTTTGT
181	CTGTATA	ATGG	CAATACT	CTA CO	CTTAGAA	AA ACA	ААААСААА	АСААААСААА	А	CGTCAAGTT
121	GAGTCA	IGTT	AGCCGCT	'GGT TO	CAAGGGA	GC CA	FCTGAAAC	TCCTTGGAGC	А	GGGTTTCTC
61	AGCCCC	TCC	TCTTTTT	GGC T	FCCACTT	GG CCA	AAAGGAGC	TTCCCTTTGG	G	GCCGCGTCT
1	GGGATC	CGCC	TGCCTTG	GCC TO	ССТАААА	TG CTO	GGGATTAC	AGGCGTGAGC	C.	ACCGCGCCC

Score	Start	Ena	qsize	identity	CIIIO	Stranu	Start	Ena	Span
556	1	556	905	100%	8	(+)	61628114	61628669	556
352	554	905	905	100%	6	(+)	70405867	70406218	352
PLA(S)T Output: 9a12 2(+)(61 629 66(7 0)) (6a12(+)(70 405 96(7 0))									

BLA(S)T Output: 8q12.2(+)(61,628,66{7-9})::6q13(+)(70,405,86{7-9})

Next-Gen Cytogenetic Nomenclature:

Short System 46,XY,t(6;8)(q13;q13)dn.seq[GRCh37/hg19] t(6;8)(q13;q12.2)dn

Detailed System

46,XY,t(6;8)(q13;q13)dn.seq[GRCh37/hg19] t(6;8)(6pter->6q13(70,405,86{7-8})::8q12.2(61,628,67{1-2})-8qter;8pter->8q12.2(61,628,66{7-9})::6q13(70,405,86{7-9})->6qter)dn

DGAP247

46,XY,inv(8)(q13q24.1)dn.arr(1-22)x2,(XY)x1.seq[GRCh37/hg19] inv(8)(q11.21q24.23)dn

Prenatal History: A 41 year-old G3P1TAB1 female had normal first trimester screening (low risk for trisomies 13, 18, and 21, normal nuchal translucency results with normal appearing nasal bone at 12.5 weeks ultrasound). At 16.3 weeks, amniocentesis was performed for advanced maternal age. Pregnancy continued without any complications with normal ultrasound examinations at 32 and 36 weeks.

Postnatal History: The mother presented with spontaneous labor at 38 weeks and delivery occurred without complications. The newborn examination was normal. At 31 months of age, the mother reported that her son is healthy and continues to develop normally.

Sequencing Results and Interpretation of Convergent Genomic Evidence: Sequencing of the prenatal DNA sample identified the inversion breakpoints within a non-genic region at 8q11.2, and within *KHDRBS3* at 8q24.23, disrupting this gene with consequent decreased RNA expression (Figures S1 and S2). Although *KHDRBS3* (KH domain-containing, RNA-binding, signal transduction-associated protein 3) has a borderline haploinsufficiency index of 10.52%, it is not reported to be associated with an abnormal phenotype.⁸ An analysis of the protein-coding genes localized in the same TAD as the breakpoints did not reveal any additional monoallelic or imprinted genes associated with an abnormal phenotype, correlating with the normal clinical phenotype of DGAP247 (Figure 2B, Table 4).

BLA(S)T Outputs of Sequencing Results:

Rearrangement_A (at proximal breakpoints of inv(8))

		· ·		· · · ·		
1	TTTGACAAAC	CTGACAAAAA	CAAGAAATGA	GGAAAGGATT	CCCTATTTAA	TAAATGGTGC
61	TGGGAAAACT	GGCTAGCCAT	ATGTAGAAAG	CTGAAACTGG	ATCCCTTCCT	TACACCTTAT
121	АСААААТТА	AATCAAGATG	GATTAAAGAC	TTAAATGTTA	GACCCAAAAC	CATAAAAACC
181	CTAGGAATAA	TGCAAACTCA	GAGTACGAAT	CTGAAGTCTA	TGCTTTATAC	TACTTAGTTC
241	CAGGGACTAA	TTAGCTTCAG	ATTCCGAAGG	GCAGAAAATT	CCCTCCATTT	TCTCCCATAG
301	CCACCATGAC	AACATCTTAC	TACACCCCAA	TCTGACGGCA	ATGACAGCCA	GCATGGGCAG
361	TTACAAACCA	CAACAAACCA	CTAATGGCAG	CAGAATGTGT	TTACTTGCCA	CAATCCATCA
421	TGCTTTGGGT	TCAGTGCTGT	ATAATGCAAC	TGTAATAATT	ACTGGTTTGA	GAAGAAGATA
481	TTTTCAGACA	GGTCAGACCA	CTGTGCCACA	TGTTTAATGT	AAAAGAAAAG	AGTCCATAAA
541	TATAATCAGC	AACTTTCAAA	TATCAGCCAG	TTGCAAAGAG	TATTTAATTA	ATAAATACAA
601	TTCGATAGAG	AAAACCCTTC	AGTTTTGACC	TTTCTTTTTA	ATGCAAAAGA	GATACAGGGT
661	TGGGGGGTGG	AGAAAGATAC	TTGATGTCTA	GAAATGCTGA	GAAACAAAAA	АААСАААТАА
721	TGATATTGTC	TCCAGGAATA	AGCATGAGAA	CAACAAAGCA	CTACCTGTTA	TTTTACGTAC
781	ATCGTTCTTT	CCTAGATGTT	CTGATGGAAA			

Score	Start	End	Qsize	Identity	Chro	Strand	Start	End	Span
624	185	810	810	99.9%	8	(-)	136495195	136495820	626
184	1	184	810	100%	8	(+)	51889318	51889501	184

BLA(S)T Output: 8q11.21(+)(51,889,501)::8q24.23(-)(136,495,820)

Figure S-DGAP247. BLA(S)T Output, Rearrangement_A at proximal breakpoints of inv(8): Circled mismatch represents a SNP (dbSNP build 141, rs6986340).

Rearrangement_B (at distal breakpoints of inv(8))

1	TTGGCTTCTG	TTGCCATTGC	TTTTGGTGTT	TTAGACATGA	AGTCCTTGCC	CATGCCTATG
61	TCCTGAATGA	TATTGCCTAG	GTTTTCTT (TA	TTCTT) (TATTC	TT) (TATTCTT) (T	ATTCTT) TACT
121	TTTCCTTTAT	GAACAGAGGA	GGATATTCAT	GTCATGAGGG	TATCATATCC	TTATGATAGA
181	GGATATTTGT	GTGATGAGGG	CATCAGCCTT	AGGTGCCTGG	TTCTGTCCCC	TGCATGGCTT
241	CCTCCTGTCC	ATCTGCCGTC	TCTTGCAGGG	CTGAACTTAC	TCTTCCAGAT	TTGGAGATAC
301	TTGGAGTGTT	TGATGCTTGA	ATCCTGTCAT	GACCTGCTTA	TTCTCTCTCC	CTATCTAGGG
361	CTGTTGGGAC	TGTCTGTTTC	TGGGCCTGGA	CAGGACATTT	TTAGATATGT	TTAGAGCATA
421	AATGAAGAAT	TCCCATTGGT	TTTGATGTAA	GATGACTTTG	AATGTTCACT	ATTTTTGGAA
481	GACAGGATAG	CATGGTGATG	AAGATGAGGC	CTCTGGAATT	GGACCGCTTA	GGTTTGGGTC
541	TGTCTTATCC	CTGTGGCTTA	CTAGCTGTAT	GTCCTGGGGG	AAGTAATTTA	ACCCCTCACT
601	ACCTACATTT	CCTCAGTAAA	TTAGAGGTAA	AATGTGGAAT	AGGTAAAAAT	AACCACCACA
661	AAGAGTTAAT	GTGAAGTAAT	ATGCTAACAT	ATGTAAAGCA	TTGAGAAATA	AAAATAAAAT
721	CCTAAGCCAC	CCAACTGACT	GGGTAGACCC	CTCTTG		

Score	Start	End	Qsize	Identity	Chro	Strand	Start	End	Span
648	<mark>109</mark>	756	756	100%	8	(+)	<mark>136495815</mark>	136496462	648
88	1	<mark>88</mark>	756	100%	8	(-)	51889502	51889589	88

BLA(S)T Output: 8q11.21(-)(51,889,502)::TATTCTTTATTCTTTATTCT::8q24.23(+)(136,495,815)

or

BLA(S)T Output: 8q11.21(-)(51,889,502)::8q24.23(136,495,816-136,495,822)x4::8q24.23(+)(136,495,823)

Next-Gen Cytogenetic Nomenclature:

Short System

46,XY,inv(8)(q13q24.1)dn.seq[GRCh37/hg19] inv(8)(q11.21q24.23)dn

Detailed System

46,XY,inv(8)(q13q24.1)dn.seq[GRCh37/hg19] inv(8)(pter->q11.21(51,889,501)::q24.23q11.21(136,495,820-51,889,502)::TATTCTTTATTCTTTATTCT::q24.23(136,495,815)->qter)dn or

46,XY,inv(8)(q13q24.1)dn.seq[GRCh37/hg19] inv(8)(pter->q11.21(51,889,501)::q24.23q11.21(136,495,815-51,889,502)::q24.23(136,495,816-136,495,822)x4::q24.23(136,495,823)->qter)dn

DGAP248

46,XY,t(2;13)(p13;q14)dn.arr(1-22)x2,(XY)x1.seq[GRCh37/hg19] t(2;13)(p12;q13.2)dn

Prenatal History: A 44 year-old G1P0 female had normal first trimester screening. At 10.9 weeks, CVS was performed for advanced maternal age. At 17.3 weeks, fetal ultrasound was interpreted to be normal. At 19.4 weeks, the pregnancy was terminated prior to an appointment to receive the results of sequencing. The mother stated that she decided to end the pregnancy as the couple was conflicted about continuing the pregnancy for personal and psychosocial reasons, and that it was a multi-layered decision. No fetopsy was performed.

Sequencing Results and Interpretation of Convergent Genomic Evidence: Sequencing of the prenatal DNA sample identified the translocation breakpoints within a non-genic region at 2p12, and within *RFC3* at 13q13.2, disrupting this gene with consequent decreased RNA expression. *RFC3* encodes the 38 kDa subunit of replication factor C complex,⁹ with a predicted haploinsufficiency index of 4.93% (likely to be monoallelic)⁸, however without any known abnormal phenotypic associations. In addition, 13q13.2 breakpoints are 973 kb upstream to *NBEA*, a candidate haploinsufficient gene for autism based on animal models and disruption in a patient with idiopathic autism,¹⁰⁻¹² located within the same 2.16 Mb TAD with the breakpoints. The 2p12 rearrangement is located within a TAD that includes *LRRTM4*, a gene with low haploinsufficiency index with no reported abnormal phenotypic association. However, structure and expression profiles of *LRRTM* mRNAs in mice suggest a role in development and maintenance of the vertebrate nervous system.¹³ These sequencing results remain of unknown clinical significance, as the pregnancy was terminated and an assessment of potential autism-like behavior would not have been possible in a fetopsy had it been performed (Figure 2C, Table 4).

BLA(S)T Outputs of Sequencing Results:

Neanan	yemeni	_A (on u	CI(Z))						
1	AAATTTO	GTAC G	GTGGGTGA	A CTGTG	AGCTG	GAGTGTT	TGA GTTTGA	CCTG GTAA	AGTCAA
61	CACAATO	GCCG G	CATTAGTA	T TCAGA	TGAAA	TCTCAGC	TCC TGTGAA	CAAG CTGC	CATGCA
121	GTCAATT	TTGT C	AAGATAAA	A CTTCA	GAGCC	TTGTTCT	GTG ТСТСТТ	CTCT TTAA	TAACCA
181	GAACTTO	CCAA G	ACAACGTA	A GAGGC	AATTT	CAAGGAT	ATT GACGAC	AATC TTCI	TTCTGA
241	AAGGGTT	IGCA C	TGAATATA	C TGGCA	AAGTG	CTTAGTC.	AAG CACTTT	ATAA TTTA	CAAAGT
301	GTCCTCT	ICCG A	ATTTTGCT	G TTTGG	TCTGC	ACAATCA	TTT CTTGGA	GTTG AGAA	CATTTT
361	TCAACAA	ATGT T	GGATACTA	A TTATT	CTACT	GATTATT	AAG TACTTC	ATGC A{TG}T	AATCCC
421	AGCACTI	rtgg g	AGGCTGAG	G CGGGC	GGATC	ACAAAGT	CAG GAGATC	GAGA CCAA	CCTGGC
481	GAACACO	GGTG A	AACCCCGT	C TCTAC	TAAAA	ACACAAA	AAA AATTAG	CTGG GCGI	GGTGGC
541	GGGCGCC	CTGT A	GTCCCAGC	T ACTCG	GGAGG	CTGAGGC.	AGG AGAATG	GTCT GAAC	CCGGGA
601	GGCGGA	GCTT T	CAGTGAGC	C GAGAT	CGCGC	CACTGCA	GTC CAGCCT	GGGC GACA	GAGATG
661	GACTCTO	GTCT C	AAAAAAT	A AAATA	AAATA	AAATAAA	TAA AGGGAT	ATTA CAGA	AATAAC
721	AGGCCTA	AGAG T	TCT						
Score	Start	End	Qsize	Identity	Chro	Strand	Start	End	Span
411	1	413	734	99.8%	13	(-)	34542731	34543143	413
317	412	734	734	99.1%	2	(+)	78301911	78302233	323

Rearrangement A (on der(2))

BLA(S)T Output: 13q13.2(-)(34,542,73{2-1})::2p12(+)(78,301,91{1-2})

Figure S-DGAP248_1. BLA(S)T Output, Rearrangement_A on der(2): Circled mismatch represents a SNP (dbSNP build 141, rs6562229).

Figure S-DGAP248_2. BLA(S)T Output, Rearrangement_A on der(2): Circled mismatches represent three SNPs (dbSNP build 141, rs139240425, rs4853371, and rs2164851).

Rearrangement_B (on der(13))

Score	Start End	Osiza	dentity Chro	Strand	Start F	nd Snan
601	TGATTGCACA	TATTTATTAA	GTAAGACTGG	TGGTATTATG	CTGCCCATGT	
541	CAAAAGCCAC	TGGAAAAAAG	AACAACTTTA	AGTTTTATTG	TATTCTTAAT	TGACAAATAA
481	GTTAAACTGT	GATTTTGTAA	AAGTCTAAAT	GTTGGCTTCT	CAGCTTTTCC	ATCTAGCTTT
421	CATTCTCTTG	CCAACATCTC	AAATTCTTTT	CCTTATTTGC	ATGCCTATTA	CATGCTGCCA
361	CCCGCTACTG	AATTATCTAT	CTTCCCCTTT	TATCTAAATT	CTCTGCTGCA	TCATTTTAAT
301 0	GTG } AGCCACC	GTGCGCCCGG	CCTGTAATAT	CTCTTTGTTG	ATTAGCCTCC	TAGCCATATC
241	GACTTTACCA	AAGCTTAGGT	TGCCTTGTTT	TTAGCCAATC	AAACAATCAA	AAGTTTTTC { T
181	GATCAGATGG	TAATTTAACT	AAATGATCAA	CGAGTAGGTT	CACAGAATGA	AGGACAACCA
121	AGGTGTGCCA	CCACGCCTGG	CCCAGCATTT	ACTCTTTACA	AATGTAGCTG	AGAACATGGG
61	TCTCAAACTC	CCGACCTCAA	GTGATCCTCC	CACCTCGGCC	TCCTGCAGTG	CTGGGATTAC
1	CACCTGGCTA	ATTTTTGTAA	TTTTCGTAGA	GACGAGGTTT	CACAATGTTG	GCCAGGCTGG

00010	oturt		GOILO	lacing		otrana	Otart	Ena	opun
351	300	650	650	100%	2	(-)	78301558	78301908	351
301	1	303	650	99.7%	13	(+)	34542421	34542723	303

BLA(S)T Output: 13q13.2(+)(34,542,7{20-23})::2p12(-)(78,301,90{8-5})

Figure S-DGAP248_3. BLA(S)T Output, Rearrangement_B on der(13): Circled mismatch represents a SNP (dbSNP build 141, rs4941775).

Next-Gen Cytogenetic Nomenclature:

Short System

46,XY,t(2;13)(p13;q14)dn.seq[GRCh37/hg19] t(2;13)(p12;q13.2)dn

Detailed System

46,XY,t(2;13)(p13;q14)dn.seq[GRCh37/hg19] t(2;13)(13qter->13q13.2(34,542,73{2-1})::2p12(78,301,91{1-2})->2qter;13pter->13q13.2(34,542,7{20-23})::2p12(78,301,90{8-5})->pter)dn

DGAP258

46,XY,inv(6)(p23q13)dn.arr(1-22)x2,(XY)x1.seq[GRCh37/hg19] inv(6)(p25.3q16.1)dn(q15q15)pat or 46,XY,inv(6)(p23q13)dn.arr(1-22)x2,(XY)x1.seq[GRCh37/hg19] inv(6)(p25.3q16.1)dn,inv(6)(q15q15)pat

Prenatal History: A 28 year-old G1P0 female conceived after IVF and had abnormal maternal first trimester serum screening with an increased risk of chromosomal abnormality. Amniocentesis was performed at 15.9 weeks and the twins were determined to be monozygotic based upon SNP microarray results. The twin fetuses had normal ultrasound findings at 12 and 20 weeks.

Postnatal History: The twins were born prematurely at 33 weeks by C-section due to breech/breech presentation. Birth weights were 3 pounds 3 ounces and 3 pounds 4 ounces. They spent one month in the NICU for growth monitoring and did not require intubation nor have any illness or major complication during the NICU stay. At 2.5 years of age, the mother reports that the twins continue to be healthy without any hospitalization or developmental delay.

Sequencing Results and Interpretation of Convergent Genomic Evidence: Sequencing of the prenatal DNA sample identified the inversion breakpoints in non-genic regions at both 6p25.3 and 6q16.1. In addition, a paternally inherited cryptic rearrangement at 6q15 was identified. Due to the length of the sequencing reads, it was not possible to determine whether both of the breakpoints on 6q reside in the same paternally inherited chromosome, however, given their relative close proximity and localization within the same 2.21 Mb TAD, this is a likely possibility. An analysis of the protein-coding genes localized in the same TAD as the breakpoints did not reveal any additional monoallelic or imprinted genes associated with an abnormal phenotype, correlating with the normal clinical phenotype of DGAP258 (Figure 2D, Table 4).

BLA(S)T Outputs of Sequencing Results:

ittourian	90	_,, (on b			' <i>11</i>				
1	TCTGCAC	CTCT C	ATGTTTGT	T GCAGC	GCAGCACTCT		AGC CAAGAT	TTGG AAGC	AACCTA
61	AGTGGCCAGG		ACAGATGA	A TGGAT.	TGGATAAAGA		GTA CTTATA	CACA ATGGAG	TAC { T }
121	GGAAGACCAC		AAAAGCAC	C CTCCC	TGAGA	GCAGGCC	TCT CCCAGT	GAAA TGCA	AGTTCC
181	AGGAAATGAC		TGAGTTGTCC CATGTO		GCAGC	CGAGTCC.	ATC ATGAGG	TGCA GGGA	GATT
Score	Start	End	Qsize	Identity	Chro	Strand	Start	End	Span
120	1	120	238	100%	6	(-)	93191547	93191666	120
117	120	238	238	99.2%	6	(+)	776786	776904	119

Rearrangement A (on proximal part of inv(6))

BLA(S)T Output: 6q16.1(-)(93,191,54{7})::6p25.3(+)(776,81{6})

Figure S-DGAP258_1. BLA(S)T Output, Rearrangement_A on proximal part of inv(6): Circled mismatch represents a SNP (dbSNP build 141, rs9406007).

Rearrangement_B (on distal part of inv(6))

1	GTTGTT	GCAA A	TGACTGAA	T CTCAT	TTATT	TTTATGT	TTG AGCATG	ТАСА ССТА	ATTAAG
61 .	61 ATTCTGACTG		GTTTAGGA	T CAAAG.	AAAGC	TGTCCCA'	TTG CATTCC	САСА ТТСТ	TCCTTC
121	TTCTTT	CAAT G	TCTTCCAA	G ATCTA	TTTTA	AACGGGA	AGT GTTGTG	ТАСТ ТТТС	AGGGGC
Score	Start	End	Qsize	Identity	Chro	Strand	Start	End	Span
138	43	180	180	100%	6	(-)	776650	776787	138
42	1	42	180	100%	6	(+)	93191504	93191545	42
	A	6-16-1/	1)/02 404	E 4 E \Cm OE	2/ 1/770	707)			

BLA(S)T Output: 6q16.1(+)(93,191,545)::6p25.3(-)(776,787)

Rearrangement_C

Cryptic inversion spanning 6q15(92,254,978~-92,235,543~)

Next-Gen Cytogenetic Nomenclature:

Short System

46,XY,inv(6)(p23q13)dn.seq[GRCh37/hg19] inv(6)(p25.3q16.1)dn(q15q15)pat

or

46,XY,inv(6)(p23q13)dn.seq[GRCh37/hg19] inv(6)(p25.3q16.1)dn,inv(6)(q15q15)pat

Detailed System

46,XY,inv(6)(p23q13)dn.seq[GRCh37/hg19] inv(6)(qter->q16.1(93,191,54{7})::p25.3q15(776,81{6}-92,235,543~)dn::q15(92,254,978~-92,235,543~)pat::q15q16.1(92,254,978~-93,191,545)dn::p25.3(776,787)->pter)

or

46,XY,inv(6)(p23q13)dn.seq[GRCh37/hg19] inv(6)(qter->q16.1(93,191,54{7})::p25.3q16.1(776,81{6}-93,191,545)::p25.3(776,787)->pter)dn,inv(<u>6</u>)(pter->q15(92,235,543)::q15(92,254,978-92,235,543)::q15(92,254,978)->qter)pat

DGAP259

46,XX,t(3;18;5;7)(p25;p11.2;q13.3;q32),t(9;18)(p22;q21)dn.arr(1-22,X)x2.seq[GRCh37/hg19](3,5,7,9,18)cx,der(3)t(3;7)(p24.3;q36.3)dn,der(5)t(5;7)(q14.3;q35)t(3;7)(p24.3;q 36.3)t(3;18)(p26.3;p11.31)dn,der(7)t(5;7)dn,der(9)t(9;18)(p23;q21.3)dn,der(18)t(3;18)inv(18)(p11.31q21.3)t (9;18)dn

Prenatal History: A 28-year-old G1P0 female had abnormal fetal imaging findings of bilateral ventriculomegaly and colpocephaly, with partial agenesis of the corpus callosum observed by ultrasound and MRI. Amniocentesis was performed at 21 weeks. The pregnancy was terminated at 22 weeks due to the abnormal imaging findings. Fetal autopsy showed microencephaly (40 g vs normal 75 g for the gestational age), ventriculomegaly, agenesis of the corpus callosum, left renal aplasia and hypoplasia of the right kidney.

Sequencing Results and Interpretation of Convergent Genomic Evidence: Sequencing of the prenatal DNA sample identified all of the breakpoints of this complex aberration with nine rearrangement sequences located at 3p26.3, 3p24.3, 5q14.3, 7q35, 7q36.3, 9p23, 18p11.31, and 18q21.3. An analysis of the protein-coding genes localized in the same TAD as the breakpoints revealed multiple genes associated with phenotypes overlapping with DGAP259. In particular, the breakpoints at 7q36.3 disrupt the regulatory region of *SHH* that is associated with holoprosencephaly (Supplemental Table 2), which is consistent with the cerebral malformation phenotype of DGAP259.¹⁴ The breakpoints at 5q14.3 are located within the same TAD as *MEF2C*, a haploinsufficient region associated with cerebral malformation and hypoplastic corpus callosum,^{12; 15} as observed in DGAP259. Furthermore, two well-known genome organizer and chromatin regulator protein encoding regions, *SATB1^{16; 17}* and *EZH1¹⁸* reside in the vicinity of *TBC1D5* and *CNTNAP2*, which are disrupted in the respective breakpoints at 3p24.3 and 7q35 and might be relevant to the complex chromosome aberration of DGAP259 (Figure 3, Table 5).

