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S1. Expansion of the control law.

If we write εw = w − wss, εm = m−mss, the expansion of replication and degradation rates λ(w,m) and ν(w,m)
about the steady state {wss,mss} gives

λ(w,m) ' λ(wss,mss) +
∂λ(w,m)

∂w

∣∣∣∣
(wss,mss)

εw +
∂λ(w,m)

∂m

∣∣∣∣
(wss,mss)

εm +O(ε2) (1)

ν(w,m) ' ν(wss,mss) +
∂ν(w,m)

∂w

∣∣∣∣
(wss,mss)

εw +
∂ν(w,m)

∂m

∣∣∣∣
(wss,mss)

εm +O(ε2). (2)

This expansion represents a model of a given control strategy λ(w,m), ν(w,m), which, if the original function is
well behaved, we expect to reasonably reflect behaviour of the system close to {wss,mss}. Simulation results show
that this expectation is fulfilled for a wide variety of cases (see figures in the Main Text).

To find wss and mss we solve the equations describing the deterministic behaviour of the system:

dw

dt

∣∣∣∣
(wss,mss)

= wssλ(wss,mss)− wssν(wss,mss) = 0 (3)

dm

dt

∣∣∣∣
(wss,mss)

= mssλ(wss,mss)−mssν(wss,mss) = 0 (4)

It will be observed that for this steady state to exist, the terms λ(wss,mss) and ν(wss,mss) in Eqns. 1-2 must
be equal. We can write the general expansion form of λ(w,m) and ν(w,m), truncated to first order, as

λ(w,m) ' β0 + βw(w − wss) + βm(m−mss), (5)

ν(w,m) ' δ0 + δw(w − wss) + δm(m−mss), (6)

with βw = ∂λ/∂w|wss,mss , βm = ∂λ/∂m|wss,mss , δw = ∂ν/∂w|wss,mss , δm = ∂ν/∂m|wss,mss . Clearly, to sup-
port convergence to a steady state, βw and βw must be negative and δw and δm must be positive. Given this model
for control dynamics, we next characterise the variance of the system. We can thus describe the system with a set
of R = 4 processes with rates

f1 = w (β0 + βw(w − wss) + βm(m−mss)) (7)

f2 = m (β0 + βw(w − wss) + βm(m−mss)) (8)

f3 = w (δ0 + δw(w − wss) + δm(m−mss)) (9)

f4 = m (δ0 + δw(w − wss) + δm(m−mss)) (10)

and stoichiometry matrix describing the effects of these reactions on the N = 2 species we consider as

S = ((1, 0), (0, 1), (−1, 0), (0,−1))T . (11)

Using index i = 1 to correspond to species w and i = 2 to correspond to species m, the master equation for the
system, describing the time evolution of Pw,m (the probability of observing w wildtype and m mutant mtDNAs)
can then be written

∂Pw,m
∂t

=

R∑
j=1

(
N∏
i=1

E−Sij − 1

)
fj(w,m)Pw,m (12)

where E−Sij takes its normal meaning as a raising and lowering operator [1], adding −Sij to each occurrence
of index i that follows it on the right (so e.g. as S11 = 1 and w corresponds to index 1, E−S11fj(w,m)Pw,m →
fj(w − 1,m)Pw−1,m).

The potential nonlinearities and coupling between species in this equation prevents a full general solution.
To make progress, we employ Van Kampen’s system size expansion [1, 2] and write w = φwΩ + ξwΩ1/2,m =



φmΩ + ξmΩ1/2, representing copy numbers as the sum of deterministic components φi and fluctuation components
ξi scaled by powers of system size Ω. Following the standard expansion procedure, by writing E, Pw,m and fi in
terms of Ω and collecting powers of Ω in Eqn. 12, first gives equations for the deterministic components of the
system (corresponding straightforwardly to the macroscopic rate equations):

∂φi
∂t

=

R∑
j=1

Sijfj , (13)

then gives a Fokker-Planck equation for the time behaviour of the fluctuation components in terms of the
bivariate probability distribution Π(ξ, t) of ξ = (ξw, ξm) at time t:

