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Evolution of Cell-to-Cell Variability
in Stochastic, Controlled, Heteroplasmic
mtDNA Populations

Iain G. Johnston1,* and Nick S. Jones2

Populations of physiologically vital mitochondrial DNA (mtDNA) molecules evolve in cells under control from the nucleus. The evolu-

tion of populations of mixed mtDNA types is complicated and poorly understood, and variability of these controlled admixtures plays a

central role in the inheritance and onset of genetic disease. Here, we develop a mathematical theory describing the evolution of, and

variability in, these stochastic populations for any type of cellular control, showing that cell-to-cell variability in mtDNA and mutant

load inevitably increases with time, according to rates that we derive and which are notably independent of the mechanistic details

of feedback signaling. We show with a set of experimental case studies that this theory explains disparate quantitative results from

classical and modern experimental and computational research on heteroplasmy variance in different species. We demonstrate that

our general model provides a host of specific insights, including a modification of the often-used but hard-to-interpret Wright formula

to correspond directly to biological observables, the ability to quantify selective and mutational pressure in mtDNA populations, and

characterization of the pronounced variability inevitably arising from the action of possible mtDNA quality-control mechanisms.

Our general theoretical framework, supported by existing experimental results, thus helps us to understand and predict the evolution

of stochastic mtDNA populations in cell biology.
Introduction

Molecules of mitochondrial DNA (mtDNA) form dynamic

evolutionary populations within cells, replicating and

degrading according to cellular control signals.1,2 mtDNA

can vary due to mutation or artificial manipulation;3 the

proportion of mutant mtDNA in a cell is referred to as

heteroplasmy. mtDNA encodes vital aspects of the bio-

energetic machinery of eukaroytic cells; mtDNA variability

can thus have dramatic cellular consequences, including

devastating genetic diseases and numerous other condi-

tions,3 making a theoretical understanding of this complex

evolutionary system important. Understanding the natu-

ral feedback control acting on mtDNA populations is also

a vital step in the development of artificial approaches

to control mitochondrial behavior with genetic tools.4,5

Cell-to-cell variances of mtDNA copy number and het-

eroplasmy are of particular importance, owing to their

implications formaternal transmission of dangerousmuta-

tions6 and the manifestation of pathologies dependent

on the range of heteroplasmies present in a tissue7—even

a very small proportion of cells exceeding a heteroplasmy

threshold can lead to pathologies.8

Stochastic behavior underlies much of cell biology and

contributes to this cell-to-cell variability; cellular processes

including gene expression,9–11DNA replication,12 andmito-

chondrial and mtDNA dynamics13–16 are subject to funda-

mentally stochastic influences. Variability in mitochondria

can be a leading contributor to cell physiological behavior,

making mitochondria an important target for explana-

tory stochastic models.15 Existing studies have included
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stochastic modeling and numerical treatments of mito-

chondrial17 and mtDNA populations, making quantitative

progress with the assumption of specific control mecha-

nisms.1,14,18–20Other theoretical studieshavedrawnonclas-

sical statistical genetics, notably including the well-known

Wright formula,21,22 toproduce adescriptionofpartitioning

of mtDNA populations at cell divisions, but the role of sto-

chastic mtDNA dynamics between cell divisions is largely

omitted. Although recent experimental studies are starting

to shed light on cellular control of mtDNA,14,16 a general

theoretical framework is currently absent. Here we address

this open question by constructing a general, bottom-up

stochastic description of mtDNA populations subject to

arbitrary cellular control mechanisms, providing analytic

results for the predicted behavior associated with any

mtDNAcontrolmechanism,andadapting theclassicWright

formula to account for and interpret stochastic mtDNA

dynamics. Notably, our approach and results hold inde-

pendently of the details of specific regulatory mechanisms

underlying mtDNA feedback signaling, providing a general

theoretical framework for control of stochasticmtDNApop-

ulations across different species and environments.

As we develop the theoretical framework to address

mtDNA dynamics below, we will consider a set of applica-

tions of the theory, linking with existing experimental

data from a variety of studies to validate our approach and

obtain quantitative results and predictions on the processes

governing mtDNA dynamics. We will focus on two ques-

tions arising from the study of mtDNA diseases: (1) how

and at what rate does cell-to-cell heteroplasmy variance in-

crease and (2) how selective pressure against a particular
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Box 1. Key Biological Findings from Our Mathematical Model

These results arise when the assumptions of our modeling approach hold: that cells are heteroplasmic, mtDNA

replication and degradation are Poisson processes with the same rates for mutant and wild-typemtDNA, and feedback

mechanisms depend only on the current state of the system. We justify these assumptions with reference to exper-

imental data in the text and in Appendix A.