BLA(S)T Outputs of Sequencing Results:

Rearrangement A (on der(3))

1	TGCTCGTCCC	ACCCCAGCGT	GGGGTGTGGA	GAGGTGGGCC	AGTAGGAGGG	GTTTGGCTGT
61	GGAGGCAGCT	TCCTCCCAAA	TGGTTTAGTG	CAGTTCTCCC	ATAGTGCCTG	AGGTCCCCCT
121	CTCTAGAGAC	GATTCATTCT	GGCCGACTTA	CATTCATTTG	TTAAAAAGCC	AGGACACCCC
181	TTGAGTTTCC	CCTCACTGAA	GGCATCTTGT	TCCCCTTTGT	CCTTCCCCAC	CATGTTATGA
241	GGAAGCACAA	GAGGTCTCCC	CAGAAGCCTG	GGCCATGCCC	TTGAACTTCT	CAGACTGGAG
301	AACCGTGAGC	AAAATATACC	TTTTTTCTTT	ATAAATTACC	CAGTCTGAGG	TATTATTTTA
361	TAGCAAGGCC	CATCCAACAA	GTTTATGCTA	CTTAAATAAA	GTTCCTTTCA	ATAAAAGATG
421	CCACAGTGGC	ACACAGTTAA	CTATGAGGAA	ATTTTTTTAA	CTATATTTAT	TTTTGTGTCA
481	AAGGCTTAGG	TGTGCATTAG	ACAACCATTT	ATTAATTTTA	ATTTTGCTTG	GAATAAACAC
541	CCTGACAAAC	AGCATTTCAA	TTCAGGCTGC	TATACAACAG	AATCATTTAC	TTTCAGATAC
601	AATCATGCAG	TAACACCACA	AGCTCCTGCT	TCACAAATTG	CTCAATCCCC	AATCCCCAAA
661	TACTATAGAA	GATGGCTTAT	ATATAAGTTA	TACAAGACAT	GCATTCTAAT	ATTCAAGCCA

Score	Start	End	Qsize	Identity	Chro	Strand	Start	End	Span	
363	1	367	720	99.5%	7	(-)	155701797	155702163	367	
353	368	720	720	100%	3	(+)	17392144	17392496	353	

BLA(S)T Output: 7q36.3(-)(155,701,797)::3p24.3(+)(17,392,144)

Figure S-DGAP259_1. BLA(S)T Output, Rearrangement_A on der(3): Circled mismatch represents a SNP (dbSNP build 141, rs10807665).

Rearrangement_B (on der(5))

1	AGCAGTA	AAA GO	GCACTAGC'	f GGGTA	GGTAG	TTATCAA	GAA	TGACAA	ATAT	CCTAA	AGTTG
61	TTAAATC	CTCC CA	ATTCTGAG	G AGTTG	AAGTG	GGAAATG	GAG	AGATTA	TTCA	ACTCI	ATCAA
121	CATCTGA	TAC A	GTAATTTG	A CTTAC	TTAAT	CATTATG	ТСТ	CATCTT	CCAT	TATTA	ATTTA
181	AACAATI	TTG GA	AATTTATG	r attca	CGAAT	CAGACTT	GTG	TGATAG	ГААА	TACGC	ATTAA
241	AAATAGT	ATT TA	TGTGGAAT	A TTTCA	GAACT	TGTACTT	TTT	ACCATT	IGTT	CTTAG	GCAGG
301	TAGAATC	CAAG TA	AGTTCACT	A AGGCT	TGAAT	AATAGAG	GGT	AAACCT	CCTA	GTTCI	AAGAT
361	GTCTGAT	ATC TO	GCTCTGTA	A AAAAA	TAAAA	TAAAATC	ACC	CAAATT	TCAC	TACAA	TAAAA
421	CAAGAGC	CAT T	TTATTATG	C TCAAA	CAATC	CATGGGT	CAG	AACAAG	GCAG	AGTGG	ATATG
481	GCTTATT	CTA T	TATCATGC'	r ctatg	TCTGC	AGCATTA	ATT	GAGGAA	ACTC	AAATO	ATGGA
541	GATTACC	CAGT G	TTGCTGGG	G TGTGG	AATGA	GCTAGAA	GCT	CGTTCA	TTCA	CATAA	ATGTT
601	GCC { TGC	TCCA AA	GCTGTAC	C GAGTCA	AGTGG	CGGAGGC	CGG	GTGAGC	GTGG	GGAAG	GGCAT
661	CAGACAC	GGT A	TACCTGCT	C CACCT	TTCCC	TTTTGTT	TTG	TTGTCA	CAAG	AGGCA	CTACT
721	TCGCTGC	CTC CC	GTCTCCTC	r GTGGG	TGGAA	AGGATGG	ACC	CAAAGG	AACA	GAACO	CTGTG
781	GCCACTC	GAC GA	ATGGTTTT	G ATAGG	GACTT	ATCTTGC	TCT	CTCTCC	CTGG	ACACI	CT
Score	Start	End	Qsize	Identity	Chro	Strand	S	tart	E	nd	Span
611	1	612	837	100%	5	(+)	887	55635	8875	6256	622
232	604	837	837	99.6%	7	(+)	1477	7718911 14771914		19144	234

BLA(S)T Output: 5q14.3(+)(88,756,2{48-56})::7q35(+)(147,718,91{1-9})

Figure S-DGAP259_2. BLA(S)T Output, Rearrangement_B on der (5):. Circled mismatch represents a SNP (dbSNP build 141, rs12055952).

Rearrangement_C (on der(5))

1	GGCCTCACTC	AGTGCCCTCG	GGTCTGGAGA	CATGAATCAC	GAACCCTCCC	ACCAGCCCCA
61	GGATTTGGTC	AGTTATAAAA	ATATCCGGAT	TTGGCATGGG	GCGGATTCAG	GAACCGAAGT
121	TTGCTCTTGC	CCTGTTCTTG	CAGTATTGGA	TTGTACAATT	ATAGCTCTTT	AGAAGTTTCC
181	TAATATGCCA	CAAGATGTCA	AGCAGCAGCA	CCAAGATTAA	TACTTTTTTT	AATGACCATT
241	GCTGACTTTG	ACCTTGAAGT	GTGTGGTGTG	TTCTGAGAGC	ATATTTCCTC	CCCTCTGCTT
301	TGCAGCTCCT	GGATTTTGAA	AAATTAACTC	CTTGCTCTCA	TCTGAACAGT	TCACCTAAGG
361	TGTTCACTTG	TTCTGTTTAC	CTTGAGCTAA	AGTGTTTTAG	AGAGAGAGGG	AGAGGGAGGA
421	GGGAGGTAGA	GAAAAGGAGA	GGGGAGGTGG	AGAGGTAGGG	GGAGAGGAAG	GAAGGTGGGA
481	AGGAAGGGGA	GGGAGAGGTA	GGGAGAAGGG	GAGAACAAAT	GATGATTTGT	TAATGCAAAT
541	GTGTCGCGAA	TGACTGGTAG	TACATCTGTC	TCTTCATCCA	TAGGCCATTA	CTGAGCAACG
601	TTAGCACATG	ATTGTAAAAA	AGGAGAAATC	ATTACATGCA	GGTAGTACAC	ATTCAATCAA
661	TTCTGAGCTT	ATGTCTCTGG	TGAAATAAAA	AAGTATATAA	TGTAAATGAT	ATTTAATCTG
721	ААТААСАААА	AAGCAGCTCT	TTGACTCTGG	CTCAAGCTGT	TAGGTGAGGT	GACTGCTGTT

1025	517	1541	1541	100%	3	(-)	173	91112	17392	2136	1025
511	1	511	1541	100%	7	(+)	1557	700363	15570	0873	511
Score	Start	End	Qsize	Identity	Chro	Strand	S	tart	En	d	Span
1501	GCTGAT	TATC	TTCCTGCC	CT TATT	TATTTT	TAGGAA	CCCC	А			
1441	TTAAGA	ATTT .	AATGGAAA	GG ACAA	AACAAT	AATTTT	CATT	TGGGA	ACCTC	TCAG	GCTCTCT
1381	GCGATT	AACT	CATAAGGC	TA AGAA	GAACCT	CAGAAA	ГGAG	CTCTT	CTGCA	GCTG	GAAGACA
1321	TAATCG	TTTA 1	AATGTATC	AT TACTO	CCTAAA	GGCATG	IGAG	TTAAA	GTGAC	TTCI	CTTGGT
1261	CCATGG	ATCT	GTGTGTTA	AC TGCT	TTCATT	AGGGAG	ATAT	GCATT	TTTTT	CCTA	ATTGTT
1201	ACTCTT	TACA	ТАТСТААА	AT GAAC	ATGTTA	TTTACA	AATG	ACTTG	TGATA	CTCA	TATAAA
1141	AAAAGT	TATG	AAACACCC	GG GCAA	CAATAA	AATATA	ATTT	ATTTC	ATAGG	GCAI	GACAGA
1081	TCAGTC	TTTT	GGTGAAAT.	AA ACTA	CTCTAT	CTTAAT	ГСТС	CACTC	TTGCA	GTAA	ATAAAT
1021	CAACAA	CAAC	AAAAGTTG	TA CGAT	TAGCTT	CAGCTC	CATA	AGTGT	CTAAT	GAGC	CATTTG
961	АААААА	TGGG	TGCTGATG	AC CACCA	AGTGTG	AGCATG	CTAA	GCAAG	CAATG	ACAA	ATTAATA
901	TATCTA	TTTT	TTTCTTTT	CA TTAT	TTCTTT	CTTTTG	GGGA	GTAGT	TTGTG	GGAI	AGTGGT
841	TCCTCC	CATG	CGTTTCTC	TA ACCCA	ACATCA	TATTT	AAGT	TCTGT	TTTCC	TTTT	TTTTCT
781	TGGGAT	TGAT	GTTTATTG	GT GGCC	CAGTGG	GGAAAG	GCTA	TCACT	TTTAT	TCTT	TGTCAT

BLA(S)T Output: 7q36.3(+)(155,700,873)::AGAAC::3p24.3(-)(17,392,136)

Rearrangement_D (on der(5))

1	TTTCTATGGC	TGCTACCACC	ATTATCTCCA	TCCCTTTAAG	AGGCCCAGGT	TCTGATGTGC
61	CCATGCCCTC	AGGACTCCAG	GACTATGACT	ACCCAGGCAA	GCATGTGCAC	ACCTGCACAC
121	CACACCAACT	GCTGTGCACG	CATGCCGACT	GCTGGGTCTT	TAAGCCTGAA	CTTGTGTGTG
181	CAGGAGCTGC	CACATATGCA	TGTGGGTATG	GTGAAGCAGC	AGCAGCAGCA	GCTCATGCAC
241	ACACAGGTTA	CAAATAAATT	CTTAATCATT	TTACCTCTCA	ATTTGTGTTT	AGTATGTACA
301	AAACACAAAT	TGAGAGGTAA	AATGATTAAG	AATTTCAAGA	CAGTCACAGC	AGAATATTTC
361	AAACATGGGG	ACTTCCTCAG	CACAGGGCTC	TGTGTGACTG	GATTGTATGT	CCATGAAACC
421	AGCTCTGGAT	GTCACGCTAA	GAAATATATT	CTTACATAGT	AGAGAGTAGC	ATAGTAAAGA
481	GTAGCATGGT	GGTTATCAGA	GGCTGGTGGG	AG{G}CAGCCCG	AGTTTCCCAA	TGCACCAAAG
541	CAGAAGCTTT	TTGGAAACCT	ATATATTTTT	TCATACTATT	GGGAATTTCT	TCAGAATATG
601	AAGGCTTTAT	CGAATTGTGT	CTGAAATGAA	TTTCATTTAA	ATACTGAATT	AATTGAAAGC
661	TTTGCTTCTG	AATATTTTTC	CATAGATTTC	ACGGTGCTTT	AGAAATTTCA	TTTTGCCTCA
721	TGTTTTAGTA	CTGGCAATAA	CTGCCAGTAA	TAGAAGTGGC	AGTGTTGAGG	GAAATGGTGG
781	TGGCGAGTGT	GGGATGGTCT	CAGTGGGCAG	CTTTCTTACG	ATGAGGAGAG	GCGGGGCGTG
841	ACTGGTTCTA	TCGTGTTTTC	ACTGGGACCA	GGACTCACTG	TGGAAGGGCA	GGAAGTACCA
901	CTTAGTGGTG	AGAACAGCAC	GCAGGCTCCA	GTTTACCATT	CTGGTGATTT	GACTTTAATG
961	AAGCCCTTTG	GAATTTTGAC	TG			

Score	Start	End	Qsize	Identity	Chro	Strand	Start	End	Span
470	513	982	982	100%	18	(-)	6374582	6375051	470
513	1	513	982	100%	3	(-)	1408996	1409508	513

BLA(S)T Output: 3p26.3(-)(1,408,99{6})::18p11.31(-)(6,375,05{1})

Rearrangement_E (on der(7))

1	GTAGACTGTT	GAGTGAATTT	СТААТААТАА	AGCCAAAAGG	AAAAATAATG	GCAATATGAT
61	TGGACAAGCA	GTTTCAGAAT	CAAGGTAGGA	TGCCTTTTTG	TTGGTGGAGG	TTTTTTGTTT
121	TTGTTTTGTT	TTTGGACTTA	TTCTCCCTCA	ТАТСАААТАА	ATTTATTAAA	CACACCTGAA
181	CACTTGTTAT	GTGCCACTGT	CGGCCACGTA	TTAGGGACAC	GGAAGAACAA	TAAGACATAC
241	TCCCTACCAA	AAGAGGCTTA	TGGTTTAGAA	GGAAGACACA	GTCTTGTAAA	CAGGTAAGTA
301	AAATAAAATG	TGAGCTGCAC	TATGCTGGAA	GTCAGCCCAG	GGTGGCCCAA	GTAGACCATA
361	GCCAGTCTAC	ATAAATAGGG	AGACACGGGG	GACAGCTTTC	TAGATGTCCC	TAACGCTGAA
421	TCCTAAAAGA	TGAGAAGCAT	TTCTAGGGTG	CCAGAGTGGA	GAAAACACCT	GACTTGTGGG
481	AGAACGGAAG	GCCTCGTGTT	CATTCAATGG	ATCAACTATC	ATTGGGCATC	TCCACCTGCG
541	AGAGACGGCG	CTAGCCCCTG	GGGATCCAGT	CCCCGGTGAG	CTGGAAAGCT	ACTCTGTGCT
601	CTCAGAGGAC	TTGGAACAGA	GAATGCAGAC	AGGGTGGCAG	GAATGCAGGA	ATGTGCTCAC
661	AGTGCAGGAA	CCCGGTGGCT	CGCAGAGAAG	GGCACCAAAC	TTAGACCTGG	GAGATCAGGA
721	CCCTCTCCCC	CAAAACCTGG	A { GG } TTGGAAT	ACCTCCAAAT	CTGAACTCAG	CTTTGACTGT

781	CAATGO	GAGTG	CAGCTTGT	GA CCTC	TCCATG	TAGTTT	GAGC	CTTTC	ААААА	ATGA	AGTGTG
841	GCTACC	CTACA	ACCAACTG	AT TTTC	AAAAAG	TCAACA	AAAA	TATGA	AGTGG	AAAA	AGGACA
901	CTCTAI	TCAG	TAAATGGT	AC TGAA	ACAATT	AAATAG	CCAT	ATGCA	GAAAA	ATGA	AACTGG
961	ACCCCI	ATCC	TTTACCAT	AT ATAA	AATTAA	CTCAAG	ATTA	ATAAA	GACTT	ATAI	GCAAGA
1021	CCTGAA	ACTA	ТАААААТС	TT ATAG	GAAAAA	CTCTTC	CAGA	CTCTG	GCATA	AGCA	AAGATT
1081	TTATGA	ACCAA	GACCTCAA	AA GCAA	ATGCAA	CAAAAA	GAAA	AATAG	ACAAA	TGGG	GACTTAA
1141	TTAAAG	GAGCT '	TCTGCACA	GC AAGA	AAAAT	AATAAT	AATA	ATAAA	CAGAG	TAAA	ACAAACA
1201	ACTTAC	CAAAA	TGGGAAAA	AA TATT	TGCAAA	CTATGT	GTCT	GACAC	AGAAC	TAAC	CATCCGG
1261	AATCCA	GAAG	СААСТСАА	AA CAAC'	TCAAGA	AGAAAA	AAAC	AATCC	CATTT	AGAA	AGTGGAC
Score	Start	End	Qsize	Identity	Chro	Strand	S	tart	En	d	Span
743	1	743	1320	100%	7	(+)	1477	'18166	14771	8908	743
577	742	1320	1320	99.9%	5	(+)	887	56239	88757	7077	579

BLA(S)T Output: 7q35(+)(147,718,90{7-8})::5q14.3(+)(88,756,2{39-40})

Figure S-DGAP259_3. BLA(S)T Output, Rearrangement_E on der(7): Circled mismatch represents a SNP (dbSNP build 141, rs6879209).

Rearrangement_F (on der(9))

		10~21	21/ 1/5/ 6	60 12(0))	002(1)(0 646 4715	1)				
621	514	1134	1134	100%	9	(+)	964	6475	9647	095	621
514	1	514	1134	100%	18	(-)	5466	60138	54660	651	514
Score	Start	End	Qsize	Identity	Chro	Strand	St	art	En	d	Span
1081	TCTTTG	GCCCA	TCTGTGCT	TA ATTC'	ТАААТА	ACTTCT	FCAG	GTCTG	AATAA	ATTI	
1021	TATACT	GTTG	TGGACATT	TA TACA	CTGGCC	TACATT	TTTT	ACCCT	CTCAT	AATT	TCCATC
961	АААСТА	TGGA	AAGCAAAA	CT GTGG	ATAAGC	TGGGGA	GGTG	CAGGG	GGCTC	ATAT	AGAGTA
901	СААТАА	TGTG	GTCTTTCT	CT CTCT	CAGAAC	ACCTTG	FTGT	ACTATA	ACCAC	AGGI	TGGCTG
841	ACAGGA	AAAG	ATGAACAA	CA ATAA	CTAAGA	ATAGAA	CAAT	TATAA	AAGTA	TATI	GTAGTA
781	GTGTTT	TTTC	CTATACAT	GC ATAT	СТАТАА	TAAAGT	ГТАА	AATTA	GTTTA	TAAA	TTAGGC
721	CATTCT	AAGA	CCCTCAGT	G ATGC	CTGAAA	CTGCAG	ATAG	ТАСТС	AACCC	TACG	TACACT
661	TTCCTC	СТСТ	TTATACTA	TC CTAT	AAAAA	TAGTAG		TCTCT	TATCC	ACAG	GGCGTA
601	TCTCTT			TC DDDC	CTATCA	GIALIA				тене	
401 541	CCTCCC	AGIA						AGTTT.			
4∠⊥ ∧01	AGGTTA		AGCAGTGA	GT CAGC						TATC	
361 401	AATTAC		AATAGAGC'	TT TGGG	TTTGAG	TTTTGGGGA	AGGT	GTAGA	ATTTTC	AGAA	AATGTT
301	ATTACT	CCAT	TTCATCTA	AA CTAT	TTGTCA	CATATG		AACAGA	A'I'ATA	ATAT	'A'FAGTC
241	AACTTT	CCTT	CTAAGGAG	AC CAAT	TTATTC	ATCTAC	FAAG	TACCT	IGTTT	CTTC	CCTCAA
181	TCTTAA	GTTC	ATAGATGC	AT ATTT	АААСАА	TCTGAG	TATT	TCCAA	AATAA	CCAG	GCTTTTA
121	TATTAG	GTAG	AAACTCGA	GA AAAA'	TTATTT	TCTCAA	FTCC	AAATT	CTTGC	TATA	AGAATT
61	ATTGAT	TACT	ATGTCAAC	CT TGGC	ATCCAT	ATGCCA	AATT	GTTTT	FTGAT	AAGA	GCTAAG
1	AGCCTC	CATCT	CATTATAG	CA GATG	GCATCA	TTCCAA	AAGA	AAATAA	AAAGA	AAAA	AATTAA

BLA(S)T Output: 18q21.31(-)(54,660,13{8})::9p23(+)(9,646,47{5})

Rearrangement_G (on der(18))

1	AATGAACTCT	TTGAGAGAGC	AATCAATGGC	CTCATGGCTA	TTAGACAGCC	ATCTGCACAG
61	GATGAGGACA	GGTCTGCCTG	TGGTGGGTGG	AGAGGATACA	GCAGTTAAAA	TGTTCTTGTC

169	604	772	772	100%	18	(_)	6550113	65506	11	160
603	1	603	772	100%	3	(+)	1408382	140898	34	603
Score	Start	End	Qsize	Identity	Chro	Strand	Start	End		Span
721 0	CCACAAA	GAA T	CATCAGAA	A CCACA	GAAAA	CAAATGA	IGG TGTTGG	CGGC I	Т	
661 0	CCACCCT	'GGA G'	TGTGCTGT	r ttcct	GTGAT	AGCAAGA	AAA TGTTCC	ATTT G	AAAA	ACTGCT
601 <i>P</i>	ATTTTTG	TGT T	TCTGCTTC	r ggaaa	TAGGA	GATAGAG	ATT TTAGCT.	ACAG C	AAT	CAGAAT
541 <i>P</i>	AGGTCTC	TAA A	ACTTATTC	C TCCCA	TCTGA	AACTTAG	FAC GCTGTG	AACA A	CAT	CTCCTC
481 7	FCCTCAT	TGG G	TAATTTTG	A AATAT	GTATT	ACATTAA	CTG TAGTCA	CCAT G	CTGI	IGCCGT
421 <i>P</i>	AAGCTAG	TTA A	CACAGCCA	r cactto	CACAT	CCTATCA	TTT TTTTGT	GATG A	GAAT	TTAAAA
361 0	GTATTTG	TGG G	ATATAATG	r gatat	TTTGA	TACATGT	TTA CATTGT	GTAA T	GATI	TAAATC
301 7	TTTTTCA	IGCA A	AAAATGCA	T TTCTA	AAATT	TTTAATT	GAT GAATAG	ТААТ Т	TTGI	TTTTAT
241 0	CTGCAGA	TAA T	GGTATGTC	A TCATA	TCACT	CCTCTGC	TTC ATACTT	CCAA A	GTTI	TTAAC
181 0	CTGGATA	ATA A	GCATGCTT	A TGTAG	AGCTA	CTTCTTT	ГСА ААТАСА	GTCT A	TTTT	TTCACA
121 0	CAAGCAC	CTC T	TCACCCAC	A CAGGA	GGCTA	CTCCCAG	GAG GAACTA	TGCA T	CCCC	CTTTTT

 169
 604
 772
 100%
 18
 (-)
 6559443

 BLA(S)T Output:
 3p26.3(+)(1,408,984)::18p11.31(-)(6,559,611)
 6559443

Rearrangement_H (on der(18))