∂Π(ξ, t)

∂t
=

N∑
i,j=1

Aij
∂(ξjΠ)

∂ξi
+

1

2

N∑
i,j=1

Bij
∂2Π

∂ξi ∂ξj
, (14)

where

Aij =

R∑
k=1

Sik
∂fk
∂φj

, (15)

Bij =

R∑
k=1

SikSjkfk. (16)

The form of Eqns. 7-10 and Eqn. 11 gives, for steady state copy numbers and δ0 = β0, A11 = κwwss, A12 =
κmwss, A21 = κwmss, A22 = κmmss, B11 = 2β0wss, B22 = 2β0mss, B12 = B21 = 0, where κw = (βw − δw), κm =
(βm− δm). From this Fokker-Planck equation expressions for the moments of ξi can be extracted [1], leading to the
expressions:

d〈ξ2
w〉
dt

= 2A11〈ξ2
w〉+ 2A12〈ξwξm〉+B11 (17)

d〈ξwξm〉
dt

= (A11 +A22)〈ξwξm〉+A12〈ξ2
m〉+A21〈ξ2

w〉+B12 (18)

d〈ξ2
m〉
dt

= 2A22〈ξ2
m〉+ 2A21〈ξwξm〉+B22, (19)

A linear stability analysis of the deterministic ODEs describing mean behaviour is straightforward to perform.
Linearising Eqns. 3-4 about (wss,mss) gives

dw

dt
' (βw − δw)wss(w − wss) +O(w2) +O(wm) (20)

dm

dt
' (βm − δm)mss(m−mss) +O(m2) +O(wm), (21)

from which it is straightforward to see that if κw < 0 and κm < 0, the mean dynamics of w and m respectively
are linearly stable. This condition is met for w and m in control laws A and E, for w in B, C, and F, and for neither
in D. These specific examples illustrate the principle that if a species is explicitly ‘sensed’ – in the sense that it
modulates replication or degradation rate – its mean dynamics can be controlled to be linearly stable. If a species
is not explicitly sensed (replication and degradation are not functions of its copy number) then its mean dynamics
are not explicitly linearly stable, but may be ‘balanced’, as the corresponding κ term is zero. Perturbations in these
unsensed ‘balanced’ variables are neither damped away by control nor guaranteed to explode with time; hence the
variables are unconstrained but not explicitly unstable.

S2. Full solutions for steady state ODEs.

Eqns. 17-19 can be solved exactly for the Aij , Bij corresponding to the steady state condition above. The complete
solutions for arbitrary 〈ξ2

w〉, 〈ξwξm〉, 〈ξ2
m〉 at t = 0 are lengthy and do not allow much intuitive interpretation.

For 〈ξ2
w〉 = 〈ξwξm〉 = 〈ξ2

m〉 = 0 at t = 0 (noiseless initial conditions), we can solve and separate the long-term



behaviour from the transient behaviour. The transients, given by Eqns. 25-27 below, involve terms in t′ ≡
exp((κmmss + κwwss)t). As the κi are nonpositive (for stability, βi are nonpositive and δi are nonnegative), t′ is
either a constant or an exponentially decaying function of time t; in the cases we consider, it either decays with
time (all models except D) or the associated term is always zero (model D).

〈ξ2
w〉 = F decay1 (t′) +

(
2β0msswss(mss + wss)κ

2
m

(mssκm + wssκw)2

)
t

+

(
−β0w

2
ss(wssκ

2
w +mssκm(4κw − 3κm))

(mssκm + wssκw)3

)
(22)

〈ξwξm〉 = F decay2 (t′) +

(
−2β0msswss(mss + wss)κmκw

(mssκm + wssκw)2

)
t

+

(
β0msswss(mssκm(κm − 2κw) + wssκw(κw − 2κm))

(mssκm + wssκw)3

)
(23)