I. Whenmean copy numbers are constant, at least one variance (wild-type or mutant) increases linearly with time

(Equations 8, 9, and 10).

II. When mean copy numbers are constant, heteroplasmy variance increases linearly with time with a rate that

depends only onmtDNA copy numbers and the rate of mtDNA turnover, and not on any details of mechanism

or signaling (Equation 12); many copy-number control mechanisms are therefore indistinguishable even from

dynamical measurements of heteroplasmy (Figures 1 and 2).

III. Control applied through (1) biogenesis rates and (2) degradation rates induce comparable behavior in the

cellular mtDNA population (Figure 1; Supplemental Data Section 2).

IV. A modified Wright formula (Equation 14; Figure 4) gives a general method to establish a quantitative link

between observed normalized heteroplasmy variance hh2i ’ and observable (as opposed to effective) quantities

(Figure 4).

V. Quality control does not guarantee the clearing or stabilization of mutant load and can induce substantial vari-

ance in wild-type mtDNA (potentially challenging cells with diminished populations; Figures 5 and 6).
mtDNAmutation affects cellular mtDNA populations. The

single-cell measurements required to address these ques-

tions directly remain challenging: we aim to show that

mathematical theory, appropriately validated and refined

with available data, provides a powerful alternative route

to make quantitative progress understanding this impor-

tant behavior. Box 1 summarizes the central biologicalmes-

sages arising from development and analysis of our theory.
Material and Methods

We will consider mtDNA populations in cells that are heteroplas-

mic with two non-recombining haplotypes, though this treat-

ment can readily be extended to more mtDNA types. We write

a state with w wild-type mtDNAs and m mutant mtDNAs as

{w,m}. We first consider the class of systems where both haplo-

types are subject to the same degradation rate n and the same

replication rate l, both of which may be general functions of

both haplotype copy numbers. This model thus represents the

situation where no direct selective difference exists between

mutant and wild-type. This assumption holds for only some bio-

logical cases (see Burgstaller et al.23 and references therein for a

review of studies where mtDNA types segregate unevenly) and

will be relaxed later. We also assume that cellular control is based

only on the current state of the cellular mtDNA population and

not its history. The dynamics governing the system then consist

of a set of Poisson processes:

fw;mg/wlðw;mÞ fw þ 1;mg; (Equation 1)

fw;mg/mlðw;mÞ fw;mþ 1g; (Equation 2)

fw;mg/wnðw;mÞ fw � 1;mg; (Equation 3)
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fw;mg/mnðw;mÞ fw;m� 1g: (Equation 4)

This formalism captures a wide range of models for mtDNA dy-

namics (see below). We will begin with the assumption that the

system does not undergo cell divisions and has a stationary state

in the population mean of both haplotype copy numbers, and

we will write this steady state as f~w; ~mg. This initial picture is

more appropriate for quiescent cell types or mtDNA ‘‘set points’’

than for the pronounced changes in mtDNA copy number that

occur during development.2,14 We will later generalize this picture

to allow for arbitrary changes in copy number.

We will first consider general results from this formalism, appli-

cable to a wide variety of possible cellular behaviors. We will then

illustrate its application with a range of previously proposed and

new feedback mechanisms.
Results

Copy-Number Variance with Stable PopulationMeans

Any control mechanism of the form in Equations 1, 2, 3,

and 4 (including manifestations of feedback control) can

be represented to linear order by a Taylor expansion of its

rates about f~w; ~mg (the steady state exists by construction

from our previous assumption):

lðw;mÞxb0 þ bwðw � ~wÞ þ bmðm� ~mÞ; (Equation 5)

nðw;mÞxd0 þ dwðw � ~wÞ þ dmðm� ~mÞ: (Equation 6)

It will readily be seen that to support a stable population

mean at f~w; ~mg, d0 ¼ b0. Assuming thatw andm can bewrit-

ten as the sum of a deterministic and a fluctuating compo-

nent, we use Van Kampen’s system size expansion to find a

Fokker-Planck equation describing the behavior of w and m
rnal of Human Genetics 99, 1150–1162, November 3, 2016 1151



governed by Equations 5 and 6.24,25 From this equation we

extract expressions for the time behavior of the mean and

varianceofwandm (seeSupplementalDataSections1and2).