1	ATTGACGACC	TCCTGTGCCC	CAGACGTTAT	TCCAGGTGCT	GGAGATACAG	TGACAAAGAG
61	CCCTCTCGGA	GGGCTCAAGT	AAAGGAACTA	GGATGAAAAG	TGCTGAGTGT	CATGCTAAGG
121	GAAGCGCTGG	CTGTGGAAGT	GTCCCTCACC	TAGCCTGGGA	TCGGGGTGGT	GGTTGCAGGA
181	GGCATCCAAG	GAAATGACAT	TTACACGGAG	GTCTGAGGGG	CAGCGAGGTG	GTGGGAAGGT
241	GGCTCCAGGT	AGGAGGTGAG	AAGAGAGCGC	ACAAAGTCAG	GTTGTAGCAC	AGTCTGGCTG
301	GGAAGAGAAG	TCGGCTGGTC	AGGTGGGGAG	CCAGGTCAGG	AGGTGCCTCA	GAAGCCGTGG
361	CAGCCTGGAC	TTTATCCTTA	GGGCGGGAGA	GCCATGGAGG	GGCCATAAAT	GGGGGAGAGA
421	GAGCCAAGCC	GTAGAGGCAT	TTTAGGTCCA	CATATGGACA	GTAAGTTTGG	AAGGTATAAA
481	GACTGGAGTT	CCTGTATCGA	CTGGGGCAGA	TGCAGTGATC	TAGGTGGCCG	CCAGTGGAAG
541	GCACCTGTGA	GTCAGGGTTT	GCAGTTCCTG	TGTGGACGTC	TGAATTAATT	CTGCAGATCA
601	GACTGCGTTA	CACTGCAAG { A	GCAG } AAACAC	AAATGAGGTC	TGATGGTTGA	AAACTTAATG
661	GAAGAAAAAA	ATAGAACATT	TATGCATAGA	AATAAACACA	TACACACAAA	GGAATACAGG
721	AAAAACTGGG	AAATCTGAAT	AAGATCAGTG	GATTGTATTA	GTGTCAATTT	CCTGGCTCTG
781	ATATTGTACT	ACAGTTTTAC	AAGATGTTAT	CACTGGGAGA	AACTAGGTTA	AAAAGTACAT
841	GAGATACCTC	TGTATTATTT	ATTATAATTG	CATGTGAATC	TAAAATTATC	ТСААААТААА
901	AAAATAATTT	TTAAAAATT	TGGAAAAGTA	ACAAAAGGAA	AACTAAATAG	TACCTTAAAA
961	АТАААААСТ	ATTTAACATT	TGTATTTTGA	AAATAATTAG	AAGCATATGA	AAGAGATTGT
1021	GGCTTTTTTG	TTCATTCTTT	TATAAATTAC	Т		

Score	Start	End	Qsize	Identity	Chro	Strand	Start	End	Span	
624	1	624	1051	100%	18	(-)	6375048	6375671	624	
432	620	1051	1051	100%	18	(+)	6559598	6560029	432	
	PLA/S)T Output: $18p11 31()(6.275.0(52.48))(18p11 31(+)(6.550.(509.602)))$									

BLA(S)T Output: 18p11.31(-)(6,375,0{52-48})::18p11.31(+)(6,559,{598-602})

Rearrangement_I (on der(18))

252	1	254	600	99.7%	18	(+)	5465	59883	54660)136	254
346	255	600	600	100%	9	(-)	964	6126	9646	471	346
Score	Start	End	Qsize	Identity	Chro	Strand	St	art	En	d	Span
541	AACAGA	CCCT	СААААААС	AA ACTT	СТАААТ	ATGTAA'	TTTA	GGCAG	AGGGA	ATAC	CTATCAC
481	CCATCA	AGAG	CAGAGGCA	AG ATAA	САААТС	TACAGA	CAAA	CAAAT	ATTAA	GTTI	CACCACC
421	CACCCC	TCCC .	AAAATGGT	CA CCCT	ACAATT	CTATAG	ACTA	ACAAC	ATCCA	AGAA	AACTTT
361	AATACA	CACA	CACACACA	CA CCCA	CACACA	CACACA	CACA	CACAC	ACCCA	CACA	ACACACA
301	CTAAAT	GGTT	TTTCAACA	AT GGAA'	TTAGAA	AACAGC	AGAA	TAACA	TACCT	GTGC	TGGGCA
241	TCCTCA	TTTG	GGGC <mark>CAG</mark> A	GG AAAC	AGGCAG	ATTTCC'	TTCA	AAGGA	CTGGT	ACTI	ACTCTG
181	CAGCAT	GCAT	TTGGTAAG	ТТ ТСТС	ATGAAG	AGACAT	GTCC	CAGGT	CTGGA	TAGI	TGTTTG
121	TCAATI	CCCA .	AATATTTC.	AC TGAA	CTAGAA	GTTCAG	GGAT	ACGAT	AGTTA	AAAG	GAACCTA
61	ACATTI	TCTG	GCGCATTG	TC TTCC	TCAGTC	TTGTCC	IGTG	ACTTC	TCTAA	GCCA	ATTCAA
1	GTAATI	TTTA	TGAAAAAT	GA TGTA	ATGCAA	ACCTAG'	TCAA	ATGAA	GGTAT	GATO	GAACCAG

BLA(S)T Output: 18q21.31(+)(54,660,136)::9p23(-)(9,646,471)

Figure S-DGAP259_4. BLA(S)T Output, Rearrangement_I on der(18): Circled mismatch represents a SNP (dbSNP build 141, rs1787468).

Next-Gen Cytogenetic Nomenclature:

Short System

46,XX,t(3;18;5;7)(p25;p11.2;q13.3;q32),t(9;18)(p22;q21)dn.seq[GRCh37/hg19](3,5,7,9,18)cx,der(3)t(3;7)(p24.3;q36.3)dn,der(5)t(5;7)(q14.3;q35)t(3;7)(p24.3;q36.3)t(3;18)(p26.3;p11.31)dn,der(7)t(5;7)dn,der(9)t(9;18)(p23;q21.3)dn,der(18)t(3;18)inv(18)(p11.31q21.3)t(9;18)dn

Detailed System

46,XX,t(3;18;5;7)(p25;p11.2;q13.3;q32),t(9;18)(p22;q21)dn.seq[GRCh37/hg19],(3,5,7,18)cx,der(3)(7qter->7q36.3(155,701,797)::3p24.3(17,392,144)->3qter)dn,der(5)(5pter->5q14.3(88,756,2{48-56})::7q35q36.3(147,718,91{1-9}-155,700,873)::AGAAC::3p24.3p26.3(17,392,136-1,408,99{6})::18p11.31(6,375,05{1})->18pter)dn,der(7)(7pter->7q35(147,718,90{7-8})::5q14.3(88,756,2{39-40})->5qter)dn,der(9)(18qter->18q21.31(54,660,13{8})::9p23(9,646,47{5})->9qter)dn,der(18)(3pter->3p26.3(1,408,984)::18p11.31(6,559,611-6,375,0{52-48}))::18p11.31q21.31(6,559,{598-602}-54,660,136)::9p23(9,646,471)->9pter)dn

DGAP268

46,XY,inv(10)(p13q24)dn.arr(1-22)x2,(XY)x1.seq[GRCh37/hg19] inv(10)(p12.2p12.31)(p12.2q23.32)dn

Prenatal History: A 28 year-old G4P2TAB1 female had a previous pregnancy termination at 23 weeks due to hydrops fetalis. The father, who is of Iranian Jewish descent and the first-cousin of the mother, had two brothers who were deceased in the neonatal period. At 12 weeks of gestation, fetal ultrasound revealed abnormal nuchal translucency. Amniocentesis was performed at 17 weeks. The ultrasound findings at 15 and 22 weeks were normal. There were no complications during the pregnancy.

Postnatal History: Delivery occurred at 33 weeks at an outside facility (the reason for premature delivery is unknown). The newborn medical examination was normal. At 1 year of age, the baby was reported to be healthy and meeting all developmental milestones.

Sequencing Results and Interpretation of Convergent Genomic Evidence: Sequencing of the prenatal DNA sample identified the inversion breakpoints in non-genic regions at 10p12.31 and 10p12.2, and disruption of *CPEB3* at 10q23.32. An analysis of the protein-coding genes localized in the same TAD as the breakpoints did not reveal any monoallelic or imprinted genes associated with an abnormal phenotype, correlating with the normal clinical phenotype of DGAP268 (Figure 4A, Table 6).

BLA(S)T Outputs of Sequencing Results:

Rearrangement_A (at proximal breakpoints of the pericentric inv(10))

BLA(S)T Output: 10q23.32(-)(93,983,897~)::10p12.2(+)(23,659,495~)

Rearrangement_B (at distal breakpoints of the pericentric inv(10))

1	GATGCCCCTC	TGCTCCAGAA	ATCACCAACT	CCTACTACTT	TCCCCAGCTC	TATTTTCCAC
61	TCCTTTCATT	AGGTTACAAT	AGTAGGAACA	GACCTTAGGT	CATAACACCA	CCAAATAAGT
121	GAATGCAGAG	TAGAAATGTT	CCCCTAAAGA	GAGGAGGTCA	TTTGAACAAA	CAGCAATACC
181	TGTCAAGTTA	ATATTTCTGA	GTTATAACTC	CTGTACCAGA	AATGTAACAA	CATCTCACTC
241	TTGAATCAAA	ACTTTCAGGC	CAGGTGTGGT	GACTTGTGCC	TGTAATCCCA	GCATTTTGGG
301	AGGCCATGGC	AGGTGGATCA	CTTGAGGTCA	GGAGTTCGAG	ACCACCCTGG	ACAATATGAT
361	GAAACCCCAT	CTGTACTAAA	ААТАСААААА	ATAGCTGGGC	ATGGTGGCAG	GTGCCTGTAA
421	TCCCAGCTAC	TCGGGAGGCT	GAGACAGGAG	AATCTCTTGA	GCCCGAGAGG	CAAAGCCTGC
481	AGTGAGACGA	GATCACGCCA	GTGCACTCCA	GCCTGGACAA	CAGAGCAAGA	CTCCATCTCA
541	ААААААТААА	AACTCTCAAA	TTCATTTATT	TATTCAAATA	TATAATAAGC	ATCTACTACA
601	GCTGAAGCTT	TGCTGCTGTG	GTCTGAATGT	GGTATACCCC	CAAAATGCAC	ATGTTGAAAT
661	TTACTCCCCA	TTGTGATAGT	ATTAAGAGGT	GGGGCCTTCG	AGGAAGTAAT	TAAGTCATGG
721	AGGCTCTGCC	CTCATTAATG	GGGTTAGAGC	TTTTATAAGA	AAGAGAGGCT	TGTAGTCCCA
781	GCTACACAGA	AGGCTGAGGC	AGGAGGATAG	CTTGAGCCCA	GGAGTTCAAG	TCCAGAATGG
841	GCAGTACAAT	GAGACCCCAT	CTCTTAAAAG	AGGGAGAGAG	AGAGAGAGAC	ATTGATTGAA
901	GGGTGTGTGT	TTGCCCCTTC	TGCCATGTGA	GGACACAGAA	AGAGGCACCA	TTCATGAAGC
961	AGAGAACGAG	CCTTTACCAG	ACAATGAATC	AGCTAGTGCC	TTTATCTTGG	ACTTTCTAGC
1021	CTCTATAATT	GTGAGAAGTA	TTAAAATTTC	TATTATTTAT	AAATTACCCC	ATCGAAGACG
1081	TTCACTTACC	TGACTTTCCA	GATTAATCTC	TGTGTTTTAT	CTTCCCTATA	AAAAATATCC
1141	ACAGCACATT	CAACAGCCGT	GACCAATAAG	ACCATAAATT	TCTGTCCAAC	AGATGAATTG
1201	CAAGCTTACC	TAGAGATGGT	AAAGGTTTGT	CTCCAAACCT	CTTTTTTTTT	TTTTTTAATT
1261	TTTCATAGAG	ATGGGATCTT	CTTATGTTGC	CCAGGCTGGT	CTCGAACTAC	CGAGTTCAAG
1321	CAATCCACCC	ACCTCAGCCT	CCCAAAGTGC	TGGGATTACA	GGTATGAGCC	ACTGCACTCA
1381	GTTCTAAACC	TTTTTAATGT	CAGTATTATT	GTAATTATGT	GACTTAAATA	TATGCAAACC
1441	AATGAAATGA	ATGCCAAAAA	ATTATTTGAT	GAAAAGCAAT	TTGAATTTGC	TAGATTTGAA
1501	TTTAGAAAAA	GCTAGATACA	ACAGCAATCA	GGTTTCATTT	ATTCAAAACG	TTATCAAAGT
1561	TCAGCAGGAA	TTCTCTCAGC	TCTGAAGAGG	GAAAAAGAGA	AATTTTAAGA	GATGTCTATG
1621	TTTTAAAATC	TTAAAACTTT	GCATTGGGTG	CCATGTTGTT	GGGTGCCATG	TAGCAGTGCT
1681	TTTACTCTGT	ATCTGTAAGC	TCCCAGATGC	ACTGTAGCAC	CCCAGGCTAG	AGTGCAATGG

1741	TGCGATCTTG	GCTCACTGCA	ACCTCTGCCT	CCCAGGTTCA	AGCGATTCTC	CTGCCTCAGC
1801	CTCCAGAGTA	GCTGGGATTC	CAGACACCCA	CCACCACGTC	CAGCTAGTTT	TTGTATTTAT
1861	AATAGAGATG	GGGTTTCACC	ATTTGGGCCA	GGCTGGTCTC	AAACTCGTGA	CCTCAGATGA
1921	TCCACCCACC	TCCACCTCCC	AAAGTCCTGG	GATTACAGGC	ATGAGCCACC	ACTCCCAGCC
1981	CAACCAGGAG	CTTTTTAAAA	GTAGATCCAC	TGTGTCCTGG	CCCAAATCCA	CCAGCTGCCT
2041	CAGAGTCTCA	CAGGCTAGGC	CTGTGTTTTT	AAGAATGCTG	TGAGTGATTC	TGACATACAA
2101	CCCAGCTTAG	GAATAACAGC	CCCACTAGGC	TGGCTGACTC	ACCTTCCCTC	TCATCTTTCT
2161	AGGACTCTGT	TTTCCCCATT	GCGGGGGATT	TCGGCTCATC	AAGTTACACC	AATTGACTCT
2221	CAGCATCACT	GAGCTTTTTC	TTTCACATCC	AGGGTGAGTT	TAAGTCAGTG	CTTCTCTGGG
2281	TCTCACAGGA	GTGGACATTC	TAAAGCCAGC	ATCTCCTCTG	AGTAACTCAC	TCCCCGATGA
2341	TGGGAGTTTG	ACTTTTCCTT	GGTTATGAGT	TACAGGATGA	AAGTCAGGTG	CAAACACTTA
2401	TTTCTTCAAG	CCAACAAATC	CTAGCACCTC	CTCGATCTCA	GAGAAGGTCA	GCAGACATGT
2461	GTGTGCCACG	TTTCTTCATC	TCAAGAGCTG	TGTATCATAG	TGGGAAACTG	GACTTGCAAA
2521	TGGCTATGCA	GGAAGAGAAG	GCTGTGTGAG	TGTCGGCCCC	TGGGTAGAGG	CTGTCTTTGT
2581	TGAAACCGTG	GTGCCCCGAC	AAAAGCCGGA	AAGCGAATCT	CCTTCTACTG	CACCTGCAGG
2641	CTCTGGGCCC	AAGCATGTTC	CGGGCGAGAG	GATATTTAGG	GATTTCTGGG	TTTAGCTTTC
2701	TCCGTTTTGC	CGTTCAGTTC	ACTCTGGCCC	TGGCTGTCTC	CAAAGGAGAG	GACTGATACC
2761	ATGGGATTAA	GTCCTTATGT	TCAAGCTCCG	GTCTGGGAAG	CTGAGTCTCC	ATCTTTTTCT
2821	GAGGCCAAGG	CATTGTTCTG	ACAACTGCCC	TTGACTCCAG	TTCCTTCAGG	ATGAGGGCCG
2881	TGGCTTTTCT	TGCCCACTCT	TCTGCTCCTG	AATCCTTCCT	CGCAGCCTCT	AACCACACTG
2941	CTAGCCCTCA	TCTCTGGCTT	GCTGCCAATT	TCCTCTGGCA	CTATCCTCCC	TAGCTGGCTG
3001	CAAACCCACC	TGTTGTTTTT	TGGGTTTTTT	AGAGATGGGG	TCTCGCTCTG	TTGCAATCAT
3061	AGCTCACTGC	AGCATCGAAC	TCTTGGGCTC	GACAATCCTC	CCACCTCAAC	СТССТАААТА
3121	GCTGAGACTA	TAGGTGCCCA	CCACCACATC	TGGCTTATTT	TTTTATTTT	TTGTAAGAGA
3181	TGGAGTCTCA	CTAGATTACC	CAGGCTGCTC	TCAAACTCCT	GGCCTCAAGG	GATCCTCCCA
3241	CTTCTGCCTC	CCAAAGTGCT	GGGATTACAG	GCATGAGCCC	CAGTGCCCGA	TCGCCACTTG
3301	TTTTCTCTTG	CTTACTC				

Score	Start	End	Qsize	Identity	Chro	Strand	Start	End	Span
1598	1720	3317	3317	100%	10	(+)	21606655	21608252	1598
1698	1	1698	3317	100%	10	(+)	93980711	93982408	1698

BLA(S)T Output: 10q23.32(+)(93,982,408)::GCTCCCAGATGCACTGTAGCA::10p12.31(+)(21,606,655)

Rearrangement_C (breakpoints of paracentric inv(10))

1	CATGGTTTGA	TTTGAGAAGG	AAATTGTCAA	GACTTCCTCT	CTCTCAGGCT	GGGTTTGGTT					
61	ACTGGAACAT	TTAGGACACT	TTGAGCAGCA	GGTAACTGAA	CACCAAAATT	AAACAATGCA					
121	TAAATGCATT	AGATTGTGAG	CCTGCGAGTT	TAGAGATAAG	ACACTATGTT	CTCTGGAGGA					
181	TTGGCTCAAT	TCAGTGGTTT	TAACTCCACG	TTCCTCCAAC	TCTCTGGACT	CATCCTCAAG					
241	GCCTAGAGCA	AGATGTCTGC	AGCCATTCCA	GGCCTCAGTT	ATACCAATGT	CCAGAGGGAG					
301	AGAGGGTTTC	CCCTCCAAAA	TTTCTCTCAA	GAGTGTAGGG	GAAGGGCCAG	GCTCGGTGGC					
361	TCATGCCTGT	AATCCCAGAA	CTTTGGGAGG	CCGAGGCAGG	CGGATCACCT	GAGGTTGGGA					
421	GTTCAAGACC	AGCCTGACCA	ACATGGAGAA	ACCCCCTCTC	TGCTAAAAAT	АСААААААА					
481	AAAAAATAG	CCGGGAGTGG	TGGTGCATGC	GTGTAATCCC	AGCTACTTGG	GAGGCTGAGG					
541	TAGGAGAATC	GCTTGAACCC	GGGAGGAGGA	GGTTGCAGTG	AGCCGAGATC	GCGCCATTGT					
601	ACTCCAGCCT	GGGCAACAAG	AGCGAAACTC	CATCTAAAAC	AAAAGAATGT	AGGGGAAAAA					
661	ACCAATACCC	TTTCCTCATC	CATCACAAGG	GTCATGGCAG	ATACTCCTAT	AACAAGAGAC					
721	AGAGTAACAA	GAGAAAAGCA	TCACAAATTT	ATTTAACCAA	GGTTTACGTG	ACAGGGGAGC					
781	CTTCCAAAGT	GAAGACCTGA	AGACCCAGGG	AAGACTGTGC	TTTTGTGCTG	AGTCTGATGG					
841	AAGAAGTGAA	{CAG}AAAAAAA	ААААААААА	AAAGGCCGGG	CGCAGTGACT	CACGACTGTA					
901	ATTCCAGCAG	TTTGGGAGGC	TGAGGCGGGT	GGATCACCTG	AGGTCAGGAG	TTCAAGACCA					
961	GCCTGGCCAA	CATGGTGAAA	CCCTGTCTCT	ААТААААТА	TAAAAATTT	AGCCGGGTGT					
1021	GGTGGTGGGC	GCCTGTAATC	GCAGCTACTC	AGGAGGCTGA	GGCAGAATTG	CTTGAACCCA					
1081	GGAGATGGAG	GTTGCAGTGT	GCCGACATGG	TCCCACTGGA	CTCCAGCCTG	GGCGACAGAG					
1141	TGAGATTCCA	TCTCAAAAAA	AAAAAAGAA	AAAGCCCCTC	GTTGAAAACA	GTGTGGAGAT					
1201	TATAAAAATA	GAACCACCAT	ACACTTCAGC	AACCTTGCTA	CTGGGTATCT	ACCCCCGCAA					
1261	AAAAAGAAAT	CATTTTATAT	АТААААААТ	ACCTGTGCTC	ATATGTTTAT	TGCAGCACTA					
1321	TTCACAATAG	CAGAGTCATG	GAATCAACCT	AAGTGACCAT	CAACGGAGGG	CTGGCTAAAG					
1381	AAAATGCACT	CTAAATACAC	AACAGAGGCC	GGGCGCCTGA	AAATGCACTC	TAAATACACA					
1441	ACAGTGGCTC	ACGCCTGTAA	CCCAGCACTT	TGGGAGGCCG	AGGCGGATGG	ATCACGAGGT					
1501	CAGGAGATCA	AGACCATCCT	GGTTAACACG	GTGAAACCCC	GTCTCTACTA	AAAATACAAA					
1561	AAAAA	TTAGC	CGGGCGT	GGT GGT	GGGCACC	TGTAG	TCCCA	GCTA	CTTGGG	AGO	GCTGAGGC
-------	-------	--------	---------	----------	---------	--------	-------	------	--------	-----	----------
1621	AGGAC	CAATGG	CGTGAAC	CCG GGA	GGCGGAG	CTTGC	AGTGA	GCCA	AGATCG	CGC	CCACTGCA
1681	CTCCA	GGCTG	GGCGACA	GAG CGA	GACTCCG	TCTCA	AAAAA	AAAA	AAAAAA	AA	TACACAAC
1741	AGAAT	ACTAT	TCAGGCA	TAA AAA	AGAAACA	ATGTC	TTTTG	CAGC	AACATG	GAT	GGAACTO
1801	GAGTC	CATTA	TCTTAAG	TGA AAG.	AACTCAG	AAACA	GAAAG	ACAT	IGCATG	TTC	CTCACTTA
1861	TAAGI	GGGAG	TTGAATA	ATA TGG.	ACCCAGG	GACAT	AGAAT	GCAA	AATAAT	AGA	ACGCTGGA
1921	GACTI	GGAGG	TGTAAGC	GGG TGG	GAGGGAT	GGGAG	GTTGC	TTGG	IGGATA	TAA	AAG
Score	Start	End	Qsize	Identity	Chro	Strand	Sta	nrt	End		Span
1125	851	1975	1975	100%	10	(-)	21605	5510	216066	634	1125
853	1	853	1975	100%	10	(+)	23658	3350	236592	202	853

BLA(S)T Output: 10p12.2(+)(23,659,20{0-2})::10p12.31(-)(21,606,63{4-2})

Next-Gen Cytogenetic Nomenclature:

Short System

46,XY,inv(10)(p13q24)dn.seq[GRCh37/hg19] inv(10)(p12.2p12.31)(p12.2q23.32)dn

Detailed System

46,XY,inv(10)(p13q24)dn.seq[GRCh37/hg19] inv(10)(qter->q23.32(93,983,897~)::p12.2q23.32(23,659,495~-93,982,408)::GCTCCCAGATGCACTGTAGCA::p12.31p12.2(21,606,655-23,659,20{0-2})::p12.31(21,606,63{4-2})->pter)dn

DGAP285

46,Y,inv(X)(p11.2q28).arr(1-22)x2,(XY)x1.seq[GRCh37/hg19] inv(X)(p11.21q28)

Prenatal History: A 22 year-old G1P0 female had a spontaneous conception and uncomplicated pregnancy until comprehensive ultrasound screening at 22.5 weeks, which revealed hydrocephalus, hypoplastic and irregularly shaped cerebellum, unilateral left multi-cystic kidney, and single umbilical artery. Amniocentesis was performed on the same day at 22.5 weeks. Fetal echocardiography at 23.1 weeks was reported to be normal. Follow-up fetal ultrasounds at 23.1 and 28 weeks continued to be significant for the previously reported abnormal findings. At 31.4 weeks the mother presented at an outside hospital for decreased fetal movements and intrauterine fetal demise was detected. The parents declined any post-mortem studies.