〈ξ2
m〉 = F decay3 (t′) +

(
2β0msswss(mss + wss)κ

2
w

(mssκm + wssκw)2

)
t

+

(
−β0m

2
ss(mssκ

2
m + wssκw(4κm − 3κw))

(mssκm + wssκw)3

)
, (24)

where the F decayi functions characterising the transient behaviour are

F decay1 (t′) =
β0w

2
sst
′(κ2

wwsst
′ + κmmss(κm(t′ − 4) + 4κw))

(κmmss + κwwss)3
(25)

F decay2 (t′) =
β0wssmsst

′(κ2
mmss(t

′ − 2) + 2(mss + wss)κwκm + κ2
wwss(t

′ − 2))

(κmmss + κww2
ss)

3
, (26)

F decay3 (t′) =
β0m

2
sst
′(κ2

mmsst
′ + κwwss(κw(t′ − 4) + 4κm))

(κmmss + κwwss)3
(27)

(28)

Eqns. 22-24 with Eqns. 25-27 then give the full transient behaviour displayed in Fig. 1 in the Main Text ,
decaying to the aforementioned linear behaviour with characteristic timescale (κmmss + κwwss).

S3. Interpretation and behaviour of specific control strategies.

The mechanisms described in the Main Text have simple interpretations in the language of stochastic processes.
Mechanism A, as discussed, corresponds to the ‘relaxed replication’ picture studied previously (Appendix A1).
Mechanism D corresponds to independent birth-death processes acting on both species (analysed in [3]). Mechanism
F corresponds to an immigration-death process acting on the wildtype (the dependence of replication rate on 1/w
means that overall production is constant with time), and model C can be regarded as a birth-immigration-death
process on the wildtype (analysed in [4]). Both these mechanisms are thus expected to tightly control wildtype
behaviour (including controlling variance: immigration-death processes yield a constant steady-state variance), but
do not sense (and, therefore, do not apply feedback to) mutant load. We also note that mechanisms F and G are
in a sense ‘dual’, in that they apply similar control manifest through replication with rate ∼ 1/w and degradation
with rate w respectively. The previous result that control applied to (a) biogenesis rates and (b) degradation rates
yields similar population behaviour is visible in the behaviour of F and G in Fig. 1 in the Main Text .

Table S1 gives, for each example control strategy in the Main Text, the corresponding steady state {wss,mss}
and the expansion terms for the strategy β, δ. The corresponding behaviours of variances, from Eqns. 22-24, are
given in Table S2 .

In the Main Text we discuss the implications of an increasing extinction probability of one mtDNA type. A non-
negligible extinction probability challenges the validity of the linear noise approximation and leads to departure
from results derived using the system size expansion. To illustrate this behaviour, we reduce the characteristic
timescale of the parameterisations used to explore models A-G in the Main Text, setting τ = 1 rather than τ = 5,
and simulate for a longer time window (see Fig. S1 ). It will be observed that as extinction probability increases
(as

√
〈m2〉 → 〈m〉), the numerical behaviour departs from that predicted analytically; in particular, the increase of

〈h2〉 slows from a linear to sublinear regime as discussed in the Main Text.



We note that, in some physiological circumstances, the representation of one mtDNA type in a cellular population
may be low – for example, the appearance of one mutant mtDNA through de novo mutation or replication error,
or the presence of a small percentage of a foreign mtDNA haplotype due to carryover in gene therapies [5]. In these
cases, a non-negligible extinction probability may occur quickly and the transition of 〈h2〉 to a sublinear, or flat,
regime will be an important aspect of the long-term dynamics. In the case of mtDNA disease inheritance, however,
situations with a macroscopic fraction of mutant mtDNA are often the most important, due to the presence of a
‘heteroplasmy threshold’ [6] beyond which disease symptoms manifest. With two mtDNA haplotypes represented
in comparable proportions in the cell, our linear analysis holds and can be used to describe heteroplasmy variance
in somatic and germline cells.

S4. Steady state solution.