We show in Supplemental Data Section 4 that attempt-

ing to identify a stable state for population variances and

covariance yields the condition

2 ~mð ~mþ ~wÞb0

~w
¼ 0; (Equation 7)

hence, any population mean state in which mutant con-

tent ~m is nonzero does not admit a stationary solution

for variances, unless b0 ¼ 0. If b0 ¼ 0 then there is no

further change to the system once steady state has been

reached (no stochastic turnover occurs) and the system re-

mains frozen thereafter. In other words, for a nonzero

mutant population and nonzero mtDNA turnover, the

variance of at least one mtDNA population will change

with time.

The Fokker-Planck equation we derive can be used to

compute the expected behaviors of hw2i (wild-type vari-

ance), hm2i (mutant variance), and hwmi (wild-type mutant

covariance) for a given control mechanism. The variance

and covariance solutions display some transient behavior,

involving terms on the timescale t 0hexpðððbm � dmÞ ~mþ
ðbw � dwÞ~wÞtÞ. Because, for stability, bi are nonpositive and

di are nonnegative, t
0 is either a constant or an exponentially

decaying function of time t. The expressions thus subse-

quently converge to linear trends for large t:

�
w2

� ¼ F
decay
1 ðt 0Þ þ q1t þ f1; (Equation 8)

hwmi ¼ F
decay
2 ðt 0Þ þ q2t þ f2; (Equation 9)

�
m2

� ¼ |{z}F
decay
3 ðt 0Þ
transient

behaviour

þ |{z}q3t þ f3

long�term linear

behaviour

: (Equation 10)

The forms of the transient functions F
decay
i and the con-

stants qi and fi are given in Supplemental Data Section 2

and are functions only of the difference between replica-

tion and degradation rates ðbi � diÞ, steady-state copy

numbers ~m and ~w, and mitophagy rate b0. Furthermore,

the structure of these expressions is such that for b0s0

and nonzero w and m, at most one of the qi can be zero,

q1R0, and q3R0. Thus, around the mean ð~w; ~mÞ, either

wild-type variance or mutant variance or both increase linearly

with time (Box 1, I). As time continues, the increasing vari-

ance means that extinction of one mtDNA becomes

increasingly likely; implications of this behavior are

explored below.

The mathematical structure of the solutions only ever

involves the difference between replication and degradation

rates ðbi � diÞ, showing that control of (1) biogenesis rates

and (2) degradation rates induce comparable behavior in the

cellular mtDNA population (Box 1, III).
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Heteroplasmy Statistics

As shown in Supplemental Data Section 5, a first-order

Taylor expansion gives an approximation for the variance

of h ¼ m=ðw þmÞ:

�
h2
� ¼ hwi2hm2i þ hmi2hw2i � 2hwmihwihmi

ðhmi þ hwiÞ4 ;

(Equation 11)

and we can then use previously obtained expressions for

hwi; hmi; hw2i; hm2i; hwmi to compute this approximate

heteroplasmy variance. Neglecting transient terms and us-

ing hwi ¼ ~w and hmi ¼ ~m in Equation 11 gives, after some

algebra,

�
h2
� ¼ 2b0

n
hð1� hÞt; hh2i

hhið1� hhiÞh
�
h2
�0 ¼ 2b0t

n
;

(Equation 12)

where n ¼ ~w þ ~m, with ~w ¼ ð1� hÞn and ~m ¼ hn; thus, h is

(mean) heteroplasmy and n is (mean) total copy number

(recall that b0 ¼ d0 in steady state). In Equation 12 we

have used normalized heteroplasmy variance hh2i0, ac-

counting for the dependence of hh2i on the magnitude of

h; hh2i0 is the quantity most often reported in experimental

studies.