Sequencing Results and Interpretation of Convergent Genomic Evidence: Sequencing of the prenatal DNA sample identified the inversion breakpoints within *FAM104B* at Xp11.21 and within a non-genic region at Xq28. The breakpoints at Xq28 disrupt a TBR, which may result in genomic rewiring of the surrounding TADs and TBRs. *MTM1*, a hemizygous gene associated with X-linked centronuclear myopathy (a prenatal onset fatal disease with clinical findings including decreased fetal movements and hydrocephalus),^{19; 20} is located in a TBR upstream to the Xq28 breakpoints, and therefore dysregulation of *MTM1* might be contributory to the phenotype of DGAP285 (Figure 4B, Table 6).

Next-Gen Cytogenetic Nomenclature:

Short System 46,Y,inv(X)(p11.2q28).seq[GRCh37/hg19] inv(X)(p11.21q28)

Detailed System 46,Y,inv(X)(p11.2q28).seq[GRCh37/hg19] inv(X)(qter->q28(150,286,207~)::p11.21q28(55,174,723~-150,284,569~)::p11.21(55,174,381~)->pter)

DGAP288

46,XX,t(6;17)(q13;q21)dn.arr(1-22,X) x2.seq[GRCh37/hg19] t(6;17)(q21;q24.3)dn

Prenatal History: A 37 year-old G3P2 female had an abnormal fetal ultrasound with a cystic hygroma identified at 11.1 weeks. CVS was performed at 11.6 weeks. At 28 weeks polyhydramnios and micrognathia were detected on ultrasound examination. At 34 weeks, fetal MRI revealed findings suggesting Pierre Robin sequence including a small jaw index consistent with micrognathia and retrognathia, glossoptosis, and suspicion for cleft palate without cleft lip.

Postnatal History: C-section was performed at 39 weeks and continuous positive airway pressure was applied after birth. Physical examination finding of cleft palate was consistent with Pierre Robin sequence, and additional findings included small low-set ears, a flat nasal bridge, hypotelorism, a short wide neck, and a large space between the 1st-2nd phalanges. The newborn received nasogastric feeding due to the cleft palate.

Sequencing Results and Interpretation of Convergent Genomic Evidence: Sequencing of the prenatal DNA sample identified the translocation breakpoints within non-genic regions at 6q21 and 17q24.3. An analysis of the protein-coding genes localized in the same TAD as the breakpoints revealed that the 17q24.3 breakpoints are within the same 1.88 Mb TAD as *SOX9* and within its well known upstream cis-regulatory region for Pierre Robin sequence.²¹⁻²³ DGAP288 had decreased *SOX9* RNA expression and an overlapping phenotype of Pierre Robin sequence (Figure 4C, 5, Table 6).

116	701	822	822	95.9%	17	(+)	697	28017	6972	8137	121
703	1	703	822	100%	6	(+)	1129	75342	11297	76044	703
Score	Start	End	Qsize	Identity	Chro	Strand	S	tart	Er	nd	Span
781	CCAGTGO	GTC T	TTTTTTTT	r tttct	TCCAG	AAATAAA	AGG	AT			
721	TCTCAGI	TAG G	AAAAATAC	A GATTC'	TGGGG	GAAAGTT	ATT	CACAGA	GAAA	GTAAA	AATTG
661	CTGGAGA	ACAG A	AATAACTC	r TTCGA	AGAGT	TTTCATC	TAA	{AGG} <mark>AT</mark>	TTGCC	TTCAG	GCCATT
601	GGAGTGA	ATCA A	GGTGAAAG	C AAGAT	TGGAG	AGTGTTC	ACA	AGATAA'	TGAG	ACAGO	GAAGAA
541	AAATGAG	GAAT T	GATCATTG	G ATTGT	TAACC	AGAGGTC	ACT	GGTGAC'	TGAT	AAATI	TCAGT
481	TTCAAGO	GAGG AGAAAGTGAT		CCACT	GTGTC	CAGTGAA	TTT	GATGAA'	TTAA	ATGAG	GCAAG
421	CAGTGAA	ATA G	AAGGTAAG	C AAATG	AACAA	AAATGTCCTG		GAAGAAAA		GAAAA	AAGGT
361	АСААТАС	CGTA G	ACATCAGG	A AGACG	AGAAG	GATCCAG	GAA	AGGATA'	TAGG	AAGGA	GTAGC
301	TTTCCAC	CCTA G	AACATATG'	r GTTGT	TAGAG	AAAAGTG'	TGA	GGCTTG	AGCC	CTAGA	GCATG
241	AACATAA	ACT A	GGGAGTTA	r tagct	TATAA	AGTTAACCTT		TAAAGC	CATG	GGATI	CAACG
181	GATATTO	GCTT A	GGTAGTTA	A ATGAT	TGAGT	CAAACATTCA		A TGGGAAAG		GAGAG	GCTAAA
121	CAAGAAT	TCT G	TTTGGTAC	A TTTTA	AGTTG	AGAAGTCAAT		f TTTATGGA		TCCAA	GGAGA
61	TAGGAT	GTTA G	TGGGATGG	G AGGAT'	TTGAA	AAGGAGC	AGA	TATAGT	TGAG	TATTO	GAAAG
1	ATAACAG	GAAG C	ATTCTTTA	G TCACC	CTAAT	GATAGAC	AGT	GAAGCA	ATCT	GGTGA	ATGGT
	• •		())								

Rearrangement_A (on der(6))

BLA(S)T Output: 6q21(+)(112,976,04{2-4})::17q24.3(+)(69,728,01{7-9})

Figure S-DGAP288_1. BLA(S)T Output, Rearrangement_A on der(6): Circled mismatches represent a SNP (dbSNP build 141, rs73342432), an additional repetitive nucleotide "A", and another SNP (dbSNP build 141, rs73342434); respectively.

Rearrangement_B (on der(17))

357	525	883	883	99.8%	6	(+)	112	976031	11297	6389	359
517	1	517	883	100%	17	(+)	69	727490	69728	8006	517
Score	Start	End	Qsize	Identity	Chro	Strand		Start	En	d	Span
841	GCCTAG	FCCA A	GAGTTCGT	A TCAAT	GGAAT	CACAGGG	TGT	GTC			
781	CCTTATO	CTAC T	CCATATGA	A GCAAC	TATTG	TTCTGAT	TTC	TCTCAA	CATA	GAACA	TTCTT
721	TCTCAG	FCCA G	AACATTCC	C TTTTA	GCCAT	TCTAGTC.	AAT	ACATAT	ATCA	TCCTA	CTTTC
661	GTTCTGA	ATAA A	TGCACATA	C CATGT	GGCAT	GCACACTCTT		ATGAAG	ATAT	AGAGC	CATTTT
601	GTTTCAA	AAAG T	TGAGATTT	A ATGTA	CATAT	TATGAAA	TGC	ACAGAT	CTTA	CATGI	ACTTA
541	TTTAGGO	GAAA T	AGCTGGTA	G CTGGA	AGGAA	ACATGAG	ATT	AAGAGA	GGGT	TTATT	TCATT
481	TTCCAGCCAT GT		GTCCTGAGT'	T TCTGG	GGCAG	AGTAAAGCCC		TTTA TTTTCA		TCTAR	AGGGC
421	TAACCAG	CAGC T	TCTTCTAC	C CCGGA	TGCCC	CATGGCC	TAA	GACTCC	CAAG	AGCAG	GCAGCT
361	AATTGGT	CTT GAATCCTATT		I CAAGG	GAGAT	TATGTTT	AAA	GGACCT	GAGG	GACTI	CATTA
301	TGTGCTT	TTCG T	GAATATAC	C TATTT	GGTAA	GATCTGTTT		GCCAAA'	TTCA	GTCCA	ATACA
241	CTCAGTO	GATT T	TCCTTAGA	G CGTTT	CAGGT	GGGATTTGAG		ТТАТСАААС		TGGTI	TCATT
181	GTACTA	AGAG A	AACTTGGT	G TCAAT	TATTC	ACTTTCCAAA		AGGATTCACT		AGATO	TCATC
121	AAAATTI	гтсс т	'TAGAGGTA'	I AGCAG	TTACA	GACATACCCC		AAATAC	ATAA	ATCTO	TGCTT
61	AATATCI	ICAT A	CAATAAAG	A TTGAT	TATCA	CATTGTT	TAG	TGTGTA	ATTC	ATGTO	TTCTC
1	CTGGGTA	ATTT A	CAGAAAAA	G ATGTT	GAGCC	TTCTTCTAGG CAGA		CAGAGA	CAAC	TCTTC	TAGAA

BLA(S)T Output: 17q24.3(+)(69,728,006)::CCCTTTA::6q21(+)(112,976,031)

BLA(S)T Output: 17q24.3(+)(69,728,006)::6q21(112,976,045-112,976,039)::6q21(+)(112,976,031)

Figure S-DGAP288_2. BLA(S)T Output, Rearrangement_B on der(17): Circled mismatch represents a SNP (dbSNP build 141, rs139022495).

Next-Gen Cytogenetic Nomenclature:

Short System

or

46,XX,t(6;17)(q13;q21)dn.seq[GRCh37/hg19] t(6;17)(q21;q24.3)dn

Detailed System

46,XX,t(6;17)(q13;q21)dn.seq[GRCh37/hg19] t(6;17)(6pter->6q21(112,976,04{2-4})::17q24.3(69,728,01{7-9}->17qter;17pter->17q24.3(69,728,006)::CCCTTTA::6q21(112,976,031)->6qter)dn or

46,XX,t(6;17)(q13;q21)dn.seq[GRCh37/hg19] t(6;17)(6pter->6q21(112,976,04{2-4})::17q24.3(69,728,01{7-9}->17qter;17pter->17q24.3(69,728,006)::6q21(112,976,045-112,976,039)::6q21(112,976,031)->6qter)dn

DGAP290

46,XY,t(2;7)(q33;q32)dn.arr(1-22)x2,(XY)x1.seq[GRCh37/hg19](2,7)cx,der(2)t(2;7)(q32.3;q33)inv(7) (q33q33)dn,der(7)t(2;7)dn

Prenatal History: A 38 year-old G2P2 female conceived after IVF had a high-risk pregnancy based on first trimester combined screening results. CVS was performed at 13 weeks 6 days. Ultrasound examinations at 16.4 and 18 weeks were normal. Due to a family history of congenital heart anomalies, fetal echocardiography was performed at 16.4 weeks and was interpreted to be normal. The parents decided to terminate the pregnancy at 23 weeks due to uncertainty of the clinical significance of the balanced rearrangement.

Sequencing Results and Interpretation of Convergent Genomic Evidence: Sequencing of the prenatal DNA sample identified the translocation breakpoints disrupting HECW2 at 2q32.3 and NUP205 at 7q33, with an additional non-genic disruption at 7q33. An analysis of the protein-coding genes localized in the same TAD as the breakpoints did not reveal any monoallelic or imprinted genes associated with an abnormal phenotype (Figure 4D, Table 6).

BLA(S)T Outputs of Sequencing Results:

369	1	373	726	99%	2	(+)	197163823	1971641	94 372	
Score	Start	End	Qsize	Identity	Chro	Strand	Start	End	Spa	n
721	TTACI	CA								
661	AGGTO	CTTCAC	TGCTTTA	TAT ATT	ATAATTT	TTCTC	TGACT TGI	TTCTCTC	CTCTTGT	ATT
601	ATTTI	TTTTAA	ATTTTAG	CAT TGT	TTGCCAT	CCAAA	GAGGC TGC	AAACTTT	AAAACCC	ACC
541	TTCAT	TCTTTA	TACTATA	TCT TCC	TGAGAGT	ACCCT	GAATT TGA	TCTTTGT	TCAAAAG	CCA
481	TTATC	CTCACC	ATCTGGT	тст ста	ACTTCTT	CACAA	AGCAT ATI	ATAGTCA	CACCCTC	AGG
421	AGTGO	GTCCTG	GCTCGGG	TTC GTT	ATGAAGT	TGCCC.	ACCCT TAA	ATTCCTT	AGAGGGC	СТТ
361	CTAGO	GAGTTC	CCAAACT	CGT GAT	TTGTCTG	TAGGT	ТАААА АТТ	'CAGGAGT	GGCTTAG	СТА
301	CCAGO	GAGAGT	TATAGTT	GTA ACA	AACACGG	TAAGG.	ACATT TAA	TGCAAAA	TCTCTTT	ATC
241	AAAAA	AGCCTG	TAAGCTG	CTT AGT	ATTTTCA	TACTG	ТТААА АСА	TGTTAGT	TGTCAAA	AGT
181	CCCAF	ACTAAA	GAAAAAG	GAA ACA	CGATAAA	AACAC	GAAAA CAA	AATAAGT	ТАААААА	AAA
121	TTAGA	AAGAA	TACTTTG	ААА ТСА	AGATAGA	CTATC	CAGCA AAA	TAAATTC	TAAAATC	ATG
61	GATCA	ATCTTT	TTAGCTA	АТА ТАА	ATGCAGT	TCATA	AGAGG AAG	АААААА	TTAAAAT	GCT
1	ATAAT	TACTTC	CTAAACC	CAC AGA	ATTTAAG	TCTTA	CAGAA ATG	TATAAAT	GCACAGC	ATG
Rearrang	gement	_A (on d	er(2))							

7

(-)

135905573

135905923

351

• () (0))

351

376

726

BLA(S)T Output: 2q32.3(+)(197,164,194)::AA::7q33(-)(135,905,923)

100%

726

000000001 ataatacttcctaaacccacagaatttaagtcttacagaaatgtataaat 000000050 197163823 ataatacttcctaaacccacagaatttaagtcttacagaaatgtataaat 197163872 000000051 gcacagcatggatcatctttttagctaatataaatgcagttcataagagg 000000100 197163873 gtacagcatggatcatctttttagctaatataaatgcagttcataagagg 197163922 000000101 aagaaaaaaattaaaatgctttagaaagaatactttgaaatcaagataga 000000150 197163923 aagaaaaaaattaaaatgctttagaaagaatactttgaaatcaagataga 197163972 000000151 ctatccagcaaaataaattctaaaatcatgcccaactaaagaaaaaggaa 000000200 197163973 ctatccagcaaaataaattctaaaatcatgcccaactaaagaaaaaggaa 197164022 000000251 taagctgcttagtattttcatactgttaaaacatgttagttgtcaaaagt 000000300 197164072 taagctgcttagtattttcatactgttaaaacatgttagttgtcaaaagt 197164121 000000301 ccaggagagttatagttgtaacaaacacggtaaggacatttaatgcaaaa 000000350 197164122 ccaggagagttatagttgtaacaaacacggtaaggacatttaatgcaaaa 197164171 000000351 tctctttatcctaggagttccca 000000373 197164172 tctctttatcctaggagttccca 197164194

Figure S-DGAP290_1. BLA(S)T Output, Rearrangement_A on der(2): Circled mismatch represents an additional repetitive nucleotide "A".

		_ 、	- 、 //								
1	GCCAG	GATTT	CTTATTT	TCC CAG	TTGCAGT	ATCTA	CCATT ?	FTCTA	ACAAA	GGI	AGGCCAT
61	TATTI	TCCCG	TATTTAT	AAG AAC	ААСАСАТТТА ТА		CCATG ?	TTAAC	GTGATT	TTA	TTTATAC
121	AATAT	TTGGG	GGAATTC	TGT TCT	TCTCATTCTG		TTGGC :	FTCTI	TGTTA	TTT	TGGGTTC
181	TTTTT	GTAAT	TTCTGCT	TAA AGA	AGGCTGA	TATTT	TAACT (GCTAC	GCAAAA	ACT	TATTTAA
241	ATATA	GCCTA	TCAAGGA	TGG AAT	TTGATTC	TCTTA	CAACA A	AATAA	AAATTT	AAA	GATTGTG
301	TTGAA	AGGGAT	TAGAAAA	TTA ATG	GGAATTT	AAAGT	TTTTG A	AATGA	AAATT	GTI	TTACAAA
361	GATTI	CTGAT	TTTCTCT	TCC CAG	GCTGTTT	ATGAG	GAAAA A	AAAA	ATCCT	GGI	TTATTT
421	TGTTI	CTTGT	GTTTGTA	TTG AAA	CCAATTC	AGATC	TTGAA A	ATGA	AAGTT	GAA	AACTAAT
481	TATGO	GTAGAA	AACAGTT	ТТА АСТ	TAGTTTA	TTGAC.	ATGGC :	raac <i>i</i>	ATTAT	TCC	CAGGCTAA
541	TGCAG	GTCTTA	TCGAGAT	TCT ACT	TTATTT	CTTTT	TGACC A	AACTI	TTAAC	AGI	TTTCTGA
601	ATTCA	GACTA	TATTCAG	ACA GTC	TTAGTCT	GTTGA	GTTTT :	TTAA <i>A</i>	AGTTT	AGC	CTTGTGTC
661	ATCTI	TATGT	TTTAGGA	AGT TGA	GGCTCAC	ACATG	CCATA A	AACAA	ATTTC	TAT	TACTAGT
721	AATTG	GTCAGC	ATCTAAT	TTA CCT	TTTAGAG	TAATG	GCGTT A	AGAC	CTCTGA	GAA	TTATCTA
781	ATGGC	CAAAAG	GTTTTTC.	ACT CTA	TTTTCAT	AAGTG	TCTTA .	FTTTI	FAGTTC	TGG	GATTTTG
841	GACAG	GTTGTA	TCAGAAT	CAC TTA	AGGGGCC	TAAAA	CAAAA (CAAAC	GCAAAA	TAP	AAACAGA
901	CTGCI	GGGAC	CCACTCC	AGA CCT.	ACTGAAC	CAGAA	TCTCT A	AAGAT	ICTGGG	TAC	CCAAGAAT
961	ATGCA	ATTTTA	TTTTTTA	AAG TC							
Score	Start	End	Qsize	Identity	Chro	Strand	Start		End		Span
838	1	840	982	99.9%	7	(+)	1352989	971	1352998	10	840
141	842	982	982	100%	2	(+)	1971642	206	1971643	46	141

Rearrangement_B (on der(7))

BLA(S)T Output: 7q33(+)(135,299,810)::G::2q32.3(+)(197,164,206)

Figure S-DGAP290_2. BLA(S)T Output, Rearrangement_B on der(7): Circled mismatch represents a SNP (dbSNP build 141, rs4316099).

Rearrangement_C (on der(2))

471	1	471	1040	100%	7	(-)	1352998	312	1353002	282	471	
Score	Start	End	Qsize	Identity	Chro	Strand	Start		End		Span	
1021	AACA	AAAGCAA	AGCAAG	TGCA								
961	TCAA	AGACTTT	TTCATC	CACT GA	TTATTCT	T TGTC	CCTTTG	TTA	TGAGAGA	GI	FTCTTTGA	٩A
901	TCAC	CAAATAT	AAAGTT	TGAC TT	TCCAGCC	T GGAA	AAGCAA	CAA	AGAAACT	TC	GTTAAACA	ŁΤ
841	TCAC	GCAGCTG	GAAACA	AGTC CA	ATTGTAT	'A AGGC	CAAGAG	CCT	ACAAGGG	т	GCACTCTO	ст
781	CATT	FGAGGTT	TATGAG	ATAT AG	GATTGTG	T AAAG	GATGAG	GCT	GAAGTTT	т	CATGCAG	GG
721	AAAA	ACATAGA	GAGAAA	TCAC AG	TCATTTG	G GAAG	GGTAAA	GTG.	AACGTAG	TZ	AACCTGGO	C
661	ACTA	АСААААА	GCTTGA	АТАА АА	TAGTCAT	'G TAAC	TGAGAA	AAT	GGAATCC	CI	TAGATAAT	ſA
601	AGAT	TTTACCT	GACATG	AATC AG	СССТСТТ	C CTGA	TTCTAA	CAT	ATAGAAA	т	GATGGAAA	٩A
541	TAAC	GTTGCCA	CTGACT	TTTA AT	TATTGTA	A AATC	AATGAG	GAG.	ATGTCTG	G	CCTCATAG	ΞA
481	TATI	TTACTGC	TGCTTT	AAAC CA	TTAAGGT	T TGGT	TTAATT	TGC	TGTGTAG	CA	ATAGATA	٩A
421	TTAA	ATTTTTA	TTTTTA	ATTA GG	TGTAAAG	A GGGT	TTCTAA	AAG	СТТСТТА	{A}	GATAATAA	١Ā
361	AATA	AATTTCA	GGCAAA	GCTA AA	TGAAGTT	T TATA	AAACAC	ATA	CCATAAT	AC	GTAAGAT	ſG
301	ACAT	FTGAAAC	ССТААА	CTGT GA	CAGTATA	A ACAT	AAAATT	AAC	CATATAA	CA	ATACTA	٠T
241	GCCA	ACTGTGC	CTGGTC	CTAC AA	TAAGATT	T TTTT	AATCCA	ATA	CTATTTT	AA	ATATGCTI	ĽG
181	CTCC	CTTGCCT	CAGTGT	TCCT CC	TGTCTCA	IG CCTA	CCTAAG	CAC	TGGGATT	Â	TAGGCGCO	GA
121	כ- ביידית	ΓΑͲͲͲΑͲ	 	 ТТСТ АС	AGACAGG	G TCTC	АСТСТА	ΨΨG	CCCAGGC	 Т(TACTTG	1 A
61	ATG	ATGTGGT	ТТААСА	ттта ат	TAAGGCT	'G AGAA	TCACTT	ATA	CAATAGT	T	TTTATTT	гт
1	CAAA	AACAAAT	ACATAA	GAAA AA	TTAAACT	'T AAAT	TGCATG	ATT	TTATAAT	AC	CCTCAATI	ſΑ

BLA(S)T Output: 7q33(-)(135,299,81{2})::7q33(+)(135,905,92{4})

100%

1040

Next-Gen Cytogenetic Nomenclature:

1040

Short System

471

570

46, XY, t(2;7)(q33;q32) dn.seq[GRCh37/hg19](2,7) cx, der(2)t(2;7)(q32.3;q33) inv(7)(q33q33) dn, der(7)t(2;7) dn, der(7)t(2;7)t(2;7) dn, der(7)t(2;7

7

(+)

135905924

135906493

570

Detailed System

46,XY,t(2;7)(q33;q32)dn.seq[GRCh37/hg19](2,7)cx,der(2)(2pter->2q32.3(197,164,194)::AA::7q33(135,905,923-135,299,81{2})::7q33(135,905,92{4})->7qter)dn,der(7)(7pter->7q33(135,299,810)::G::2q32.3(197,164,206)->2qter)dn

DGAP295

46,XY,t(2;11)(p13.1;p15.5)dn.arr(1-22)x2,(XY)x1.seq[GRCh37/hg19](2,11)cx,der(2)inv(11)(p15.5) inv(11)(p15.5)t(2;11)(p13.3;p15.5)dn,der(11)t(2;11)dn

Prenatal History: A 21 year-old G2P1 female had positive first trimester serum screening for trisomies 13 and 18. Of note, the PAPP-A value was very low (0.1 percentile). cfDNA testing failed at both 12 and 14 weeks, due to low fetal fractions. Fetal ultrasonography was normal until 19 weeks, when an anatomical survey revealed severe growth restriction (~3 weeks delayed) and an amniocentesis was performed. Ultrasound examinations at 25 and 29 weeks showed decreased amniotic fluid volume and continued growth restriction. A fetal echocardiogram at 25 weeks was interpreted to be within normal limits. At 29 weeks, the mother was hospitalized after the fetal ultrasound revealed that the fetus continued to have significant intrauterine growth restriction (~10 weeks delayed).

Postnatal History: An emergency C-section occurred at 31 weeks, following an ultrasound examination with no observation of fetal movement. The newborn weighed 450 grams with an otherwise normal physical examination and was admitted and followed in the NICU. The newborn was discharged from the hospital after 21 weeks in stable condition.