Eqns. 17-19 give, for steady state,

2wss(β0 + κm〈ξwξm〉+ κw〈ξ2
w〉) = 0 (29)

wssκm〈ξ2
m〉+mssκw〈ξ2

w〉+ (mssκm + wssκw)〈ξwξm〉 = 0 (30)

2mss(β0 + κm〈ξ2
m〉+ κw〈ξwξm〉) = 0 (31)

Attempting to solve these equations for 〈ξ2
w〉, then 〈ξwξm〉, then 〈ξ2

m〉 first gives 〈ξ2
w〉 = (−β0 − κm〈ξwξm〉)/κw,

then 〈ξwξm〉 = (β0mss − κmwss〈ξ2
m〉)/(wssκw), leaving Eqn. 30 reduced to

2β0mss(mss + wss)

wss
= 0, (32)

a condition only fulfilled (due to the non-negativity of mss and wss) if mss = 0. If one proceeds through the
analysis by first solving for 〈ξ2

m〉, then 〈ξwξm〉, then 〈ξ2
w〉, a symmetric expression is obtained

2β0wss(mss + wss)

mss
= 0. (33)

Eqns. 32-33 illustrate the symmetry in the system: if the copy number of either species is zero then a situation
where variance does not increase is supported (but not inevitable: compare the behaviour of relaxed replication
model (A, fixed variance) and the birth-death model (D, increasing variance) in the case of zero mutant population).

The effect of selection, mutations, and replicative errors on mtDNA variances can straightforwardly be included
in this analysis. In this general case, we replace Eqns. 1-4 in the Main Text with:

{w,m} ε1+(1+ε2)wλ(w,m)−−−−−−−−−−−−→ {w + 1,m} (34)

{w,m} ε3+(1+ε4)mλ(w,m)−−−−−−−−−−−−−→ {w,m+ 1} (35)

{w,m} ε5+(1+ε6)wν(w,m)−−−−−−−−−−−−→ {w − 1,m} (36)

{w,m} ε7+(1+ε8)mν(w,m)−−−−−−−−−−−−→ {w,m− 1} (37)

{w,m} wµ1−−−→ {w − 1,m+ 1} (38)

{w,m} wµ2−−−→ {w,m+ 1} (39)

{w,m} wµ3−−−→ {w − 1,m+ 2}. (40)

Here, we have added processes corresponding to spontaneous mutation of a given wildtype mtDNA (µ1), and two
types of replicative error affecting wildtype mtDNA, giving rise to one (µ2; original molecule remains intact, new
molecule is mutated) and two (µ3; both original and new molecules are mutated) mutant mtDNAs respectively.
Differences manifest either through replicative or degradation advantages (or both) are incorporated with even-
indexed εi (providing multiplicative changes to the bare rates) and odd-indexed εi (providing additive changes).
We thus have two ways of provoking selective advantages in each case: increasing wildtype biogenesis, increasing
mutant biogenesis, increasing wildtype degradation, and increasing mutant degradation.

Fig. S2 shows example trajectories arising from each of our control mechanisms in the presence of the mutation
processes above, and the selective pressures (ε3, ε4, ε5, ε6) that favour mutant mtDNA. An excellent agreement
between ODE theory and stochastic simulation is again illustrated, and there is substantial similarity between



the behaviours caused by selection (favouring mutant mtDNA) and mutation (producing mutant mtDNA). In
several cases (mechanisms B, C, F, G), 〈m〉 and 〈m2〉 simply increase exponentially with time under favourable
selective or mutational pressures; this situation straightforwardly gives rise to a sigmoidal change in heteroplasmy
〈h〉 ∼ 1/(1 + e−∆ft(1 − h0)/h0), with ∆f an effective selective difference, as used in previous work [7, 8]. In
mechanisms coupling wildtype and mutant content (A and E), mutant increase is slower and accompanied by a
decrease in wildtype, attempting to keep total copy number constant. In these circumstances, variance behaviour
can be more complex: for example, under relaxed replication with pressure favouring mutant mtDNA, 〈w2〉 initially
increases then subsequently decreases as 〈w〉 decreases in magnitude. Mechanism D, where control does not couple
mutant and wildtype, has correspondingly perpendicular trajectories in (〈w〉, 〈m〉) space under different selective
pressures, but the coupling action of the mutation operations lead to curved trajectories under mutational influence.