In other words, when the system size expansion is valid

(see below), for any control mechanism, heteroplasmy vari-

ance in the copy number steady state increases linearly with

time with a rate that depends only on the copy numbers of the

system and the timescale of random turnover (Box 1, II) (Equa-

tion 12 is independent of the b and d terms in Equations 5

and 6). As we discuss later, this observation implies that

many possible mechanisms could be responsible for the

same observed trend in heteroplasmy variance, meaning

that measurements of heteroplasmy variance alone, even

if repeated at different time points, place only a limited

mechanistic constraint on mtDNA dynamics.14 In Supple-

mental Data Section 7, we discuss experimental strategies

that can more efficiently discriminate between different

control mechanisms.
Transient Behavior and Cell Divisions and Validity of

the Expansion

To obtain analytic insight, we have thus far focused on

modeling mtDNA behavior using the system size expan-

sion when a steady-state assumption had already been

applied. Transient behavior can also be explored by em-

ploying the system size expansion directly on the appro-

priate master equation, using the full expressions for

lðw;mÞ and nðw;mÞ (see Supplemental Data Sections 2

and 6). Relaxing the steady state assumption means that

the ODEs describing variance behavior are analytically

intractable for many forms of lðw;mÞ; nðw;mÞ. However,

they can simply be solved numerically and, as shown in

subsequent sections, well match stochastic simulation

(which of course is numerically far more intensive). This
mber 3, 2016



ODE approach fully accounts for non-equilibrium

behavior—including transient relaxation, cell cycling,

and so on—while the system size expansion remains

appropriate (see below).

This analysis can readily be used to characterize the ef-

fect of partitioning mtDNAs at cell divisions. To compute

the time behavior of variance where cell divisions occur

at arbitrary times, we invoke a linear noise assump-

tion,24,25 first using the ODEs above to compute the vari-

ance behavior within one cell cycle. Partitioning rules for

copy-number statistics are then applied, and the resulting

post-partition statistics are used as the initial condition for

a next phase of ODE solution. We here illustrate this pro-

cess for binomial partitioning of mtDNAs to connect

with recent studies in mice14 and HeLa,15 although with

an appropriate choice of partitioning rules, this approach

can be used to address any partitioning regime (for

example, the sub-binomial case recently reported in

fission yeast16). In the case of binomial partitioning, the

appropriate partitioning rules are hwi/hwi=2; hmi/
hmi=2; hw2i/hw2i=4þhwi=4; hwmi/hwmi=4; hm2i/hm2i=
4þ hmi=4, following straightforwardly from the variance

of a binomial distribution with p ¼ 1/2. We will see below

that this picture well describes the behavior of stochastic

populations in dividing cells: hence, the total variance

contributions of turnover between divisions and partitioning

at divisions can be modeled as a linear sum, and the behavior

of mechanisms across cell cycles is comparable to that

within a cell cycle.

The results above hold for a nonzero mutant popula-

tion. As copy-number variance increases, we expect

extinction of one mtDNA type to become increasingly

likely. To address this behavior, we must consider when

the system size expansion itself, which is reliant on the

validity of the linear noise approximation, holds. An

important threat to this validity is a non-negligible

extinction probability for one mtDNA type, whereupon

a normal distribution no longer adequately models the

copy-number distribution. Heuristically, this situation

arises when, for example,
ffiffiffiffiffiffiffiffiffiffi
hm2i

p
� hmi. Another chal-

lenge arises due to the fact that, when l and n are functions

of w and m, our linear theory is an approximation to the

nonlinear dynamics that result. Highly nonlinear behavior

(for example, pronounced discrete steps in rates occurring

at critical copy numbers) will therefore not be perfectly

captured, but the ability of our theory to reproduce simula-

tion of the fully nonlinear dynamics (in Figures 1, 3, and 5

and Supplemental Data Section 3) suggests that the linear

theory provides valuable insight into awide range of biolog-

ically plausible behaviors. Treatments of fully nonlinear

cases represent a substantial technical challenge that will

be addressed in future work.