Sequencing Results and Interpretation of Convergent Genomic Evidence: Sequencing of the prenatal DNA sample identified the translocation breakpoints disrupting *GFPT1* at 2p13.3 and multiple non-genic regions at 11p15.5 within a 70 kb distribution. Interestingly, the breakpoints at 11p15.5 are located within the same 600 kb TAD as *IGF2*, a region well known to be associated with Silver-Russell syndrome through imprinted loss of function (epimutation)²⁴, overlapping with the phenotype of DGAP295 (Figure 4E, Table 6).

Next-Gen Cytogenetic Nomenclature:

Short System 46,XY,t(2;11)(p13.1;p15.5)dn.arr(1-22)x2,(XY)x1.seq[GRCh37/hg19] (2,11)cx,der(2)inv(11)(p15.5)inv(11)(p15.5)t(2;11)(p13.3;p15.5)dn,der(11)t(2;11)dn

Detailed System 46,XY,t(2;11)(p13.1;p15.5)dn.arr(1-22)x2,(XY)x1.seq[GRCh37/hg19] (2,11)cx,der(2)(11pter->11p15.5(1,915,057~)::11p1.55(1,936,993~-1,960,727~)::11p15.5(1,936,668~-1,915,843~)::11p15.5(1,961,361~-1,984,895~)::2p13.3(69,588,420~)->2qter)dn,der(11)(2pter->2p13.3(69,588,264)::11p15.5(1,985,019~)->11qter)dn

Figure S1. DGAP247 amniotic fluid *KHDRBS3* **expression:** Decreased expression of *KHDRBS3* in the amniotic fluid sample of DGAP247 in comparison to three amniotic fluid control samples (normalized to *GAPDH*).

Figure S2. DGAP247 cord blood *KHDRBS3* **expression:** Decreased expression of *KHDRBS3* in the cord blood sample of DGAP247 in comparison to the cord blood sample of DGAP288 (normalized to *GAPDH*).

Figure S3. DGAP248 CVS *RFC3* **Expression:** Decreased expression of *RFC3* in the CVS of DGAP248 in comparison to two CVS control samples (normalized to *GAPDH*).

Table S1. Next-Gen Breakpoint Nucleotides of the Analyzed Cases

Case	Next-Gen Band	`Next-Gen Breakpoint Nucleotides (GRCh37/hg19)
	6a13	Rearrangement_A: 70,405,86{7-8}
DGAP239		Rearrangement_B: 70,405,86{7-9}
	8q12.2	Rearrangement A: $61,628,67\{1-2\}$
		Realizing ement Δ : 51,820,501
	8q11.21	Rearrangement B: 51 889 502
DGAP247		Rearrangement A: 136.495.820
	8q24.23	Rearrangement_B: 136,495,823
	2n12	Rearrangement_A: 78,301,91{1-2}
DGAP248	2012	Rearrangement_B: 78,301,90{8-5}
	13q13.2	Rearrangement_A: 34,542,73{2-1}
		Rearrangement_B. 34,542,7{20-23}
	6p25.3	Rearrangement B: 776,787
DGAP258	0-40.4	Rearrangement A: 93,191,54{7}
	6916.1	Rearrangement_B: 93,191,545
	3n26.3	Rearrangement_D: 1,408,99{6}
	0020.0	Rearrangement_G: 1,408,984
	3p24.3	Rearrangement_A: 17,392,144
		Rearrangement B: 88 756 2(48-56)
	5q14.3	Rearrangement E: 88,756,2{39-40}
	7035	Rearrangement_B: 147,718,91{1-9}
	7455	Rearrangement_E: 147,718,90{7-8)
DGAP259	7q36.3	Rearrangement_A: 155,701,797
	•	Rearrangement E: 9.646.47/5
	9p23	Rearrangement I: 9,646,471
		Rearrangement_D: 6,375,05{1}
	18p11.31	Rearrangement_G: 6,559,611
		Rearrangement_H: 6,375,0{52-48} and 6,559,{598-602}
	18q21.3	Rearrangement I: 54.660.136
	40-40.04	Rearrangement B: 21,606,655
	10012.31	Rearrangement_C: 21,606,63{4-2}
DGAP268	10p12.2	Rearrangement_A: 23,659,495~
		Rearrangement_C: 23,659,20{0-2}
	10q23.32	Rearrangement B: 93,982,408
	V=44.04	Rearrangement A: 55,174,723~
DCAP285	Xp11.21	Rearrangement_B: 55,174,381~
DOAI 203	Xa28	Rearrangement_A: 150,286,207~
		Rearrangement_B: 150,284,569~
	6q21	Rearrangement_A: 112,976,04{2-4}
DGAP288	17.04.0	Rearrangement A: 69.728.01{7-9}
	17q24.3	Rearrangement_B: 69,728,006
	2032.3	Rearrangement_A: 197,164,194
DCADOO	2402.0	Rearrangement_B: 197,164,206
DGAP290	7a33	Rearrangement B: 135,905,925
	1400	Rearrangement_C: 135,299,81{2} and 135,905,92{4}
	0010.0	Rearrangement_D: 69,588,420~
	2013.3	Rearrangement_E: 69,588,264~
DGAP295		Rearrangement_A: 1,915,057~ Rearrangement_B: 1,960,727~
	11p15.5	Rearrangement A: 1,936,993~ Rearrangement C: 1,981,805~
		Rearrangement_B: 1,936,668~ Rearrangement_E: 1,985,019~

Table S2. Analyzed topologically associated domains (TADs) and topological boundary regions (TBRs)

Case	Next-Gen Band	TAD and TBR nucleotides [hESC, GRCh37/hg19] ²⁵ (size)
	6q13	TBR: 69,103,279-69,343,279 (240kb) TAD: 69,343,279-70,903,279 (1.56 Mb) TAD: 70,903,279-71,743,279 (840kb)
DGAP239	8q12.2	TAD: 59,557,446-60,917,446 (1.36 Mb) TBR: 60,917,446-60,957,446 (40 kb) TAD: 60,957,446-61,317,446 (360kb) TBR: 61,317,446-61,557,446 (240kb) TAD: 61,557,446-62,037,446 (480kb) TAD: 62,037,446-62,517,446 (480kb) TBR: 62,517,446-62,557,446 (40kb) TAD: 62,557,446-62,557,446 (480kb) TAD: 62,557,446-64,037,446 (480kb) TAD: 62,557,446-64,037,446 (40kb) TAD: 62,557,446-64,037,446 (1.48 Mb) TAD: 64,037,446 (64,037,446 (1.48 Mb))
		TBR: 48,677,447-48,917,447 (240kb)
DGAP247	8q11.21	TAD: 48,917,447-49,837,447 (920kb) TBR: 49,837,447-49,877,447 (40kb) TAD: 49,877,447-52,757,447 (2.88 Mb) TBR: 52,757,447-52,957,447 (200kb) TAD: 52,957,447-53,317,447 (360kb) TBR: 53,317,447-53,437,447 (120kb) TAD: 53,437,447-54,797,447 (1.36 Mb)
	8q24.23	TAD: 134,490,818-135,890,818 (1.4 Mb) TAD: 135,890,818-137,770,818 (1.88 Mb) TAD: 137,770,818-139,130,818 (1.36 Mb)
DCAD240	2p12	TAD: 75,866,492-76,826,492 (960kb) TBR: 76,826,492-77,146,492 (80kb) TAD: 77,146,492-79,226,492 (2.08 Mb) TAD: 79,226,492-80,146,489 (919kb) TBR: 80,146,489-80,266,489 (120kb)
DGAP248	13q13.2	TAD: 32,902,000-34,342,000 (1.44 Mb) TBR: 34,342,000-34,382,000 (40kb) TAD: 34,382,000-36,542,000 (2.16 Mb) TAD: 36,542,000-37,582,000 (1.04 Mb) TBR: 37,582,000-37,622,000 (40kb)
	6p25.3	TAD: 135,000-1,455,001 (1.32 Mb) TAD: 1,455,001-2,735,001 (1.28 Mb) TBR: 2,735,001-2,775,001 (40kb)
DGAP258	6q16.1	TAD: 90,623,279-91,183,279 (560kb) TBR: 91,183,279-91,223,279 (40kb) TAD: 91,223,279-93,463,279 (2.24 Mb) TBR: 93,463,279-93,503,279 (40kb) TAD: 93,503,279-94,143,279 (640kb)
	3p26.3	TAD: 60,000-2,145,000 (2.085 Mb) TBR: 2,145,000-2,225,000 (80kb) TAD: 2,225,000-3,225,000 (1 Mb)
	3p24.3	TAD: 15,624,996-16,304,996 (680kb) TAD: 16,304,996-16,624,996 (320kb) TAD: 16,624,996-17,304,996 (680kb) TAD: 17,304,996-17,304,996 (680kb) TAD: 17,304,996-17,904,996 (600kb) TAD: 17,904,996-18,464,996 (560kb) TBR: 18,464,996-18,504,996 (40kb) TAD: 18,504,996-19,064,996 (560kb)
	5q14.3	TAD: 86,684,244-88,004,244 (1.32 Mb) TAD: 88,004,244-90,124,244 (2.12 Mb)
DGAP259	7q35	TAD: 145,809,067-147,969,067 (2.16 Mb) TAD: 147,969,067-148,209,067 (240kb) TAD: 148,209,067-148,649,067 (440kb) TBR: 148,649,067-148,809,067 (160kb) TAD: 148,809,067-149,129,067 (320kb)
	7q36.3	IBR: 153,729,067-155,147,248 (1.418 Mb) TAD: 155,147,248-155,587,239 (439kb) TAD: 155,587,239-157,187,239 (1.6 Mb) TAD: 157,187,239-159,128,663 (1.94 Mb)
	9p23	TAD: 7,570,000-8,330,000 (760kb) TAD: 8,330,000-9,290,000 (960kb) TAD: 9,290,000-9,970,000 (680kb) TAD: 9,970,000-11,370,000 (1.4 Mb)

Case	Next-Gen Band	TAD and TBR nucleotides [hESC, GRCh37/hg19] ²⁵ (size)
DGAP259 (continued)	18p11.31	TAD: 3,690,000-5,090,000 (1.4 Mb) TAD: 5,090,000-6,530,000 (1.44 Mb) TAD: 6,530,000-6,930,000 (400kb) TAD: 6,930,000-7,210,000 (280kb) TAD: 7,210,000-8,530,000 (1.32Mb) TBR: 8,530,000-8,610,000 (80kb)
	18q21.3	TBR: 52,649,002-52,729,002 (320kb) TAD: 52,729,002-54,329,002 (1.6 Mb) TAD: 54,329,002-55,289,002 (960kb) TAD: 55,289,002-56,169,020 (880kb)
	10p12.31	TAD: 21,159,994-22,239,994 (1.08 Mb) TBR: 22,239,994-22,279,994 (40kb) TAD: 22,279,994-23,399,994 (1.12 Mb)
5045000	10p12.2	TAD: 23,399,994-24,839,994 (1.44 Mb) TBR: 24,839,994-24,879,994 (40kb)
DGAP268	10q23.32	TAD: 92,650,020-93,690,020 (1.04 Mb) TBR: 93,690,020-93,770,020 (80kb) TAD: 93,770,020-94,210,020 (440kb) TBR: 94,210,020-94,410,020 (200kb) TAD: 94,410,020-95,290,010 (879.99kb)
	Xp11.2	TBR: 55,103,275-55,143,275 (40kb) TAD: 55,143,275-56,263,275 (1.12 Mb) TBR: 56,263,275-56,303,275 (40kb)
DGAP285	Xq28	TBR: 148,592,095-149,929,342 (1.337 Mb) TAD: 149,929,342-150,249,342 (320kb) TBR: 150,249,342-150,289,342 (40kb) TAD: 150,289,342-150,889,344 (600kb)
	6q21	TBR: 112,413,307-112,493,307 (80kb) TAD: 112,493,307-114,253,307 (1.76 Mb)
DGAP288	17q24.3	TBR: 68,608,405-68,648,405 (40kb) TAD: 68,648,405-70,528,405 (1.88 Mb) TBR: 70,528,405-70,568,405 (40kb)
DCAP200	2q32.3	TAD: 196,211,755-196,931,755 (720kb) TAD: 196,931,755-198,251,755 (1.32 Mb) TAD: 198,251,755-198,651,755 (400kb)
DGAF230	7q33	TAD: 134,309,460-134,949,460 (640kb) TAD: 134,949,460-136,829,460 (1.88 Mb) TAD: 136,829,460-137,309,460 (480kb)
	2p13.3	TAD: 69,186,496-69,546,496 (360kb) TBR: 69,546,496-69,586,496 (40kb) TAD: 69,586,496-70,106,496 (520kb) TAD: 70,106,496-70,506,496 (400kb)
DGAP295	11p15.5	TAD: 850,000-1,523,424 (673kb) TBR: 1,523,424-1,603,424 (80kb) TAD: 1,603,424-2,203,424 (600kb) TAD: 2,203,424-2,443,424 (240kb)

DGAP239: 6q13 breakpoints on Rearrangement_A: 70,405,86{7-8} and Rearrangement_B: 70,405,86{7-9}											
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	%НІ⁸	Notes				
ADGRB3	69345259- 70099403	Adhesion G Protein-Coupled Receptor B3	+	-	-	3.02	No reported phenotypic association Homologous to <i>ADGRB1</i> , an angiogenesis inhibitor that is a candidate for involvement in development of glioblastoma. ²⁸				
<i>LMBRD1</i> (Disrupted)	70385694- 70507003	LMBR1 Domain Containing 1	+	+	+	12.92	Biallelic loss of function (autosomal recessive) is associated with Methylmalonic Aciduria and Homocystinuria, cbIF type. ²⁹ (no phenotype overlap with DGAP239)				
COL19A1	70576463- 70919679	Collagen, Type XIX, Alpha 1	+	-	-	26.71					
COL9A1	70924764- 71012786	Collagen, Type IX, Alpha 1	+	+	+	23.89	Some evidence for haploinsufficiency (autosomal dominant, monoallelic mode) exists for the Multiple Epiphyseal Dysplasia type 6 (MED6) phenotype. However, it has been reported that although mutations in <i>COL9A1</i> can cause MED, they are not the major causes of MED and at least one additional locus exists in such cases. ³⁰				
FAM135A	71122644- 71270877	Family With Sequence Similarity 135, Member A	-	-	-	26.1					
SDHAF4	71276620- 71299272	Succinate Dehydrogenase Complex Assembly Factor 4	-	-	-	63.15					
SMAP1	71377479- 71571718	Small Arfgap 1	+	-	-	34.54					
B3GAT2	71566382- 71666741	Beta-1,3- Glucuronyltransferase 2	+	-	-	33.88					

Table S3. Convergent Genomic Analysis of DGAP239 6q13 breakpoints

DGA	AP239: 8q12.	2 breakpoints on Re	arrangem	ent_A: 61	,628,67{1-	2} and Re	earrangement_B: 61,628,66{7-9}
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	% НІ ⁸	Notes
NSMAF	59496063- 59572403	Neutral Sphingomyelinase (N- SMase) Activation Associated Factor	+	-	-	39.33	
тох	59717977- 60031767	Thymocyte Selection- Associated High Mobility Group Box	+	-	-	2.83	Linkage-disequilibrium mapping of a pulmonary tuberculosis susceptibility locus near the 3' end of TOX^{31}
CA8	61099906- 61193971	Carbonic Anhydrase VIII	+	+	+	10.02	Biallelic loss of function (autosomal recessive) associated with Cerebellar Ataxia, Mental Retardation, and Dysequilibrium Syndrome 3 ³²
RAB2A	61429416- 61536186	RAB2A, Member RAS Oncogene Family	+	-	-	11.01	
<i>CHD7</i> (Disrupted)	61591337- 61779465	Chromodomain Helicase DNA Binding Protein 7	+	+	+	2.4	Haploinsufficiency (autosomal dominant, monoallelic) reported in association with CHARGE syndrome, with mutations in over 90% of cases meeting diagnostic criteria of CHARGE syndrome ³³ (Consistent with the clinical diagnosis of CHARGE syndrome during the postnatal period of DGAP239)
CLVS1	61969717- 62414204	Clavesin 1	+	-	-	14.59	
ASPH	62413116- 62627155	Aspartate Beta- Hydroxylase	+	+	Р	46.75	Biallelic loss of function (autosomal recessive) associated with Traboulsi Syndrome ³⁴
NKAIN3	63161150- 63912211	Na+/K+ Transporting Atpase Interacting 3	+	-	-	24.34	
GGH	63927638- 63951730	Gamma-Glutamyl Hydrolase (Conjugase, Folylpolygammaglutamyl Hydrolase)	+	-	-	63.59	
TTPA	63961112- 63998612	Tocopherol (Alpha) Transfer Protein	+	+	-	46.94	Biallelic loss of function (autosomal recessive) associated with Ataxia with Isolated Vitamin E Deficiency ³⁵
YTHDF3	64081112- 64125346	YTH N(6)- Methyladenosine RNA Binding Protein 3	-	-	-	6.55	No reported phenotype association

Table S5. Convergent Genomic Analysis of DGAP247 8q11.2 breakpoints.

	DGAP247: 8q11.2 breakpoints on Rearrangement_A: 51,889,501 and Rearrangement_B: 51,889,502										
Genes	Nucleotides (GRCh37/hg19)	Description		OMIM Morbid ²⁶	DDG2P ²	%НІ⁸	Notes				
PRKDC	48685669- 48872743	Protein Kinase, DNA-Activated, Catalytic Polypeptide	+	-	-	10.36					
MCM4	48872745- 48890720	Minichromosome Maintenance Complex Component 4	+	+	-	13.9	Biallelic loss of function (autosomal recessive) associated with Natural Killer Cell and Glucocorticoid Deficiency with DNA Repair Defect ³⁶				
UBE2V2	48920960- 48977268	Ubiquitin-Conjugating Enzyme E2 Variant 2	+	-	-	12.96					
EFCAB1	49623348- 49647870	EF-Hand Calcium Binding Domain 1	-	-	-	44.58					
SNAI2	49830249- 49834299	Snail Family Zinc Finger 2	+	+	-	5.15	Haploinsufficiency (autosomal dominant, monoallelic) reported to be associated with piebaldism ³⁷ Biallelic loss of function (autosomal recessive) associated with Waardenburg Syndrome, Type 2D ³⁸				
C8orf22	49966870- 49988649	Chromosome 8 Open Reading Frame 22	-	-	-	81.46					
SNTG1	50822349- 51706678	Syntrophin, Gamma 1	+	-	-	43.69					
PXDNL	52232138- 52722005	Peroxidasin-Like	+	-	-	85.15					
PCMTD1	52730140- 52811735	Protein-L-Isoaspartate (D-Aspartate) O- Methyltransferase Domain Containing 1	-	-	-	21.84					
ST18	53023399- 53373519	Suppression Of Tumorigenicity 18, Zinc Finger	-	-	-	15.51					
FAM150A	53446597- 53478067	Family With Sequence Similarity 150, Member A	-	-	-	80.59					
RB1CC1	53535016- 53658403	RB1-Inducible Coiled-Coil 1	+	-	-	10.33					
NPBWR1	53850991- 53853677	Neuropeptides B/W Receptor 1	+	-	-	47.38					
OPRK1	54138284- 54164257	Opioid Receptor, Kappa 1	+	-	-	28.99					
ATP6V1H	54628117- 54756118	Atpase, H+ Transporting, Lysosomal 50/57 kda, V1 Subunit H	+	-	-	20.78					
RGS20	54764368- 54871863	Regulator Of G-Protein Signaling 20	+	-	-	69.9					

Table S6. Convergent Genomic Analysis of DGAP247 8q24.23 breakpoints

DG	DGAP247: 8q24.23 breakpoints on Rearrangement_A: 136,495,820 and Rearrangement_B: 136,495,823									
Genes	Nucleotides (GRCh37/hg19)	Description		OMIM Morbid ²⁶	DDG2P ²⁷	%НІ⁸	Notes			
ST3GAL1	134467091- 134584183	ST3 Beta-Galactoside Alpha- 2,3-Sialyltransferase 1	+	-	-	61.67				
ZFAT	135490031- 135725292	Zinc Finger And AT Hook Domain Containing	+	-	-	57.4				
KHDRBS3 (Disrupted)	136469700- 136668965	KH Domain Containing, RNA Binding, Signal Transduction Associated 3	+	-	-	10.52	No reported phenotype association			

DG	DGAP248: 2p12 breakpoints on Rearrangement_A: 78,301,91{1-2} and Rearrangement_B: 78,301,90{8-5}										
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	%НІ ⁸	Notes				
MRPL19	75873909- 75917977	Mitochondrial Ribosomal Protein L19	+	-	-	41.5					
GCFC2	75879126- 75938115	GC-Rich Sequence DNA-Binding Factor 2	+	-	-	68.95					
LRRTM4	76974845- 77820445	Leucine Rich Repeat Transmembrane Neuronal 4	+	-	-	7.26	No reported phenotype association Structure and expression profile of <i>LRRTM</i> mRNAs in mice suggest a role in development and maintenance of the vertebrate nervous system ¹³				
REG3G	79252812- 79255631	Regenerating Islet- Derived 3 Gamma	+	-	-	90.1					
REG1B	79312156- 79315145	Regenerating Islet- Derived 1 Beta	+	-	-	94.05					
REG1A	79347488- 79350545	Regenerating Islet- Derived 1 Alpha	+	-	-	91.34					
REG3A	79384132- 79386879	Regenerating Islet- Derived 3 Alpha	+	-	-	92.13					
CTNNA2	79412357- 80875905	Catenin (Cadherin- Associated Protein), Alpha 2	+	-	-	2.24	No reported phenotype association				

Table S8. Convergent Genomic Analysis of DGAP248 13q13.2 breakpoints

	DGAP248: 13	q13.2 breakpoints on Rea	rrang	ement_/	A: 34,542	2,73 <mark>{2-</mark>	1} and Rearrangement_B: 34,542,7{20-23}
Genes	Nucleotides (GRCh37/hg19)	Description	OMI M ²⁶	OMIM Morbid ² 6	DDG2P ²⁷	%НІ⁸	Notes
BRCA2	32889611- 32973805	Breast Cancer 2, Early Onset	+	+	+	13.3	Germline mutations associated with familial Breast-Ovarian Cane Susceptibility 2 ³⁹ , homozygous or compound heterozygous mutatic involved in Fanconi anemia complementation group D1 ⁴⁰
N4BP2L2	33006554- 33112970	NEDD4 Binding Protein 2-Like 2	+	-	-	75.5	
PDS5B	33160564- 33352157	PDS5 Cohesin Associated Factor B	+	-	-	24.83	
KL	33590207- 33640282	Klotho	+	+	-	16.22	Biallelic loss of function (autosomal recessive) associated w Hyperphosphatemic Familial Tumoral Calcinosis ⁴¹
STARD13	33677272- 33924767	Star-Related Lipid Transfer (START) Domain Containing 13	+	-	-	41.15	
RFC3 (Disrupted)	34392186- 34540695	Replication Factor C (Activator 1) 3, 38 kda	+	-	-	4.93	No reported phenotype association
NBEA	35516424- 36247159	Neurobeachin	+	-	-	6.83	Disrupted in a patient with a <i>de novo</i> translocation and idiopat autism, ¹⁰ a linkage study implicated its localization on chromosome for autism ⁴² and haploinsufficiency causes autism-like behaviors animal models ^{11; 12}
MAB21L1	36047926- 36050832	Mab-21-Like 1 (C. Elegans)	+	-	-	10.38	
DCLK1	36345478- 36705443	Doublecortin-Like Kinase 1	+	-	-	6.47	No reported phenotype association A microtubule-associated kinase that can under autophosphorylation ⁴³
SOHLH2	36742345- 36871979	Spermatogenesis And Oogenesis Specific Basic Helix- Loop-Helix 2	+	-	-	71.56	
CCDC169	36801182- 36871977	Coiled-Coil Domain Containing 169	-	-	-	79.84	
SPG20	36875775- 36944317	Spastic Paraplegia 20 (Troyer Syndrome)	+	+	-	43.36	Biallelic loss of function (autosomal recessive) associated with Spas Paraplegia 20 ⁴⁴
CCNA1	37005967- 37017019	Cyclin A1	+	-	-	33.13	
SERTM1	37248049- 37271976	Serine-Rich And Transmembrane Domain Containing 1	-	-	-	49.92	
RFXAP	37393361- 37403241	Regulatory Factor X-Associated Protein	+	+	-	65.91	Biallelic loss of function (autosomal recessive) associated with Balymphocyte syndrome, type II, complementation group D ⁴⁵
SMAD9	37418968- 37494902	SMAD Family Member 9	+	+	-	11.22	Haploinsufficiency (autosomal dominant, monoallelic) reported to associated with primary pulmonary hypertension, type 2 ⁴⁶
ALG5	37523912- 37574398	ALG5, Dolichyl-Phosphate Beta- Glucosyltransferase	+	-	-	22.12	
EXOSC8	37572953- 37583750	Exosome Component 8	+	-	-	6.92	Biallelic loss of function (autosomal recessive) associated w Pontocerebellar hypoplasia, type 1C ⁴⁷
SUPT20H	37583449- 37633850	Suppressor Of Ty 20 Homolog (S. Cerevisiae)	+	-	-	18.6	