S5. Heteroplasmy.

For a general function h = h(x, y),

〈h2〉 = 〈(h− 〈h〉)2〉. (41)

We will consider an expansion about (x0, y0), a state such that h(x0, y0) = 〈h〉. Using the first-order Taylor
expansion of h(x, y) around (x0, y0):

〈h2〉 = 〈(h− 〈h〉)2〉 (42)

'

〈(
h(x0, y0) + (x− x0)

∂h

∂x

∣∣∣∣
(x0,y0)

+ (y − y0)
∂h

∂y

∣∣∣∣
(x0,y0)

− h(x0, y0)

)2〉
(43)

=

〈
(x− x0)2

(
∂h

∂x

)2

(x0,y0)

+ (y − y0)2

(
∂h

∂y

)2

(x0,y0)

+ 2(x− x0)(y − y0)

(
∂h

∂x

∂h

∂y

)
(x0,y0)

〉
(44)

= 〈x2〉
(
∂h

∂x

)2

(x0,y0)

+ 〈y2〉
(
∂h

∂y

)2

(x0,y0)

+ 2〈xy〉
(
∂h

∂x

∂h

∂y

)
(x0,y0)

. (45)

We now consider h(x, y) = x/y, so that

〈h2〉 '
(
〈x2〉 1

y2
+ 〈y2〉x

2

y4
− 2〈xy〉 x

y3

)
(x0,y0)

(46)

=

(
x2

y2

(
〈x2〉
x2

+
〈y2〉
y2
− 2〈xy〉

xy

))
(x0,y0)

. (47)

Finally, given that x0 = 〈x〉 and y0 = 〈y〉, and setting x ≡ m and y ≡ w +m, we obtain

〈h2〉 ' 〈m〉2

〈w +m〉2

(
〈m2〉
〈m〉2

+
〈(w +m)2〉
〈w +m〉2

− 2〈m(w +m)〉
〈m〉〈w +m〉

)
(48)

To see that exponential growth or decay in one mtDNA type while the other remains constant gives rise to
sigmoidal heteroplasmy dynamics, consider (without loss of generality) m = h0n0e

βt, w = (1 − h0)n0, where n0 is
an initial population size which will cancel. Then, as m (and hence n = m+ w) increases with time,

h =
m

m+ w
=

h0n0e
βt

n0(h0eβt + (1− h0))
=

1

1 + 1−h0

h0
e−βt

, (49)

as used in Refs. [5] and [3], with β corresponding to a selective pressure (in this derivation, positive β favours
mutant mtDNA).

S6. Fokker-Planck terms for nonequilibrium regimes.

The system size expansion approach above can be applied to the general system without employing an expansion
of the control strategy about a steady state, by considering the processes



f1 = wλw(w,m) (50)

f2 = mλm(w,m) (51)

f3 = wνw(w,m) (52)

f4 = mνm(w,m) (53)

If the expansion about steady state is not used, the corresponding terms are

A11 = λw(φw, φm)− νw(φw, φm) + φw(∂wλw(φw, φm)− ∂wνw(φw, φm)) (54)

A12 = φw(∂mλw(φw, φm)− ∂mνw(φw, φm)) (55)

A21 = φm(∂wλm(φw, φm)− ∂wνm(φw, φm)) (56)

A22 = λm(φw, φm)− νm(φw, φm) + φm(∂mλm(φw, φm)− ∂mνm(φw, φm)) (57)

B11 = φw(λw(φw, φm) + νw(φw, φm)) (58)

B22 = φm(λw(φw, φm) + νw(φw, φm)) (59)

B12 = B21 = 0, (60)

where ∂xf(φi, φj) means ∂f
∂x

∣∣∣
φi,φj

. We include the mutational processes in the text by adding f5 = µ1w, f6 =

µ2w, f7 = µ3w and setting the corresponding stoichiometry matrix to

S = ((1, 0), (0, 1), (−1, 0), (0,−1), (−1, 1), (0, 1), (−1, 2))T . (61)