In cases where the validity of the system size expansion

is challenged, the mean and variance of mtDNA popu-

lations are likely to be underestimated by the preceding

analysis (see Supplemental Data Section 3), and the heter-

oplasmy variance will likely be overestimated, with the
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true increase in hh2i with time gradually becoming sublin-

ear. Fixation is also neglected by the deterministic version

of the mean equations of motion, which allow only an

asymptotic descent to zero. Thus, the more general state-

ment of our findings are that (1) for the period when

extinction of either type is unlikely, variances and covari-

ances change linearly (after transients), (2) as extinction

of one type becomes more likely due to this increased

variance, the increasing trend continues but departs

from those linear forms (in particular, the increase of

hh2i slows to become sublinear), and (3) when extinction

of one type is almost certain, the system tends toward

the behavior expected if only one type was present

(ultimately stalling variance increase, as if ~m ¼ 0 in Equa-

tion 7). The results we focus on in the remainder of this

report can be viewed as describing the ‘‘quasi-stationary

state’’ where extinction is negligible; further quantitative

details can be derived using, for example, adaptations of

the system size expansion that address extinction.26

Specific Control Mechanisms and Comparison with

Simulation

The previous results make no assumptions about the spe-

cific form of control applied to the mtDNA population,

other than the fact that it depends only on current state

and is manifest through the rates of Poissonian repli-

cation and degradation that are equal for both mtDNA

species (and can be described with the system size expan-

sion, as discussed above). We can exploit the generality

of the preceding formalism to obtain results for any

given (feedback) control mechanism, defined by a spe-

cific form of lðw;mÞ and nðw;mÞ in Equations 1, 2, 3,

and 4.

We first consider the well-known ‘‘relaxed replication’’

model,1,19 which involves stochastic mtDNA degrada-

tion, coupled with mtDNA replication that is physically

modeled as a deterministic process. We propose that, if

degradation is regarded as a stochastic process (due to its

microscopic reliance on complicated processes and coloc-

alizations in the cell), picturing replication (which also re-

lies on complicated interactions on the microscopic scale)

as a stochastic process leads to a consistent stochastic

generalization (see Appendix A). The corresponding model

has exactly the same expressions for rates as in Capps

et al.1 (type A in Figure 1A), but replication rate is now

interpreted as the rate of a stochastic, rather than a deter-

ministic, process.

We also introduce several other models for mtDNA

control to consider a range of potential functional forms,

including differential and ratiometric control based on a

target wild-type copy number, an absence of any feedback

control, and others (types B–G in Figure 1A). The presence

or absence of w and m in these expressions reflects what

quantity is being sensed by the cell (wild-type mtDNA

alone, mutant mtDNA alone, or a combination of the

two). We further note that this general formalism can

also incorporate physical constraints on the mtDNA
rnal of Human Genetics 99, 1150–1162, November 3, 2016 1153



Figure 1. Behavior of Different Specific
Control Mechanisms
All control mechanisms have at least one
population with time-increasing variance
and so have increasing heteroplasmy vari-
ance; mean heteroplasmy hhi remains con-
stant through these simulations.
(A) Replication lðw;mÞ and degradation
nðw;mÞ rates for model control mecha-
nisms explored in the text, from existing
studies and newly proposed here.
(B and C) Copy number and heteroplasmy
moments with time for these control
mechanisms, (B) in the absence of cell divi-
sions and (C) with binomial cell divisions
every 10 days. Analytic results (lines;
full expressions in Supplemental Data
Section 3) match stochastic simulation
(crosses) throughout. Parameters used are
chosen to support the same steady state
ð~w ¼ 900; ~m ¼ 100Þ and with a turnover
timescale of t ¼ 5 days. Other parameters:
g ¼ 0;am ¼ 0:001;a ¼ 2 (except formodels
B, E, and F, for which a ¼ 0:002;0:002;200
respectively); 105 stochastic simulations
used.
population. For example, the hypothesis that mitochon-

drial concentration is controlled between cell divisions15

(recently confirmed in fission yeast16) could correspond

to wopt, the ‘‘target’’ mtDNA number, being a linear func-

tion of cell volume in the models above, or could arise

through passive birth-death dynamics (model D) with con-

trol implemented at the cell division stage (see previous

section). Interpretations of these control mechanisms in

terms of cellular sensing and the language of stochas-

tic population processes are given in Supplemental Data

Section 3.
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Figure 1B illustrates the application

of our analysis to these example con-

trol mechanisms in the absence of

cell divisions. The close agreement

between stochastic simulation and

analytic results in steady state dem-

onstrates the ability of our general

theory to describe a wide range of

different potential cellular control

mechanisms. The long-term linear

increases in one or both mtDNA

variances are clear (Box 1, I), and

trajectories of hh2i with the same

steady state and turnover timescale

are identical (Box 1, II). Figure 1C,

including cell divisions, demonstrates

close agreement between ODE solu-

tions and stochastic simulation,

further showing that the linear noise

treatment successfully captures sto-

chastic behavior over cell divisions.