	DGAP 258: 6p25.3 breakpoints on Rearrangement_A: 776,81{6} and Rearrangement_B: 776,787												
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	%НІ ⁸	Notes						
FOXF2	1390069- 1395832	Forkhead Box F2	+	-	-	29.64							
FOXC1	1610681- 1614127	Forkhead Box C1	+	+	+	9.01	Haploinsufficiency (autosomal dominant, monoallelic) reported to be associated with multiple ocular malformation syndromes including Peters anomaly (PAN), iridogoniodysgenesis anomaly (IGDA), Axenfeld-Rieger syndrome type 3 (RIEG3) ^{48; 49} and 6p25.3 Dandy-Walker malformation ⁵⁰						
GMDS	1624041- 2245926	GDP-Mannose 4,6- Dehydratase	+	-	-	3.84	Suggestive association with 6p25.3 Dandy-Walker malformation along with deletion of <i>FOXC1</i> ⁵⁰						
MYLK4	2663863- 2751200	myosin light chain kinase family, member 4	-	-	-	57.67							
WRNIP1	2765648- 2787186	Werner helicase interacting protein 1	+	-	-	36.94							

Table S9. Convergent Genomic Analysis of DGAP258 6p25.3 breakpoints

Table S10. Convergent Genomic Analysis of DGAP258 6q16.1 breakpoints

	DGAP258: 6q16.1 breakpoints on Rearrangement_A: 93,191,54{7} and Rearrangement_B: 93,191,545											
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	%НІ⁸	Notes					
BACH2	90636248- 91006627	BTB and CNC Homology 1, Basic Leucine Zipper Transcription Factor 2	+	-	-	7.84	No reported phenotype association					
MAP3K7	91223292- 91296764	Mitogen-Activated Protein Kinase Kinase Kinase 7	+	-	-	2.75	No reported phenotype association					
EPHA7	93949738- 94129265	EPH Receptor A7	+	-	-	2.77	No reported phenotype association					

	DGAP259: 3p26.3 breakpoints on Rearrangement_D: 1,408,99{6} and Rearrangement_G: 1,408,984										
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	%НІ ⁸	Notes				
CNTN6 (Disrupted)	1134260- 1445901	Contactin 6	+	-	-	39.69	No reported phenotype association A neural adhesion molecule of the contactin subgroup of the immunoglobulin superfamily ⁵¹				
CNTN4	2140497- 3099645	Contactin 4	+	-	-	6.9	A boy with t(3;10)(p26;q26)dn and characteristic features of 3p- syndrome (autosomal dominant) is reported to have a translocation breakpoint on chromosome 3 within the minimal candidate region for 3p deletion syndrome disrupting the <i>CNTN4</i> mRNA transcript at 3p26.3-p26.2 ⁵² (relevant to cerebral and renal malformation phenotype of DGAP259)				
IL5RA	3111233- 3168297	Interleukin 5 Receptor, Alpha	+	-	-	87.3					
TRNT1	3168600- 3192563	tRNA Nucleotidyl Transferase, CCA-Adding, 1	+	-	-	70.26					
CRBN	3190676- 3221394	Cereblon	+	+	-	31.14					

Table S11. Convergent Genomic Analysis of DGAP259 3p26.3 breakpoints

Table S12. Convergent	Genomic Analysis	of DGAP259 3p24.3	3 breakpoints
-----------------------	-------------------------	-------------------	---------------

	DGAP259: 3p	o24.3 breakpoints on Rea	rrangen	nent_A: 1	7,392,144	and Rea	rrangement_C: 17,392,136
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	%HI ⁸	Notes
BTD	15642848- 15687329	Biotinidase	+	+	+	76.15	Biallelic loss of function (autosomal recessive) associated with biotinidase deficiency ⁵³
ANKRD28	15708743- 15901278	Ankyrin Repeat Domain 28	+	-	-	19.04	
GALNT15	16216156- 16273499	Polypeptide N- Acetylgalactosaminyltransferase 15	+	-	-	65.27	
DPH3	16299485- 16306479	Diphthamide Biosynthesis 3	+	-	-	19.41	
OXNAD1	16306706- 16391806	Oxidoreductase NAD-Binding Domain Containing 1	-	-	-	63.97	
RFTN1	16355081- 16555533	Raftlin, Lipid Raft Linker 1	-	-	-	61.2	
DAZL	16628299- 16711813	Deleted In Azoospermia-Like	+	-	-	15.92	
PLCL2	16844159- 17132086	Phospholipase C-Like 2	+	-	-	38.08	
TBC1D5 (Disrupted)	17198654- 18486309	TBC1 Domain Family, Member 5	+	-	-	5.84	No reported phenotype association
SATB1	18386879- 18487080	SATB Homeobox 1 (Special AT-rich sequence- binding protein-1)	+	-	-	2.15	A global genome-organizer and matrix attachment region-binding protein mediating chromatin looping by tethering multiple genomic loci and recruiting chromatin-remodeling enzymes to regulate chromatin structure and gene expression ^{16; 17} (DGAP259 has a complex chromosome rearrangement involving five different chromosomes.) Role in cortical neurons to facilitate neuronal plasticity and regulate expression of key neuronal genes ⁵⁴ and required for medial ganglionic eminence-derived interneuron differentiation, connectivity, and survival ⁵⁵ (relevant to cerebral malformation phenotype of DGAP259)

Table S13. Convergent Genomic Anal	lysis of DGAP259 5q14.3 breakpoints
------------------------------------	-------------------------------------

DGA	P259: 5q14.3	breakpoints on Rearran	gement	_B: 88,75	6,2{48-56}	and Rear	rangement_E: 88,756,2{39-40}
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	%НІ ⁸	Notes
RASA1	86563705- 86687748	RAS p21 Protein Activator (GTPase Activating Protein) 1	+	+	+	2.57	Haploinsufficiency (autosomal dominant, monoallelic) reported to be associated with Parkes Weber Syndrome and Capillary malformation-Arteriovenous malformation ⁵⁶
CCNH	86687311- 86708836	Cyclin H	+	-	-	7.31	Regulation of cell cycle progression, no reported phenotype association
TMEM161B	87485450- 87565293	Transmembrane Protein 161B	-	-	-	9.65	
MEF2C	88013975- 88199922	Myocyte Enhancer Factor 2C	+	+	÷	0.26	Haploinsufficiency (autosomal dominant, monoallelic) reported to be associated with Mental retardation, Stereotypic movements, Epilepsy and cerebral malformations (MRSME) ¹⁵ and cases with hypoplastic corpus callosum ^{57; 58} , long range regulation associated phenotype also reported in a <i>de novo</i> translocation case ²² (relevant to cerebral malformation and hypoplastic corpus callosum phenotype of DGAP259) Role in synaptic plasticity and hippocampal- dependent learning and memory ⁵⁹ (9p23 breakpoints of DGAP259 disrupt <u>PTPRD1</u> with similar role)
CETN3	89688078- 89705603	Centrin, EF-Hand Protein, 3	+	-	-	5.94	Present in centrosomes and lays an important role in early cleavage of frog embryos ⁶⁰
MBLAC2	89754020- 89770585	Metallo-Beta-Lactamase Domain Containing 2	-	-	-	38.68	
POLR3G	89767565- 89810370	Polymerase (RNA) III (DNA Directed) Polypeptide G (32kd)	-	-	-	38.97	
LYSMD3	89811428- 89825401	Lysm, Putative Peptidoglycan- Binding, Domain Containing 3	-	-	-	28.58	
ADGRV1	89825161- 90460038	Adhesion G Protein-Coupled Receptor V1	+	+	-	25.58	Biallelic loss of function (autosomal recessive) associated with Usher syndrome, type 2C ⁶¹

Table S14. Convergent Genomic Analysis of DGAP259 7q35 breakpoints

	DGAP259: 7q35 breakpoints on Rearrangement_B: 147,718,91{1-9} and Rearrangement_E: 147,718,90{7-8}											
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	% НІ ⁸	Notes					
<i>CNTNAP2</i> (Disrupted)	145813453- 148118090	Contactin Associated Protein- Like 2	+	+	+	4.94	Susceptibility to Autism type 15 ⁶² , homozygous or comp heterozygous mutations causing Cortical Dysplasia- Epilepsy Syndrome ⁶³ and Pitt-Hopkins-like syndro (PTHSL1) ⁶⁴ (relevant to cerebral malformation phenotyp DGAP259) (18q21 breakpoints of DGAP259 mapping one downstream of <u>TCF4</u> , a monoallelic gene in Pitt-Ho Syndrome)					
C7orf33	148287657- 148312952	Chromosome 7 Open Reading Frame 33	-	-	-	97.83						
CUL1	148395006- 148498128	Cullin 1	+	-	-	4.3	No reported phenotype association Regulates mammalian G1/S transition by specifically targ mammalian G1 cell cycle regulators for ubiquitin-deper degradation ⁶⁵					
EZH2	148504475- 148581413	Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit	+	+	+	3.07	Critical role during normal and perturbed development of hematopoietic and central nervous systems ⁶⁶ and a memb the Polycomb group, which maintains homeotic repression and is thought to control gene expressio regulating chromatin ¹⁸ (In addition to the cerebral malformation DGAP259 has a complex chromosome rearrangement.)					
PDIA4	148700154- 148725733	Protein Disulfide Isomerase Family A, Member 4	-	-	-	70.97						
ZNF786	148766735- 148787874	Zinc Finger Protein 786	-	-	-	92.01						
ZNF425	148799876- 148823438	Zinc Finger Protein 425	-	-	-	92.53						
ZNF398	148823508- 148880116	Zinc Finger Protein 398	-	-	-	61.58						
ZNF282	148892577- 148923339	Zinc Finger Protein 282	+	-	-	64.68						
ZNF212	148936742- 148952700	Zinc Finger Protein 212	+	-	-	67.39						
ZNF783	148959262- 148994393	Zinc Finger Family Member 783	-	-	-	82.83						
ZNF777	149128454- 149158214	Zinc Finger Protein 777	-	-	-	52.36						
ZNF746	149169885- 149194908	Zinc Finger Protein 746	+	-	-	59.83						

Table S15. Convergen	t Genomic Analysi	s of DGAP259	7q36.3	breakpoints
----------------------	-------------------	--------------	--------	-------------

	DGAP259:	7q36.3 breakpoints on F	Rearrang	ement_A:	155,701,797	7 and R	earrangement_C: 155,700,873
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	%HI ⁸	Notes
PAXIP1	154735397- 154794794	PAX Interacting (with Transcription-Activation Domain) Protein 1	+	-	-	48.56	
HTR5A	154862034- 154877459	5-Hydroxytryptamine (Serotonin) Receptor 5a, G Protein-Coupled	+	-	-	59.81	
INSIG1	155089486- 155101945	Insulin Induced Gene 1	+	-	-	73.03	
EN2	155250824- 155257526	Engrailed Homeobox 2	+	-	-	23.56	
CNPY1	155266901- 155326557	Canopy Fgf Signaling Regulator 1	+	-	-	63.67	
RBM33	155437145- 155574179	Rna Binding Motif Protein 33	-	-	-	42.71	
SHH	155592680- 155604967	Sonic Hedgehog	+	+	+	0.66	Haploinsufficiency (autosomal dominant, monoallelic) associated with Holoprosencephaly type 3 (HPE3), with long range regulation associated phenotype (relevant to cerebral malformation phenotype DGAP259)
RNF32	156432975- 156469824	Ring Finger Protein 32	+	-	-	75.12	
LMBR1	156461646- 156685924	Limb Development Membrane Protein 1	+	+	-	24.09	
NOM1	156742417- 156765876	Nucleolar Protein With Mif4g Domain 1	+	-	-	80.94	
MNX1	156786745- 156803345	Motor Neuron And Pancreas Homeobox 1	+	+	+	0.84	Haploinsufficiency (autosomal dominant, monoalleli associated with Currarino Syndrome (sacr malformation) ⁶⁹
UBE3C	156931607- 157062066	Ubiquitin Protein Ligase E3c	+	-	-	59.16	
DNAJB6	157128075- 157210133	Dnaj (Hsp40) Homolog, Subfamily B, Member 6	+	+	-	47.78	
PTPRN2	157331750- 158380480	Protein Tyrosine Phosphatase, Receptor Type, N Polypeptide 2	+	-	-	45.29	
NCAPG2	158424003- 158497520	Non-SMC Condensin II Complex, Subunit G2	+	-	-	45.05	
ESYT2	158523686- 158622944	Extended Synaptotagmin-Like Protein 2	-	-	-	55.86	
WDR60	158649269- 158749438	WD Repeat Domain 60	+	+	+	89.69	
VIPR2	158820866- 158937649	Vasoactive Intestinal Peptide Receptor 2	+	-	-	73.84	

Table S16. Convergent Genomic Analysis of DGAP259 9p23 breakpoints

	DGAP259: 9p23 breakpoints on Rearrangement_F: 9,646,47{5} and Rearrangement_I: 9,646,471											
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	% НІ ⁸	Notes					
TMEM261	7796490-7888380	Transmembrane Protein 261	-	-	-	87.18						
<i>PTPRD</i> (Disrupted)	8314246-10612723	Protein Tyrosine Phosphatase, Receptor Type, D	+	-	-	0.14	Homozygous microdeletion causes trigonocephaly, hearin loss, and intellectual disability, overlapping phenotypes wit the autosomal dominant 9p deletion syndrome ⁷⁰ (relevant to cerebral malformation phenotype of DGAP259) Role in synaptic plasticity and hippocampal-dependent learning and memory ⁷¹ (5q14.3 breakpoints of DGAP25 within same TAD as <u>MEF2C</u> with similar role)					
TYRP1	12685439- 12710290	Tyrosinase-Related Protein 1	+	+	+	21.84						

Table S17. Convergent Genomic Analysis of DGAP259 18p11.31 breakpoints

DGAP259: 18p11.31 breakpoints on Rearrangement_D: 6,375,05{1}, Rearrangement_G: 6,559,611 and Rearrangement_H: 6,375,0{52-48} and 6,559,{598-602}									
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	%НІ⁸	Notes		
DLGAP1	3496030-4455335	Discs, Large (Drosophila) Homolog-Associated Protein 1	+	-	-	7.58	Candidate gene for schizophrenia ⁷²		
C18orf42	5145284-5197502	Chromosome 18 Open Reading Frame 42	-	-	-	64.35			
ZBTB14	5289018-5297052	Zinc Finger And Btb Domain Containing 14	+	-	-	28.98			
EPB41L3	5392383-5630699	Erythrocyte Membrane Protein Band 4.1-Like 3	+	-	-	35.28			
TMEM200C	5882071-5895954	Transmembrane Protein 200c	-	-	-	77.42			
L3MBTL4 (Disrupted)	5954705-6415236	L(3)Mbt-Like 4 (Drosophila)	-	-	-	59.07	No reported phenotype association		
ARHGAP28	6729717-6915715	Rho Gtpase Activating Protein 28	+	-	-	60.37			
LAMA1	6941743-7117813	Laminin, Alpha 1	+	-	+	60.73	Biallelic loss of function (autosomal recessive) associated with Poretti-Boltshauser syndrome (cerebellar dysplasia) ⁷³		
LRRC30	7231123-7232045	Leucine Rich Repeat Containing 30	-	-	-	59.77			
PTPRM	7566780-8406859	Protein Tyrosine Phosphatase, Receptor Type, M	+	-	-	7.19	No reported phenotype association (Loss of <i>PTPRM</i> associated with pathogenic development of colorectal adenoma- carcinoma sequence) ⁷⁴		
RAB12	8609443-8639379	RAB12, member RAS oncogene family	-	-	-	37.44			

Table S18. Convergent Genomic Analysis of DGAP259 18q21.3 breakpoints

DGAP259: 18q21.3 breakpoints on Rearrangement_F: 54,660,13{8} and Rearrangement_I: 54,660,136										
Genes	Nucleotides (GRCh37/hg19)	Description		OMIM Morbid ² 6	DDG2P ²⁷	%HI ⁸	Notes			
CCDC68	52568740-52626739	Coiled-Coil Domain Containing 68	-	-	-	59.77				
TCF4	52889562-53332018	Transcription Factor 4	+	+	+	0.38	Haploinsufficiency (autosomal dominant, monoalle associated with Pitt-Hopkins Syndrome (severe epilep encephalopathy with mental retardation) ⁷⁵ (relevant to cereb malformation phenotype of DGAP259) (7q35 breakpoints of DGAP259 disrupt related with Pitt-Hopkins like Syndrome) ⁶⁴			
TXNL1	54264439-54318831	Thioredoxin-Like 1	+	-	-	5.48	No reported phenotype association			
WDR7 (Disrupted)	54318574-54698828	Wd Repeat Domain 7	+	-	-	14.85	No reported phenotype association Localized to synaptic vesicles in rat and mouse brain ⁷⁶			
BOD1L2	54814293-54817531	Biorientation of Chromosomes In Cell Division 1-Like 2	-	-	-	87.92				
ST8SIA3	55018044-55038962	ST8 Alpha-N-Acetyl- Neuraminide Alpha- 2,8-Sialyltransferase 3	+	-	-	11.2				
ONECUT2	55102917-55158529	One Cut Homeobox 2	+	-	-	12.99				
FECH	55215515-55254004	Ferrochelatase	+		-	28.28				
NARS	55267888-55289445	Asparaginyl-tRna Synthetase	+	-	-	21.6				
ATP8B1	55313658-55470333	ATPase, Aminophospholipid Transporter, Class I, Type 8B, Member 1	+	+	+	41.4	Biallelic loss of function (autosomal recessive) is associat with <i>ATP8B1</i> -related intrahepatic cholestasis ⁷⁷			
NEDD4L	55711599-56068772	Neural Precursor Cell Expressed, Developmentally Down-Regulated 4- Like, E3 Ubiquitin Protein Ligase	+	-	-	8.66	Regulator of renal sodium channels and involved in t induction of mesoendodermal fates in mouse embryonic stu cells ⁷⁸ (renal agenesis and multicystic kidney in DGAP259)			
ALPK2	56148479-56296189	Alpha-Kinase 2	-	-	-	88.74				

DGAP268: 10p12.31 breakpoints on Rearrangement_B: 21,606,655 and Rearrangement_C: 21,606,63{4-2}									
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	% НІ ⁸	Notes		
NEBL	21068902- 21463116	Nebulette	+	-	-	21.79			
C10orf113	21414692- 21435488	Chromosome 10 Open Reading Frame 113	-	-	-	86.51			
CASC10	21781587- 21786191	Cancer Susceptibility Candidate 10	-	-	-	83.87			
SKIDA1	21802407- 21814611	SKI/DACH Domain Containing 1	-	-	-	18.69			
MLLT10	21823094- 22032559	Myeloid/Lymphoid Or Mixed- Lineage Leukemia (Trithorax Homolog, Drosophila); Translocated To, 10	+	-	-	9.19	No reported phenotype association Fused with <i>AF10</i> in rare but recurrent chromosome rearrangement of acute monoblastic leukemia (inv ins(10;11)(p12;q23q12)) ⁷⁹		
DNAJC1	22045466- 22292698	Dnaj (Hsp40) Homolog, Subfamily C, Member 1	+	-	-	38.97			
EBLN1	22497743- 22498950	Endogenous Bornavirus-Like Nucleoprotein 1	+	-	-	90.27			
COMMD3	22604903- 22609235	COMM Domain Containing 3	-	-	-	18.42			
BMI1	22610140- 22620413	BMI1 Proto-Oncogene, Polycomb Ring Finger	+	-	-	1.63	No reported phenotype association, strongly expressed in proliferating cerebellar precursor cells in mice and humans ⁸⁰ Important paralog of <u>PCGF5</u> (located in the vicinity of 10q23.32 breakpoints of DGAP268)		
SPAG6	22634399- 22743153	Sperm Associated Antigen 6	+	-	-	43.84			
PIP4K2A	22823778- 23003484	Phosphatidylinositol-5- Phosphate 4-Kinase, Type II, Alpha	+	-	-	20.5			
ARMC3	23216953- 23326518	Armadillo Repeat Containing 3	+	-	-	66.75			

Table S19. Convergent Genomic Analysis of DGAP268 10p12.31 breakpoints

Table S20. Convergent Genomic Analysis of DGAP268 10p12.2 breakpoints

DGAP268: 10p12.2 breakpoints on Rearrangement_A: 23,659,495~ and Rearrangement_C: 23,659,20{0-2}										
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	% НІ ⁸	Notes			
MSRB2	23384435- 23410942	Methionine Sulfoxide Reductase B2	+	-	-	79.51				
PTF1A	23481256- 23483181	Pancreas Specific Transcription Factor, 1a	+	+	+	27.41	Biallelic loss of function (autosomal recessive) associated with Pancreatic and Cerebellar Agenesis ⁸¹			
C10orf67	23556124- 23633774	Chromosome 10 Open Reading Frame 67	-	-	-	90.14				
OTUD1	23728198- 23731308	OTU Deubiquitinase 1	+	-	-	75.7				
KIAA1217	23983675- 24836772	Kiaa1217	-	-	-	41.11				
ARHGAP21	24872538- 25012597	Rho Gtpase Activating Protein 21	+	-	-	56.74				

D	DGAP268: 10q23.32 breakpoints on Rearrangement_A: 93,983,897~ and Rearrangement_B: 93,982,408								
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	%нI ⁸	Notes		
RPP30	92631473- 92668312	Ribonuclease P/MRP 30 kda Subunit	+	-	-	26.31			
ANKRD1	92671853- 92681033	Ankyrin Repeat Domain 1 (Cardiac Muscle)	+	+	-	22.32			
PCGF5	92979908- 93044088	Polycomb Group Ring Finger 5	-	-	-	8.55	No reported phenotype association Important paralog of <u>BMI1</u> (located in the vicinity of 10p12.31 breakpoints of DGAP268)		
HECTD2	93170096- 93274586	HECT Domain Containing E3 Ubiquitin Protein Ligase 2	-	-	-	16.83			
PPP1R3C	93388199- 93392811	Protein Phosphatase 1, Regulatory Subunit 3C	+	-	-	39.43			
TNKS2	93558069- 93625033	Tankyrase, TRF1-Interacting Ankyrin-Related ADP-Ribose Polymerase 2	+	-	-	11.01			
FGFBP3	93666346- 93669240	Fibroblast Growth Factor Binding Protein 3	-	-	-	84.27			
BTAF1	93683526- 93790082	BTAF1 RNA Polymerase II, B- TFIID Transcription Factor- Associated, 170 kda	+	-	-	5	No reported phenotype association		
CPEB3 (Disrupted)	93806449- 94050844	Cytoplasmic Polyadenylation Element Binding Protein 3	+	-	-	12.96	No reported phenotype association		
MARCH5	94050920- 94113721	Membrane-Associated Ring Finger (C3HC4) 5	+	-	-	7.01	No reported phenotype association		
IDE	94211441- 94333833	Insulin-Degrading Enzyme	+	-	-	1.37	No reported phenotype association		
KIF11	94353043- 94415150	Kinesin Family Member 11	+	+	+	9.02	Haploinsufficiency (autosomal dominant, monoallelic) associated with microcephaly with or without chorioretinopathy, lymphedema, or mental retardation ⁸²		
HHEX	94447945- 94455403	Hematopoietically Expressed Homeobox	+	-	-	7.77	No reported phenotype association		
EXOC6	94590935- 94819250	Exocyst Complex Component 6	+	-	-	7.76	No reported phenotype association		
CYP26C1	94821021- 94828454	Cytochrome P450, Family 26, Subfamily C, Polypeptide 1	+	+	-	38.94	Biallelic loss of function (autosomal recessive) associated with Focal facial dermal dysplasia, type IV ⁸³		
CYP26A1	94833232- 94837647	Cytochrome P450, Family 26, Subfamily A, Polypeptide 1	+	-	-	9.92	No reported phenotype association		
MYOF	95066186- 95242074	Myoferlin	+	-	-	23.07			
CEP55	95256389- 95288849	Centrosomal Protein 55 kda	+	-	-	30.24			