If λw = λm = λ and νw = νm = ν (no selective differences between mtDNA types), the Fokker-Planck terms
become

A11 = −µ1 − µ3 + λ(φw, φm)− ν(φw, φm) + φw(∂wλ(φw, φm)− ∂wν(φw, φm)) (62)

A12 = φw(∂mλ(φw, φm)− ∂mν(φw, φm)) (63)

A21 = µ1 + µ2 + 2µ3 + φm(∂wλ(φw, φm)− ∂wν(φw, φm)) (64)

A22 = λ(φw, φm)− ν(φw, φm) + φm(∂mλ(φw, φm)− ∂mν(φw, φm)) (65)

B11 = φw(µ1 + µ3 + λ(φw, φm) + ν(φw, φm)) (66)

B22 = (µ1 + µ2 + 4µ3) + φm(λ(φw, φm) + ν(φw, φm)) (67)

B12 = B21 = −(µ1 + 2µ3)φw. (68)

Including selection terms (without mutation) requires no change to the original structure of reactions and
stoichiometries and immediately gives

A11 = (1 + ε2)λ(φw, φm)− (1 + ε6)ν(φw, φm) + φw((1 + ε2)∂wλ(φw, φm)− (1 + ε6)∂wν(φw, φm)) (69)

A12 = φw((1 + ε2)∂mλ(φw, φm)− (1 + ε6)∂mν(φw, φm)) (70)

A21 = φm((1 + ε4)∂wλ(φw, φm)− (1 + ε8)∂wν(φw, φm)) (71)

A22 = (1 + ε4)λ(φw, φm)− (1 + ε8)ν(φw, φm) + φm((1 + ε4)∂mλ(φw, φm)− (1 + ε8)∂mν(φw, φm)) (72)

B11 = ε1 + ε5 + φw((1 + ε2)λ(φw, φm) + (1 + ε6)ν(φw, φm)) (73)

B22 = ε3 + ε7 + φm((1 + ε4)λ(φw, φm) + (1 + ε8)ν(φw, φm)) (74)

B12 = B21 = 0, (75)

The same approach as above can be used to obtain Eqns. 17-19 for the time evolution of fluctuation moments,
this time valid for a full temporal trajectory of the system.

S7. Experimental observations to distinguish mechanisms.

Our theoretical results suggest measurements to further elucidate the control mechanisms underlying mtDNA
evolution within cells, without using heteroplasmy variance 〈h2〉 (the shortcomings of which are manifest because



seven different feedback controls all yield the same dynamics in 〈h2〉′ – Fig. 1 in the Main Text ), and in conjunction
with further molecular elucidation of processes governing mtDNA [9, 10] which providing bounds on the types and
rates of molecular processes involved (for example, disallowing unphysically high rates of mtDNA replication).

If 〈w2〉 increases with time, mechanisms with weaker constraints on wildtype copy number are more likely
(including relaxed replication (A), mechanisms sensing a combination of mutant and wildtype copy number (E),
and the case with no feedback (D)). If 〈w2〉 is low and constant, mechanisms involving differential (B) or ratiometric
(C) control are likely. If 〈w2〉 is high and constant (of the order of 〈w〉), mechanisms resembling immigration-death
processes (with propagation scaled by inverse copy number, F and G) are more likely. The behaviour of 〈wm〉 can
be used to further distinguish mechanisms which strongly couple wildtype and mutant (including relaxed replication
and total copy number control) from those with less coupling.

In all these cases, the likelihood functions associated with specific biological observations will be complicated.
Model selection and inference in this case could be performed through comparison to simulation, or using likelihood-
free inference [11] for the mean and variance of mtDNA populations [12].

S8. Back-of-the-envelope calculations for leukocyte heteroplasmy measurements.

Average cellular mtDNA copy number measurements in Ref. [13] are made by normalising the signal from the
mtDNA-encoded ND1 gene by that from the nuclear-encoded GADPH genes using real-time PCR using iQ Sybr
Green on the BioRad ICycler. The published protocol [14] for this technique suggests using 50ng-5pg of genomic
DNA. Diploid human cells contain ∼ 6pg of genomic DNA; the mass of several hundred (much smaller) mtDNA
genomes is negligible by comparison. The protocol thus implies the presence of 1-10000 cells’ genomic DNA content;
we assume 1000 as an estimate consistent with qPCR standards (Joerg Burgstaller, personal communication).

In our analysis of the data from Ref. [13] we use τ = 5 days and the processes:

{w,m} wλ−−→ {w + 1,m} (76)

{w,m} mλ−−→ {w,m+ 1} (77)

{w,m} wν−−→ {w − 1,m} (78)

{w,m} (1+ε8)mν−−−−−−→ {w,m− 1} (79)

with λ = ν = 1/τ , and ε8 a selective difference acting to increase degradation of the mutant mtDNA species.
We first estimate a value for ε8 consistent with the heteroplasmy changes involved. Using the transformation

βt = log

(
h(h0 − 1)

h0(h− 1)

)
, (80)

from Eqn. 49 above, where h0 is initial heteroplasmy and h is heteroplasmy at time t, we obtain an estimate
β̄ = −1.2 × 10−4 day−1. We thus set ε8 = 1.2 × 10−4 day−1, to produce the required selective difference manifest
through mutant degradation.

Solving the ODEs arising from our theoretical approach (Eqns. 17-19) then give values for 〈w2〉 and 〈m2〉 over
time for a given initial condition. Assuming that each datapoint consists of a sample of 103 cells, we divide these
values by 103 to obtain an estimated distribution for each later w,m pair, given the paired initial w,m state. We
combine these distrbutions to build an overall distribution over later results, and use the Kolmogorov-Smirnov test
to test the alternative hypothesis that the later results were incompatible with draws from this distribution. The
results were p = 0.054 for wildtype mtDNA copy number and p = 0.861 for mutant mtDNA copy number. As
highlighted in the text, the absence of a p < 0.05 result cannot be interpreted as support for the null hypothesis,
but this analysis suggests that the available data is not incompatible with the predictions of our model.



Figure S1: Influence of fixation on expansion analysis. The models from the Main Text, simulated for a longer
time window and for a shorter characteristic timescale τ , illustrating the behaviour of the systems when extinction
becomes possible. Pm0 gives the numerically computed probability that m = 0; it can be seen that an increase in
this quantity corresponds to a moderate increase of 〈m〉 and 〈m2〉 relative to their predicted values, and a decrease
of 〈h2〉 relative to its predicted value (shifting towards a sublinear increase as discussed in the Main Text).
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Figure S2: MtDNA copy number and variability under mutational and selective advantages for mutant
mtDNA. Mean, variance, and CV trajectories with (i) selection pressures, and (ii) mutation rates favouring mutant
mtDNA, under models A-G from the text. Some control strategies (A, E) keep mutant relatively bound but sacrifice
wildtype and provoke large increases in variability; others (B, C, F, G) focus on wildtype stability, allowing mutant
to grow unbound. Labels give the control model (letter) and the parameter varied (ε3 = 20; ε4 = 1; ε5 = 20; ε6 = 1
for (i); µ1 = 0.1;µ2 = 0.1;µ3 = 0.1 for (ii)); all other ε, µ parameters are set to zero. Results are shown for theory
(lines) and stochastic simulation (points), progressing from an initial condition with w0 = 900,m0 = 100 with the
parameterisations in Fig. 1 in the Main Text .