Table S21. Convergent Genomic Analysis of DGAP268 10q23.32 breakpoints

DGAP285: Xp11.21 breakpoints on Rearrangement_A: 55,174,723~ and Rearrangement_B: 55,174,381~									
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	%HI ⁸	Notes		
PAGE2B	55101496- 55105342	P Antigen Family, Member 2B	-	-	-	96.76			
PAGE2	55115441- 55119275	P Antigen Family, Member 2 (Prostate Associated)	+	-	-	96.53			
FAM104B (Disrupted)	55169535- 55187743	Family With Sequence Similarity 104, Member B	-	-	-	93.08	No reported phenotype association		
MTRNR2L10	55207824- 55208944	MT-RNR2-Like 10	-	-	-	89.08			
PAGE5	55246788- 55250541	P Antigen Family, Member 5 (Prostate Associated)	-	-	-	96.87			
PAGE3	55284848- 55291279	P Antigen Family, Member 3 (Prostate Associated)	+	-	-	96.96			
MAGEH1	55478538- 55479998	Melanoma Antigen Family H1	+	-	-	77.09			
USP51	55511049- 55515635	Ubiquitin Specific Peptidase 51	-	-	-	73.85			
FOXR2	55649833- 55652621	Forkhead Box R2	+	-	-	90.12			
RRAGB	55744172- 55785207	Ras-Related GTP Binding B	+	-	-	34.1			
KLF8	56258854- 56314322	Kruppel-Like Factor 8	+	-	-	60.52			

Table S22. Convergent Genomic Analysis of DGAP285 Xp11.21 breakpoints

D	GAP285: Xq28	B breakpoints on Rearrant	ngement	t_A: 150,2	86,207~ a	nd Rearra	ingement_B: 150,284,569~
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	%HI ⁸	Notes
IDS	148558521- 148615470	Iduronate 2-Sulfatase	+	+	+	14.02	Hemizygous loss of function (X-linked recessive) associated with Mucopolysaccharidosis II ⁸⁴
CXorf40A	148621900- 148632055	Chromosome X Open Reading Frame 40A	+	-	-	86.75	No reported phenotype association
MAGEA9B	148663308- 148669116	Melanoma Antigen Family A9B	+	-	-	99.76	No reported phenotype association
MAGEA9	148663309- 148669116	Melanoma Antigen Family A9	+	-	-	96.82	No reported phenotype association
TMEM185A	148678216- 148713568	Transmembrane Protein 185A	+	-	-	38.34	No reported phenotype association
MAGEA11	148769894- 148798926	Melanoma Antigen Family A11	+	-	-	95.69	No reported phenotype association
HSFX2	148855725- 148858528	Heat Shock Transcription Factor Family, X Linked 2	-	-	-	99.69	
HSFX1	148855726- 148858525	Heat Shock Transcription Factor Family, X Linked 1	-	-	-	99.26	
MAGEA8	149009941- 149014609	Melanoma Antigen Family A8	+	-	-	96	No reported phenotype association
CXorf40B	149097745- 149107029	Chromosome X Open Reading Frame 40B	-	-	-	86.08	
MAMLD1	149529689- 149682448	Mastermind-Like Domain Containing 1	+	+	Р	71.77	Hemizygous loss of function (X-linked recessive) associated with X-linked hypospadias, type II ⁸⁵
MTM1	149737069- 149841795	Myotubularin 1	+	+	+	12.54	Hemizygous loss of function (X-linked recessive) associated with X-linked myotubular myopathy ⁸⁶ (overlapping phenotype with DGAP285)
MTMR1	149861435- 149933576	Myotubularin Related Protein 1	+	-	-	31.42	
CD99L2	149934810- 150067289	CD99 Molecule-Like 2	+	-	-	82.42	No reported phenotype association
HMGB3	150148982- 150159248	High Mobility Group Box 3	+	+	-	36.49	Hemizygous loss of function (X-linked recessive) associated with syndromic microphthalmia, 13 ⁸⁷
GPR50	150345125- 150349937	G Protein-Coupled Receptor 50	+	-	-	81.88	No reported phenotype association
VMA21	150564987- 150577836	VMA21 Vacuolar H+-Atpase Homolog (S. <i>Cerevisiae</i>)	+	+	-	51.64	Hemizygous loss of function (X-linked recessive) associated with X-linked myopathy with excessive autophagy ⁸⁸
PASD1	150732094- 150845211	PAS Domain Containing 1	-	-	-	99.84	
PRRG3	150863596- 150874396	Proline Rich Gla (G- Carboxyglutamic Acid) 3 (Transmembrane)	+	-	-	58.49	No reported phenotype association
FATE1	150884507- 150891666	Fetal And Adult Testis Expressed	+	-	-	95.68	No reported phenotype association

Table S23. Convergent Genomic Analysis of DGAP285 Xq28 breakpoints

DDG2P: Developmental Disorders Genotype-to-Phenotype Database, +: Confirmed DDG2P gene, P: Probable DDG2P gene, HI: Haploinsufficiency index (in red if <10%) Shaded rows: Protein coding genes located within the neighboring hESC topologically associated domains (TAD)²⁵ and the topological boundary regions (TBR) around the breakpoints
Table S24. Convergent Genomic Analysis of DGAP288 6q21 breakpoints

DGAP288: 6q21 breakpoints on Rearrangement_A: 112,976,04{2-4}and Rearrangement_B: 112,976,031								
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	%НІ⁸	Notes	
WISP3	112375275- 112392171	WNT1 Inducible Signaling Pathway Protein 3	+	+	-	48.76	Biallelic loss of function (autosomal recessive) associated with progressive pseudorheumatoid arthropathy of childhood ⁸⁹	
TUBE1	112391980- 112408732	Tubulin, Epsilon 1	+	-	-	14.86		
FAM229B	112408802- 112423993	Family With Sequence Similarity 229, Member B	-	-	-	19.09		
LAMA4	112429963- 112576141	Laminin, Alpha 4	+	-	-	35.21		
RFPL4B	112668532- 112672498	Ret Finger Protein-Like 4B	-	-	-	99.43		
MARCKS	114178541- 114184648	Myristoylated Alanine-Rich Protein Kinase C Substrate	+	-	-	64.72		

DDG2P: Developmental Disorders Genotype-to-Phenotype Database, +: Confirmed DDG2P gene, HI: Haploinsufficiency index (in red if <10%) Shaded rows: Protein coding genes located within the same hESC topologically associated domain (TAD)²⁵ with the breakpoints

Table S25. Convergent Genomic Analysis of DGAP288 17q24.3 breakpoints

DGAP288: 17q24.3 breakpoints on Rearrangement_A: 69,728,01{7-9} and Rearrangement_B: 69,728,006									
Gene	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	% НІ ⁸	Notes		
SOX9	70117161- 70122561	SRY (sex determining region Y)-box 9	+	+	+	0.56	Haploinsufficiency (autosomal dominant, monoallelic) associated with Campomelic dysplasia ⁹⁰ Haploinsufficient (autosomal dominant, monoallelic) long-range cis-regulation associated with Pierre-Robin Sequence ²² (overlapping phenotype with DGAP288)		

DDG2P: Developmental Disorders Genotype-to-Phenotype Database, +: Confirmed DDG2P gene, HI: Haploinsufficiency index (in red if <10%) Shaded row: SOX9 is the only protein coding gene located within the same hESC topologically associated domain (TAD)²⁵ with the breakpoints

Table S26. Convergent Genomic Analys	sis of DGAP290 2q32.3 break	points
--------------------------------------	-----------------------------	--------

DGAP290: 2q32.3 breakpoints on Rearrangement_A: 197,164,194 and Rearrangement_B: 197,164,206								
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	%НІ⁸	Notes	
SLC39A10	196440701- 196602426	Solute Carrier Family 39 (Zinc Transporter), Member 10	+	-	-	36.25		
DNAH7	196602427- 196933536	Dynein, Axonemal, Heavy Chain 7	+	-	-	48.83		
STK17B	196998290- 197041227	Serine/Threonine Kinase 17b	+	-	-	37.72		
HECW2 (Disrupted)	197059094- 197458416	HECT, C2 And WW Domain Containing E3 Ubiquitin Protein Ligase 2	-	-	-	18.5	No reported phenotype association	
CCDC150	197504278- 197628214	Coiled-Coil Domain Containing 150	-	-	-	62.11		
GTF3C3	197627756- 197664449	General Transcription Factor IIIC, Polypeptide 3, 102 kda	+	-	-	30.03		
C2orf66	197669726- 197675000	Chromosome 2 Open Reading Frame 66	-	-	-	77.88		
PGAP1	197697728- 197792520	Post-GPI Attachment To Proteins 1	+	+	-	32.33	Biallelic loss of function (autosomal recessive) associated with mental retardation, type 42 ⁹¹	
ANKRD44	197831741- 198175897	Ankyrin Repeat Domain 44	-	-	-	28.93		
SF3B1	198254508- 198299815	Splicing Factor 3b, Subunit 1, 155 kda	+	-	-	4.28	No reported phenotype association	
COQ10B	198318147- 198340032	Coenzyme Q10B	-	-	-	38.85		
HSPD1	198351305- 198381461	Heat Shock 60 kda Protein 1 (Chaperonin)	+	+	+	2.85	Haploinsufficiency (autosomal dominant, monoallelic) associated with spastic paraplegia, type 13 ⁹²	
HSPE1	198364718- 198368181	Heat Shock 10 kda Protein 1	+	-	-	9.58		
MOB4	198380295- 198418423	MOB Family Member 4, Phocein	+	-	-	4.45		
RFTN2	198432948- 198540769	Raftlin Family Member 2	-	-	-	66.28		
MARS2	198570087- 198573113	Methionyl-Trna Synthetase 2, Mitochondrial	+	+	-	47.49	Biallelic loss of function (autosomal recessive) associated with Spastic ataxia, type 3 ⁹³	
BOLL	198591603- 198651486	Boule-Like RNA-Binding Protein	+	-	-	18.25		

DDG2P: Developmental Disorders Genotype-to-Phenotype Database, +: Confirmed DDG2P gene, HI: Haploinsufficiency index (in red if <10%) Shaded rows: Protein coding genes located within the same hESC topologically associated domain (TAD)²⁵ with the breakpoints

Table S27. Convergent Genomic Analysis of DGAP290 7q33 breakpoints

DGAP290: 7q33 breakpoints on Rearrangement_A: 135,905,923, Rearrangement_B: 135,299,810, and									
Rearrangement_C: 135,299,81{2} and 135,905,92{4}									
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	%НІ⁸	Notes		
BPGM	134331560- 134364565	2,3-Bisphosphoglycerate Mutase	+	+	-	22.09	Biallelic loss of function (autosomal recessive) associated with erythrocytosis due to bisphosphoglycerate mutase deficiency ⁹⁴		
CALD1	134429003- 134655479	Caldesmon 1	+	-	-	20.29			
AGBL3	134671259- 134832715	ATP/GTP Binding Protein-Like 3	-	-	-	64.12			
C7orf49	134777115- 134855547	Chromosome 7 Open Reading Frame 49	-	-	-	80.37			
TMEM140	134832824- 134850967	Transmembrane Protein 140	-	-	-	83.19			
WDR91	134868590- 134896316	WD Repeat Domain 91	-	-	-	46.24			
STRA8	134916731- 134943244	Stimulated By Retinoic Acid 8	+	-	-	56.99			
CNOT4	135046547- 135194875	CCR4-NOT Transcription Complex, Subunit 4	+	-	-	6.19	No reported phenotype association		
NUP205 (Disrupted)	135242667- 135333505	Nucleoporin 205 kda	+	-	-	11.41	No reported phenotype association		
C7orf73	135347244- 135378166	Chromosome 7 Open Reading Frame 73	-	-	-	24.72			
SLC13A4	135365985- 135414006	Solute Carrier Family 13 (Sodium/Sulfate Symporter), Member 4	+	-	-	40.17			
FAM180A	135413096- 135433594	Family With Sequence Similarity 180, Member A	-	-	-	63.78			
MTPN	135611509- 135662101	Myotrophin	+	-	-	15.72			
LUZP6	135612022- 135612198	Leucine Zipper Protein 6	+	-	-	86.19			
CHRM2	136553416- 136705002	Cholinergic Receptor, Muscarinic 2	+	+	-	11.59	A SNP variation may predispose to alcohol dependence, drug dependence, and affective disorders ⁹⁵		
PTN	136912088- 137028611	Pleiotrophin	+	-	-	5.33	No reported phenotype association		
DGKI	137065783- 137531838	Diacylglycerol Kinase, lota	+	-	-	12.1			

DDG2P: Developmental Disorders Genotype-to-Phenotype Database, +: Confirmed DDG2P gene, HI: Haploinsufficiency index (in red if <10%) Shaded rows: Protein coding genes located within the same hESC topologically associated domain (TAD)²⁵ with the breakpoints

Table S28. Convergent Genomic Analysis of DGAP295 2p13.3 breakpoints

DGAP295: 2p13.3 breakpoints on Rearrangement_D: 69,588,420~ and Rearrangement_E: 69,588,264~								
Genes	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	%HI ⁸	Notes	
GFPT1 (Disrupted)	69546905- 69614382	GlutamineFructose-6- Phosphate Transaminase 1	+	+	-	22.36	Biallelic loss of function (autosomal recessive) associated with congenital myasthenia, type 12 ⁹⁶	
NFU1	69622882- 69664760	NFU1 Iron-Sulfur Cluster Scaffold	+	+	+	7.52	Biallelic loss of function (autosomal recessive) associated with multiple mitochondrial dysfunctions syndrome, type 1 ⁹⁷	
AAK1	69688532- 69901481	AP2 Associated Kinase 1	+	-	-	27.81		
ANXA4	69871557- 70053596	Annexin A4	+	-	-	36.41		
GMCL1	70056774- 70108528	Germ Cell-Less, Spermatogenesis Associated 1	-	-	-	27.55		
SNRNP27	70120692- 70132707	Small Nuclear Ribonucleoprotein 27 kda (U4/U6.U5)	-	-	-	21.9		
MXD1	70124820- 70170077	MAX Dimerization Protein 1	+	-	-	19.62		
ASPRV1	70187226- 70189397	Aspartic Peptidase, Retroviral- Like 1	+	-	-	44.23		
PCBP1	70314585- 70316332	Poly(Rc) Binding Protein 1	+	-	-	22.38		
C2orf42	70377012- 70475747	Chromosome 2 Open Reading Frame 42	-	-	-	28.59		
TIA1	70436576- 70475792	TIA1 Cytotoxic Granule- Associated RNA Binding Protein	+	+	-	3.8	Haploinsufficiency (autosomal dominant, monoallelic mode) associated with Welander distal myopathy ⁹⁸	
PCYOX1	70484518- 70508323	Prenylcysteine Oxidase 1	+	-	-	55.49		

DDG2P: Developmental Disorders Genotype-to-Phenotype Database, +: Confirmed DDG2P gene, HI: Haploinsufficiency index (in red if <10%) Shaded rows: Protein coding genes located within the same hESC topologically associated domain (TAD)²⁵ with the breakpoints

Table S29. Convergent Genomic Analysis of DGAP295 11p15.5 breakpoints

DGAP295: 11p15.5 Breakpoints on Rearrangement_A			(1,915,057~	~ and 1,936	,993~), Rea	arrangement_B (1,960,727~ and	
1,936,668~), Rearrangement_C (1,915,843~ and 1,961,361~),		, Rearrange	ement_D (1	,984,895~)	, and Rearrangement_E (1,985,019~)		
Gene	Nucleotides (GRCh37/hg19)	Description	OMIM ²⁶	OMIM Morbid ²⁶	DDG2P ²⁷	%НІ⁸	Notes
TSPAN4	842808- 867116	Tetraspanin 4	+	-	-	71.26	
CHID1	867357- 915058	Chitinase Domain Containing 1	+	-	-	70.14	
AP2A2	924894- 1012239	Adaptor-Related Protein Complex 2, Alpha 2 Subunit	+	-	-	72.44	
MUC6	1012821- 1036706	Mucin 6, Oligomeric Mucus/Gel-Forming	+	-	-	92.04	
MUC2	1074875- 1104419	Mucin 2, Oligomeric Mucus/Gel-Forming	+	-	-	78.34	
MUC5AC	1151580- 1222364	Mucin 5AC, Oligomeric Mucus/Gel-Forming	+	-	-	82.42	
MUC5B	1244296- 1283406	Mucin 5B, Oligomeric Mucus/Gel-Forming	+	+	-	94.15	
TOLLIP	1295601- 1330884	Toll Interacting Protein	+	-	-	45.23	
BRSK2	1411129- 1483919	BR Serine/Threonine Kinase 2	+	-	-	60.26	
MOB2	1490687- 1522477	MOB Kinase Activator 2	+	-	-	62.66	
DUSP8	1575274- 1593150	Dual Specificity Phosphatase 8	+	-	-	69.59	
KRTAP5-1	1605572- 1606513	Keratin Associated Protein 5-1	+	-	-	82.35	
KRTAP5-2	1618409- 1619524	Keratin Associated Protein 5-2	-	-	-	76.65	
KRTAP5-3	1628795- 1629693	Keratin Associated Protein 5-3	-	-	-	84.7	
KRTAP5-4	1642188- 1643368	Keratin Associated Protein 5-4	-	-	-	84.14	
KRTAP5-5	1651033- 1652160	Keratin Associated Protein 5-5	-	-	-	76.4	
KRTAP5-6	1718425- 1718985	Keratin Associated Protein 5-6	-	-	-	68.6	
IFITM10	1753640- 1771821	Interferon Induced Transmembrane Protein 10	-	-	-	80.26	
CTSD	1773982- 1785222	Cathepsin D	+	+	+	51.46	
SYT8	1848709- 1858751	Synaptotagmin VIII	+	-	-	92.25	
TNNI2	1860219- 1862910	Troponin I Type 2 (Skeletal, Fast)	+	+	-	67.71	
LSP1	1874200- 1913497	Lymphocyte-Specific Protein 1	+	-	-	87.89	
PRR33	1910375-	Proline Rich 33	-	-	-	93.45	

	1912084						
TNNT3	1940792- 1959936	Troponin T Type 3 (Skeletal, Fast)	+	+	-	54.88	
MRPL23	1968508- 2005752	Mitochondrial Ribosomal Protein L23	+	-	-	79.39	
IGF2	2150342- 2170833	Insulin-Like Growth Factor 2	+	+	+	79.01	Imprinted loss of function (epimutation) is associated with Silver-Russel Syndrome ²⁴ (overlapping phenotype with DGAP295)
INS	2181009- 2182571	Insulin	+	+	-	80.96	
TH	2185159- 2193107	Tyrosine Hydroxylase	+	+	+	6.58	
ASCL2	2289725- 2292182	Achaete-Scute Family Bhlh Transcription Factor 2	+	-	-	71.06	
C11orf21	2316875- 2324279	Chromosome 11 Open Reading Frame 21	+	-	-	98.55	
TSPAN32	2323227- 2339430	Tetraspanin 32	+	-	-	90.86	
CD81	2397407- 2418649	CD81 Molecule	+	+	-	64.93	
TSSC4	2421718- 2425106	Tumor Suppressing Subtransferable Candidate 4	+	-	-	88.63	
TRPM5	2425745- 2444275	Transient Receptor Potential Cation Channel, Subfamily M, Member 5	+	-	-	76.97	

DDG2P: Developmental Disorders Genotype-to-Phenotype Database, +: Confirmed DDG2P gene, HI: Haploinsufficiency index (in red if <10%) Shaded rows: Protein coding genes located within the same hESC topologically associated domain (TAD)²⁵ with the breakpoints

REFERENCES

- Talkowski, M.E., Ordulu, Z., Pillalamarri, V., Benson, C.B., Blumenthal, I., Connolly, S., Hanscom, C., Hussain, N., Pereira, S., Picker, J., et al. (2012). Clinical diagnosis by whole-genome sequencing of a prenatal sample. N Engl J Med 367, 2226-2232.
- 2. Pagon, R.A., Graham, J.M., Jr., Zonana, J., and Yong, S.L. (1981). Coloboma, congenital heart disease, and choanal atresia with multiple anomalies: CHARGE association. J Pediatr 99, 223-227.
- 3. Blake, K.D., Davenport, S.L., Hall, B.D., Hefner, M.A., Pagon, R.A., Williams, M.S., Lin, A.E., and Graham, J.M., Jr. (1998). CHARGE association: an update and review for the primary pediatrician. Clin Pediatr (Phila) 37, 159-173.
- 4. Verloes, A. (2005). Updated diagnostic criteria for CHARGE syndrome: a proposal. Am J Med Genet A 133A, 306-308.
- 5. Brown, G.C. (1982). Optic nerve hypoplasia and colobomatous defects. J Pediatr Ophthalmol Strabismus 19, 90-93.
- 6. Maumenee, I.H., and Mitchell, T.N. (1990). Colobomatous malformations of the eye. Trans Am Ophthalmol Soc 88, 123-132; discussion 133-125.
- 7. Suzuki, Y., Kawase, E., Nishina, S., and Azuma, N. (2006). Two patients with different features of congenital optic disc anomalies in the two eyes. Graefes Arch Clin Exp Ophthalmol 244, 259-261.
- 8. Huang, N., Lee, I., Marcotte, E.M., and Hurles, M.E. (2010). Characterising and predicting haploinsufficiency in the human genome. PLoS Genet 6, e1001154.
- 9. Bowman, G.D., O'Donnell, M., and Kuriyan, J. (2004). Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature 429, 724-730.
- Castermans, D., Wilquet, V., Parthoens, E., Huysmans, C., Steyaert, J., Swinnen, L., Fryns, J.P., Van de Ven, W., and Devriendt, K. (2003). The neurobeachin gene is disrupted by a translocation in a patient with idiopathic autism. J Med Genet 40, 352-356.
- 11. Wise, A., Tenezaca, L., Fernandez, R.W., Schatoff, E., Flores, J., Ueda, A., Zhong, X., Wu, C.F., Simon, A.F., and Venkatesh, T. (2015). Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neurodevelopmental disorders, aberrant synaptic properties, altered locomotion, impaired adult social behavior and activity patterns. J Neurogenet, 1-34.
- Nuytens, K., Gantois, I., Stijnen, P., Iscru, E., Laeremans, A., Serneels, L., Van Eylen, L., Liebhaber, S.A., Devriendt, K., Balschun, D., et al. (2013). Haploinsufficiency of the autism candidate gene Neurobeachin induces autism-like behaviors and affects cellular and molecular processes of synaptic plasticity in mice. Neurobiol Dis 51, 144-151.
- 13. Lauren, J., Airaksinen, M.S., Saarma, M., and Timmusk, T. (2003). A novel gene family encoding leucine-rich repeat transmembrane proteins differentially expressed in the nervous system. Genomics 81, 411-421.
- 14. Fernandez, B.A., Siegel-Bartelt, J., Herbrick, J.A., Teshima, I., and Scherer, S.W. (2005). Holoprosencephaly and cleidocranial dysplasia in a patient due to two position-effect mutations: case report and review of the literature. Clin Genet 68, 349-359.
- 15. Le Meur, N., Holder-Espinasse, M., Jaillard, S., Goldenberg, A., Joriot, S., Amati-Bonneau, P., Guichet, A., Barth, M., Charollais, A., Journel, H., et al. (2010). MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations. J Med Genet 47, 22-29.
- Alvarez, J.D., Yasui, D.H., Niida, H., Joh, T., Loh, D.Y., and Kohwi-Shigematsu, T. (2000). The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev 14, 521-535.
- 17. Kohwi-Shigematsu, T., Kohwi, Y., Takahashi, K., Richards, H.W., Ayers, S.D., Han, H.J., and Cai, S. (2012). SATB1mediated functional packaging of chromatin into loops. Methods 58, 243-254.
- 18. Chen, H., Rossier, C., and Antonarakis, S.E. (1996). Cloning of a human homolog of the Drosophila enhancer of zeste gene (EZH2) that maps to chromosome 21q22.2. Genomics 38, 30-37.
- 19. Jungbluth, H., Wallgren-Pettersson, C., and Laporte, J. (2008). Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 3, 26.
- 20. Joseph, M., Pai, G.S., Holden, K.R., and Herman, G. (1995). X-linked myotubular myopathy: clinical observations in ten additional cases. Am J Med Genet 59, 168-173.
- 21. Gordon, C.T., Tan, T.Y., Benko, S., Fitzpatrick, D., Lyonnet, S., and Farlie, P.G. (2009). Long-range regulation at the SOX9 locus in development and disease. J Med Genet 46, 649-656.