Control λ(w,m) (ν(w,m) for G) wss mss βw (δw for G) βm (δm for G)

A
α(wopt−w−γm)+w+γm

τ(w+m)

w0woptα

m0+w0α+γm0(α−1)

m0woptα

m0+w0α+γm0(α−1)
−m0−w0α−m0γ(α−1)
m0woptτ+w0woptτ

−(1+(α−1)γ)(m0+w0α+m0(α−1)γ)
(m0+w0)woptατ

B α(wopt − w) wopt − 1/ατ
m0
w0

(wopt − 1/ατ) −α 0

C α
(wopt

w
− 1

) woptατ

1+ατ
m0
w0

woptατ

1+ατ
−(1+ατ)2

woptατ
2 0

D 1/τ w0 m0 0 0

E αwopt − αw − αmm
w0(woptατ−1)

τ(w0α+m0αm)

m0(woptατ−1)

τ(w0α+m0αm)
−α −αm

F 1/w ατ
m0
w0

ατ −1

ατ2
0

G 1/τ −
wopt−w
woptτ

wopt
m0wopt
w0

1
woptτ

0

Table S1: Steady states and expansion terms for control strategies A-G.



Control Time-independent part of 〈ξ2w〉 Time-independent part of 〈ξwξm〉 Time-independent part of 〈ξ2m〉
w2

0(m0+w0)woptα(w0α
2−m0(1+γ(α−1))(3−4α+3γ(α−1)))

(m0+w0α+m0(α−1)γ)4

A
−m0w0(m0+w0)woptα(m0(1+α(γ−2)−γ)(1+γ(α−1))+w0α(α−2+2γ−2αγ))

(m0+w0α+m0(α−1)γ)4

m2
0(m0+w0)woptα(m0(1+γ(α−1))2+w0α(4−3α+4γ(α−1)))

(m0+w0α+m0(α−1)γ)4

B 1
ατ

−m0
w0ατ

−3m2
0

w2
0ατ

C
woptατ

(1+ατ)2

−m0woptατ

w0(1+ατ)2

−3m2
0woptατ

(w0+w0ατ)
2

D 0 0 0

E
w2

0(w0α
2+αmm0(4α−3αm)

(αw0+αmm0)3τ

m0w0(2ααm(m0+w0)−w0α
2−m0α

2
m)

(αw0+αmm0)3τ

m2
0(m0α

2
m+αw0(4αm−3α)

(αw0+αmm0)3τ

F ατ
−m0ατ
w0

−3m2
0ατ

w2
0

G wopt
−m0wopt

w0

−3m2
0wopt

w2
0

Control Time coefficient of 〈ξ2w〉 Time coefficient of 〈ξwξm〉 Time coefficient of 〈ξ2m〉

A
2m0w0(m0+w0)woptα(1+(α−1)γ)2

(m0+w0α+m0(α−1)γ)3τ

−2m0w0(m0+w0)woptα
2(1+(α−1)γ)

(m0+w0α+m0(α−1)γ)3τ

2m0w0(m0+w0)woptα
3

(m0+w0α+m0(α−1)γ)3τ

B 0 0
2m0(m0+w0)(woptατ−1)

w2
0ατ

2

C 0 0
2m0(m0+w0)woptα

w2
0(1+ατ)

D 2w0/τ 0 2m0/τ

E
2m0w0(m0+w0)α2

m(woptατ−1)

(w0α+m0αm)3τ2

−2m0w0(m0+w0)ααm(woptατ−1)

(w0α+m0αm)3τ2

2m0w0(m0+w0)α2(woptατ−1)

(w0α+m0αm)3τ2

F 0 0
2m0(m0+w0)α

w2
0

G 0 0
2m0(m0+w0)wopt

w2
0τ

Control Time coefficient of 〈h2〉 increase

A
2m0w0(αw0+m0+γ(α−1)m0)

(m0+w0)3woptατ

B
2m0w

2
0α

(m0+w0)3(woptατ−1)

C
2m0w

2
0(1+ατ)

(m0+w0)3woptατ
2

D
2m0w0

(m0+w0)3τ

E
2m0w0(w0α+m0αm)

(m0+w0)3(woptατ−1)

F
2m0w

2
0

(m0+w0)3ατ2

G
2m0w

2
0

(m0+w0)3woptτ

Table S2: Post-transient time behaviour of copy number and heteroplasmy variances in control strate-
gies A-G.
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