- Benko, S., Fantes, J.A., Amiel, J., Kleinjan, D.J., Thomas, S., Ramsay, J., Jamshidi, N., Essafi, A., Heaney, S., Gordon, C.T., et al. (2009). Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nat Genet 41, 359-364.
- 23. Amarillo, I.E., Dipple, K.M., and Quintero-Rivera, F. (2013). Familial microdeletion of 17q24.3 upstream of SOX9 is associated with isolated Pierre Robin sequence due to position effect. Am J Med Genet A 161A, 1167-1172.
- Gicquel, C., Rossignol, S., Cabrol, S., Houang, M., Steunou, V., Barbu, V., Danton, F., Thibaud, N., Le Merrer, M., Burglen, L., et al. (2005). Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver-Russell syndrome. Nat Genet 37, 1003-1007.
- 25. Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., and Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376-380.
- 26. Amberger, J.S., Bocchini, C.A., Schiettecatte, F., Scott, A.F., and Hamosh, A. (2015). OMIM.org: Online Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic disorders. Nucleic Acids Res 43, D789-798.
- 27. Bragin, E., Chatzimichali, E.A., Wright, C.F., Hurles, M.E., Firth, H.V., Bevan, A.P., and Swaminathan, G.J. (2014). DECIPHER: database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation. Nucleic Acids Res 42, D993-D1000.
- Shiratsuchi, T., Nishimori, H., Ichise, H., Nakamura, Y., and Tokino, T. (1997). Cloning and characterization of BAI2 and BAI3, novel genes homologous to brain-specific angiogenesis inhibitor 1 (BAI1). Cytogenet Cell Genet 79, 103-108.
- Rutsch, F., Gailus, S., Miousse, I.R., Suormala, T., Sagne, C., Toliat, M.R., Nurnberg, G., Wittkampf, T., Buers, I., Sharifi, A., et al. (2009). Identification of a putative lysosomal cobalamin exporter altered in the cbIF defect of vitamin B12 metabolism. Nat Genet 41, 234-239.
- 30. Czarny-Ratajczak, M., Lohiniva, J., Rogala, P., Kozlowski, K., Perala, M., Carter, L., Spector, T.D., Kolodziej, L., Seppanen, U., Glazar, R., et al. (2001). A mutation in COL9A1 causes multiple epiphyseal dysplasia: further evidence for locus heterogeneity. Am J Hum Genet 69, 969-980.
- 31. Grant, A.V., El Baghdadi, J., Sabri, A., El Azbaoui, S., Alaoui-Tahiri, K., Abderrahmani Rhorfi, I., Gharbaoui, Y., Abid, A., Benkirane, M., Raharimanga, V., et al. (2013). Age-dependent association between pulmonary tuberculosis and common TOX variants in the 8q12-13 linkage region. Am J Hum Genet 92, 407-414.
- 32. Najmabadi, H., Hu, H., Garshasbi, M., Zemojtel, T., Abedini, S.S., Chen, W., Hosseini, M., Behjati, F., Haas, S., Jamali, P., et al. (2011). Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478, 57-63.
- 33. Janssen, N., Bergman, J.E., Swertz, M.A., Tranebjaerg, L., Lodahl, M., Schoots, J., Hofstra, R.M., van Ravenswaaij-Arts, C.M., and Hoefsloot, L.H. (2012). Mutation update on the CHD7 gene involved in CHARGE syndrome. Hum Mutat 33, 1149-1160.
- 34. Haddad, R., Uwaydat, S., Dakroub, R., and Traboulsi, E.I. (2001). Confirmation of the autosomal recessive syndrome of ectopia lentis and distinctive craniofacial appearance. Am J Med Genet 99, 185-189.
- Ouahchi, K., Arita, M., Kayden, H., Hentati, F., Ben Hamida, M., Sokol, R., Arai, H., Inoue, K., Mandel, J.L., and Koenig, M. (1995). Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Nat Genet 9, 141-145.
- 36. Gineau, L., Cognet, C., Kara, N., Lach, F.P., Dunne, J., Veturi, U., Picard, C., Trouillet, C., Eidenschenk, C., Aoufouchi, S., et al. (2012). Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest 122, 821-832.
- 37. Sanchez-Martin, M., Perez-Losada, J., Rodriguez-Garcia, A., Gonzalez-Sanchez, B., Korf, B.R., Kuster, W., Moss, C., Spritz, R.A., and Sanchez-Garcia, I. (2003). Deletion of the SLUG (SNAI2) gene results in human piebaldism. Am J Med Genet A 122A, 125-132.
- 38. Sanchez-Martin, M., Rodriguez-Garcia, A., Perez-Losada, J., Sagrera, A., Read, A.P., and Sanchez-Garcia, I. (2002). SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum Mol Genet 11, 3231-3236.
- Wooster, R., Bignell, G., Lancaster, J., Swift, S., Seal, S., Mangion, J., Collins, N., Gregory, S., Gumbs, C., and Micklem, G. (1995). Identification of the breast cancer susceptibility gene BRCA2. Nature 378, 789-792.
- 40. Alter, B.P., Rosenberg, P.S., and Brody, L.C. (2007). Clinical and molecular features associated with biallelic mutations in FANCD1/BRCA2. J Med Genet 44, 1-9.

- 41. Ichikawa, S., Imel, E.A., Kreiter, M.L., Yu, X., Mackenzie, D.S., Sorenson, A.H., Goetz, R., Mohammadi, M., White, K.E., and Econs, M.J. (2007). A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest 117, 2684-2691.
- 42. Collaborative Linkage Study of, A. (2001). An autosomal genomic screen for autism. Am J Med Genet 105, 609-615.
- 43. Lin, P.T., Gleeson, J.G., Corbo, J.C., Flanagan, L., and Walsh, C.A. (2000). DCAMKL1 encodes a protein kinase with homology to doublecortin that regulates microtubule polymerization. J Neurosci 20, 9152-9161.
- 44. Patel, H., Cross, H., Proukakis, C., Hershberger, R., Bork, P., Ciccarelli, F.D., Patton, M.A., McKusick, V.A., and Crosby, A.H. (2002). SPG20 is mutated in Troyer syndrome, an hereditary spastic paraplegia. Nat Genet 31, 347-348.
- 45. Villard, J., Lisowska-Grospierre, B., van den Elsen, P., Fischer, A., Reith, W., and Mach, B. (1997). Mutation of RFXAP, a regulator of MHC class II genes, in primary MHC class II deficiency. N Engl J Med 337, 748-753.
- 46. Shintani, M., Yagi, H., Nakayama, T., Saji, T., and Matsuoka, R. (2009). A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension. J Med Genet 46, 331-337.
- 47. Boczonadi, V., Muller, J.S., Pyle, A., Munkley, J., Dor, T., Quartararo, J., Ferrero, I., Karcagi, V., Giunta, M., Polvikoski, T., et al. (2014). EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nat Commun 5, 4287.
- 48. Berry, F.B., Lines, M.A., Oas, J.M., Footz, T., Underhill, D.A., Gage, P.J., and Walter, M.A. (2006). Functional interactions between FOXC1 and PITX2 underlie the sensitivity to FOXC1 gene dose in Axenfeld-Rieger syndrome and anterior segment dysgenesis. Hum Mol Genet 15, 905-919.
- 49. Nishimura, D.Y., Searby, C.C., Alward, W.L., Walton, D., Craig, J.E., Mackey, D.A., Kawase, K., Kanis, A.B., Patil, S.R., Stone, E.M., et al. (2001). A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye. Am J Hum Genet 68, 364-372.
- 50. Aldinger, K.A., Lehmann, O.J., Hudgins, L., Chizhikov, V.V., Bassuk, A.G., Ades, L.C., Krantz, I.D., Dobyns, W.B., and Millen, K.J. (2009). FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation. Nat Genet 41, 1037-1042.
- 51. Lee, S., Takeda, Y., Kawano, H., Hosoya, H., Nomoto, M., Fujimoto, D., Takahashi, N., and Watanabe, K. (2000). Expression and regulation of a gene encoding neural recognition molecule NB-3 of the contactin/F3 subgroup in mouse brain. Gene 245, 253-266.
- 52. Fernandez, T., Morgan, T., Davis, N., Klin, A., Morris, A., Farhi, A., Lifton, R.P., and State, M.W. (2004). Disruption of contactin 4 (CNTN4) results in developmental delay and other features of 3p deletion syndrome. Am J Hum Genet 74, 1286-1293.
- 53. Pomponio, R.J., Coskun, T., Demirkol, M., Tokatli, A., Ozalp, I., Huner, G., Baykal, T., and Wolf, B. (2000). Novel mutations cause biotinidase deficiency in Turkish children. J Inherit Metab Dis 23, 120-128.
- 54. Balamotis, M.A., Tamberg, N., Woo, Y.J., Li, J., Davy, B., Kohwi-Shigematsu, T., and Kohwi, Y. (2012). Satb1 ablation alters temporal expression of immediate early genes and reduces dendritic spine density during postnatal brain development. Mol Cell Biol 32, 333-347.
- 55. Close, J., Xu, H., De Marco Garcia, N., Batista-Brito, R., Rossignol, E., Rudy, B., and Fishell, G. (2012). Satb1 is an activity-modulated transcription factor required for the terminal differentiation and connectivity of medial ganglionic eminence-derived cortical interneurons. J Neurosci 32, 17690-17705.
- 56. Eerola, I., Boon, L.M., Mulliken, J.B., Burrows, P.E., Dompmartin, A., Watanabe, S., Vanwijck, R., and Vikkula, M. (2003). Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am J Hum Genet 73, 1240-1249.
- 57. Saitsu, H., Igarashi, N., Kato, M., Okada, I., Kosho, T., Shimokawa, O., Sasaki, Y., Nishiyama, K., Tsurusaki, Y., Doi, H., et al. (2011). De novo 5q14.3 translocation 121.5-kb upstream of MEF2C in a patient with severe intellectual disability and early-onset epileptic encephalopathy. Am J Med Genet A 155A, 2879-2884.
- 58. Nowakowska, B.A., Obersztyn, E., Szymanska, K., Bekiesinska-Figatowska, M., Xia, Z., Ricks, C.B., Bocian, E., Stockton, D.W., Szczaluba, K., Nawara, M., et al. (2010). Severe mental retardation, seizures, and hypotonia due to deletions of MEF2C. Am J Med Genet B Neuropsychiatr Genet 153B, 1042-1051.
- 59. Barbosa, A.C., Kim, M.S., Ertunc, M., Adachi, M., Nelson, E.D., McAnally, J., Richardson, J.A., Kavalali, E.T., Monteggia, L.M., Bassel-Duby, R., et al. (2008). MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function. Proc Natl Acad Sci U S A 105, 9391-9396.

- 60. Middendorp, S., Paoletti, A., Schiebel, E., and Bornens, M. (1997). Identification of a new mammalian centrin gene, more closely related to Saccharomyces cerevisiae CDC31 gene. Proc Natl Acad Sci U S A 94, 9141-9146.
- 61. Abadie, C., Blanchet, C., Baux, D., Larrieu, L., Besnard, T., Ravel, P., Biboulet, R., Hamel, C., Malcolm, S., Mondain, M., et al. (2012). Audiological findings in 100 USH2 patients. Clin Genet 82, 433-438.
- Arking, D.E., Cutler, D.J., Brune, C.W., Teslovich, T.M., West, K., Ikeda, M., Rea, A., Guy, M., Lin, S., Cook, E.H., et al. (2008). A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet 82, 160-164.
- Strauss, K.A., Puffenberger, E.G., Huentelman, M.J., Gottlieb, S., Dobrin, S.E., Parod, J.M., Stephan, D.A., and Morton, D.H. (2006). Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med 354, 1370-1377.
- 64. Zweier, C., de Jong, E.K., Zweier, M., Orrico, A., Ousager, L.B., Collins, A.L., Bijlsma, E.K., Oortveld, M.A., Ekici, A.B., Reis, A., et al. (2009). CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. Am J Hum Genet 85, 655-666.
- 65. Yu, Z.K., Gervais, J.L., and Zhang, H. (1998). Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci U S A 95, 11324-11329.
- 66. Di Meglio, T., Kratochwil, C.F., Vilain, N., Loche, A., Vitobello, A., Yonehara, K., Hrycaj, S.M., Roska, B., Peters, A.H., Eichmann, A., et al. (2013). Ezh2 orchestrates topographic migration and connectivity of mouse precerebellar neurons. Science 339, 204-207.
- 67. Belloni, E., Muenke, M., Roessler, E., Traverso, G., Siegel-Bartelt, J., Frumkin, A., Mitchell, H.F., Donis-Keller, H., Helms, C., Hing, A.V., et al. (1996). Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nat Genet 14, 353-356.
- 68. Anderson, E., Devenney, P.S., Hill, R.E., and Lettice, L.A. (2014). Mapping the Shh long-range regulatory domain. Development 141, 3934-3943.
- 69. Ross, A.J., Ruiz-Perez, V., Wang, Y., Hagan, D.M., Scherer, S., Lynch, S.A., Lindsay, S., Custard, E., Belloni, E., Wilson, D.I., et al. (1998). A homeobox gene, HLXB9, is the major locus for dominantly inherited sacral agenesis. Nat Genet 20, 358-361.
- Choucair, N., Mignon-Ravix, C., Cacciagli, P., Abou Ghoch, J., Fawaz, A., Megarbane, A., Villard, L., and Chouery, E. (2015). Evidence that homozygous PTPRD gene microdeletion causes trigonocephaly, hearing loss, and intellectual disability. Mol Cytogenet 8, 39.
- 71. Uetani, N., Kato, K., Ogura, H., Mizuno, K., Kawano, K., Mikoshiba, K., Yakura, H., Asano, M., and Iwakura, Y. (2000). Impaired learning with enhanced hippocampal long-term potentiation in PTPdelta-deficient mice. EMBO J 19, 2775-2785.
- 72. Li, J.M., Lu, C.L., Cheng, M.C., Luu, S.U., Hsu, S.H., and Chen, C.H. (2013). Genetic analysis of the DLGAP1 gene as a candidate gene for schizophrenia. Psychiatry Res 205, 13-17.
- 73. Aldinger, K.A., Mosca, S.J., Tetreault, M., Dempsey, J.C., Ishak, G.E., Hartley, T., Phelps, I.G., Lamont, R.E., O'Day, D.R., Basel, D., et al. (2014). Mutations in LAMA1 cause cerebellar dysplasia and cysts with and without retinal dystrophy. Am J Hum Genet 95, 227-234.
- 74. Sudhir, P.R., Lin, S.T., Chia-Wen, C., Yang, S.H., Li, A.F., Lai, R.H., Wang, M.J., Chen, Y.T., Chen, C.F., Jou, Y.S., et al. (2015). Loss of PTPRM associates with the pathogenic development of colorectal adenoma-carcinoma sequence. Sci Rep 5, 9633.
- 75. Zweier, C., Peippo, M.M., Hoyer, J., Sousa, S., Bottani, A., Clayton-Smith, J., Reardon, W., Saraiva, J., Cabral, A., Gohring, I., et al. (2007). Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt-Hopkins syndrome). Am J Hum Genet 80, 994-1001.
- 76. Kawabe, H., Sakisaka, T., Yasumi, M., Shingai, T., Izumi, G., Nagano, F., Deguchi-Tawarada, M., Takeuchi, M., Nakanishi, H., and Takai, Y. (2003). A novel rabconnectin-3-binding protein that directly binds a GDP/GTP exchange protein for Rab3A small G protein implicated in Ca(2+)-dependent exocytosis of neurotransmitter. Genes Cells 8, 537-546.
- 77. Bull, L.N., van Eijk, M.J., Pawlikowska, L., DeYoung, J.A., Juijn, J.A., Liao, M., Klomp, L.W., Lomri, N., Berger, R., Scharschmidt, B.F., et al. (1998). A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat Genet 18, 219-224.

- 78. Gao, S., Alarcon, C., Sapkota, G., Rahman, S., Chen, P.Y., Goerner, N., Macias, M.J., Erdjument-Bromage, H., Tempst, P., and Massague, J. (2009). Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Mol Cell 36, 457-468.
- 79. Tanabe, S., Bohlander, S.K., Vignon, C.V., Espinosa, R., 3rd, Zhao, N., Strissel, P.L., Zeleznik-Le, N.J., and Rowley, J.D. (1996). AF10 is split by MLL and HEAB, a human homolog to a putative Caenorhabditis elegans ATP/GTP-binding protein in an invins(10;11)(p12;q23q12). Blood 88, 3535-3545.
- Leung, C., Lingbeek, M., Shakhova, O., Liu, J., Tanger, E., Saremaslani, P., Van Lohuizen, M., and Marino, S. (2004). Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428, 337-341.
- 81. Sellick, G.S., Barker, K.T., Stolte-Dijkstra, I., Fleischmann, C., Coleman, R.J., Garrett, C., Gloyn, A.L., Edghill, E.L., Hattersley, A.T., Wellauer, P.K., et al. (2004). Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 36, 1301-1305.
- 82. Ostergaard, P., Simpson, M.A., Mendola, A., Vasudevan, P., Connell, F.C., van Impel, A., Moore, A.T., Loeys, B.L., Ghalamkarpour, A., Onoufriadis, A., et al. (2012). Mutations in KIF11 cause autosomal-dominant microcephaly variably associated with congenital lymphedema and chorioretinopathy. Am J Hum Genet 90, 356-362.
- Slavotinek, A.M., Mehrotra, P., Nazarenko, I., Tang, P.L., Lao, R., Cameron, D., Li, B., Chu, C., Chou, C., Marqueling, A.L., et al. (2013). Focal facial dermal dysplasia, type IV, is caused by mutations in CYP26C1. Hum Mol Genet 22, 696-703.
- 84. Young, I.D., and Harper, P.S. (1982). Incidence of Hunter's syndrome. Hum Genet 60, 391-392.
- 85. Fukami, M., Wada, Y., Miyabayashi, K., Nishino, I., Hasegawa, T., Nordenskjold, A., Camerino, G., Kretz, C., Buj-Bello, A., Laporte, J., et al. (2006). CXorf6 is a causative gene for hypospadias. Nat Genet 38, 1369-1371.
- 86. Buj-Bello, A., Biancalana, V., Moutou, C., Laporte, J., and Mandel, J.L. (1999). Identification of novel mutations in the MTM1 gene causing severe and mild forms of X-linked myotubular myopathy. Hum Mutat 14, 320-325.
- 87. Scott, A.F., Mohr, D.W., Kasch, L.M., Barton, J.A., Pittiglio, R., Ingersoll, R., Craig, B., Marosy, B.A., Doheny, K.F., Bromley, W.C., et al. (2014). Identification of an HMGB3 frameshift mutation in a family with an X-linked colobomatous microphthalmia syndrome using whole-genome and X-exome sequencing. JAMA Ophthalmol 132, 1215-1220.
- 88. Ramachandran, N., Munteanu, I., Wang, P., Aubourg, P., Rilstone, J.J., Israelian, N., Naranian, T., Paroutis, P., Guo, R., Ren, Z.P., et al. (2009). VMA21 deficiency causes an autophagic myopathy by compromising V-ATPase activity and lysosomal acidification. Cell 137, 235-246.
- 89. Hurvitz, J.R., Suwairi, W.M., Van Hul, W., El-Shanti, H., Superti-Furga, A., Roudier, J., Holderbaum, D., Pauli, R.M., Herd, J.K., Van Hul, E.V., et al. (1999). Mutations in the CCN gene family member WISP3 cause progressive pseudorheumatoid dysplasia. Nat Genet 23, 94-98.
- 90. Kwok, C., Weller, P.A., Guioli, S., Foster, J.W., Mansour, S., Zuffardi, O., Punnett, H.H., Dominguez-Steglich, M.A., Brook, J.D., Young, I.D., et al. (1995). Mutations in SOX9, the gene responsible for Campomelic dysplasia and autosomal sex reversal. Am J Hum Genet 57, 1028-1036.
- 91. Murakami, Y., Tawamie, H., Maeda, Y., Buttner, C., Buchert, R., Radwan, F., Schaffer, S., Sticht, H., Aigner, M., Reis, A., et al. (2014). Null mutation in PGAP1 impairing Gpi-anchor maturation in patients with intellectual disability and encephalopathy. PLoS Genet 10, e1004320.
- 92. Hansen, J.J., Durr, A., Cournu-Rebeix, I., Georgopoulos, C., Ang, D., Nielsen, M.N., Davoine, C.S., Brice, A., Fontaine, B., Gregersen, N., et al. (2002). Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 70, 1328-1332.
- 93. Thiffault, I., Rioux, M.F., Tetreault, M., Jarry, J., Loiselle, L., Poirier, J., Gros-Louis, F., Mathieu, J., Vanasse, M., Rouleau, G.A., et al. (2006). A new autosomal recessive spastic ataxia associated with frequent white matter changes maps to 2q33-34. Brain 129, 2332-2340.
- 94. Lemarchandel, V., Joulin, V., Valentin, C., Rosa, R., Galacteros, F., Rosa, J., and Cohen-Solal, M. (1992). Compound heterozygosity in a complete erythrocyte bisphosphoglycerate mutase deficiency. Blood 80, 2643-2649.
- 95. Luo, X., Kranzler, H.R., Zuo, L., Wang, S., Blumberg, H.P., and Gelernter, J. (2005). CHRM2 gene predisposes to alcohol dependence, drug dependence and affective disorders: results from an extended case-control structured association study. Hum Mol Genet 14, 2421-2434.

- 96. Senderek, J., Muller, J.S., Dusl, M., Strom, T.M., Guergueltcheva, V., Diepolder, I., Laval, S.H., Maxwell, S., Cossins, J., Krause, S., et al. (2011). Hexosamine biosynthetic pathway mutations cause neuromuscular transmission defect. Am J Hum Genet 88, 162-172.
- 97. Navarro-Sastre, A., Tort, F., Stehling, O., Uzarska, M.A., Arranz, J.A., Del Toro, M., Labayru, M.T., Landa, J., Font, A., Garcia-Villoria, J., et al. (2011). A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins. Am J Hum Genet 89, 656-667.
- 98. Hackman, P., Sarparanta, J., Lehtinen, S., Vihola, A., Evila, A., Jonson, P.H., Luque, H., Kere, J., Screen, M., Chinnery, P.F., et al. (2013). Welander distal myopathy is caused by a mutation in the RNA-binding protein TIA1. Ann Neurol 73, 500-509.