The close similarity of hh2i trajectories

across divisions is a consequence of their aforementioned

identity in steady-state conditions with no cell divisions

(Figure 1B); the slow divergence is due to differences in

mechanism behavior away from the steady state.

Applications I: Heteroplasmy Variance Increases at

Constant Mean Copy Number

The increase of heteroplasmy variance hh2i with time is

of profound importance in determining the inheritance

and onset of mtDNA diseases. Because disease symptoms

often manifest only when heteroplasmy exceeds a certain



Figure 2. Experimental Support for Linear hh2i Increase
Normalized heteroplasmy variance hh2i0 in model organism germlines over time (points); lines show maximum-likelihood linear fit for
hh2i as a function of time. Insets give Akaike information criterion (AIC) values for H0 (hh2i0 is constant) andH1 (hh2i0 increases linearly
with time). Model organism and reference(s): Drosophila27 (A), NZB/BALB mice28,29 (B), and HB mice14 (C).
threshold,7 increasing heteroplasmy variance with time can

lead to pathologies even if mean heteroplasmy does not

change (because a higher cell-to-cell variance implies a

greater probability of a given cell exceeding a threshold).14

We sought experimental evidence to support the linear

increase of hh2i predicted by our theory. Time course

measurements of single-cell heteroplasmy values remain

limited; we identified results from the Drosophila germ-

line27 and in the mouse germline for the NZB/BALB

model28,29 and the HB model.14 For these data, we

compared the ability to fit the data of a null model

involving constant hh2i0 (H0 : hh2i0 ¼ aþ ε, where a is a

constant) and an alternative model ðH1 : hh2i0 ¼ aþ
bt þ εÞ, where hh2i0 changes linearly with time as our

theory predicts (Equation 12; Box 1, II). Using the Akaike

information criterion (AIC) and assuming normally

distributed noise on mean hh2i0 (ε � Nð0; s2Þ, an assump-

tion consistent with our linear approximation but which

can be further refined as in Wonnapinij et al.29), we found

that the alternative, time-varying model was favored in all

cases, providing support for our theory (Figures 2A–2C).

These results are quantitatively consistent with a previ-

ous study on the dynamics of heteroplasmy variance

during the mtDNA bottleneck in mice14 where a mecha-

nism involving random mtDNA turnover and random

mtDNA partitioning at cell divisions was found to best

explain experimental observations. mtDNA in mice and

rats often has a half-life of 10–100 days.23 This corre-

sponds to b0 ¼ d0 ¼ log2=t1=2 ¼ 0:03� 0:003 day-1 and

t ¼ t1=2=log2 ¼ 5� 50 days. In Figure 1 we show the pat-

terns of copy number and heteroplasmy means and

variances for t ¼ 5 days and 103 mtDNA molecules per

cell under different specific control strategies. The increase

of hh2i from 0 to 10�3, corresponding for h ¼ 0.1 to an
The American Jou
increase in hh2i0 from 0 to 0.011, matches the scale of

change observed in the mtDNA bottleneck (though the

bottleneck is complicated by changing population size n

and compensatory changing turnover b0).
14 Previous

work has shown that the case with no feedback (D in

Figure 1) describes well the behavior ofmtDNAwith cell di-

visions inmouse development.14 In Appendix Awe discuss

further connections with previous theoretical studies;

experimental cell-to-cell measurements in more quiescent

cell types, although currently lacking, will provide valu-

able further tests of our theory.

mtDNA Turnover in the Wright Formula

Powerful existing analyses of mtDNA population vari-

ance22,29 with widespread influence3 have drawn upon a

classical theory by Wright (and Kimura)21,30 describing

stochastic sampling of a population of elements between

generations. The resulting expression for expected hetero-

plasmy variance is the well-known equation sometimes

referred to as the Wright formula (though other equations

also bear this name):3,22

�
h2
�0 ¼ 1�

�
1� ð2neÞ�1

�g

; (Equation 13)

where ne is an effective population size and g is a number

of generations. The mapping of this effective theory to

the complicated mtDNA system is valuable to develop

intuition but cannot capture the detailed dynamics of indi-

vidual mtDNA molecules, due to assumptions (see Appen-

dix B) that mean the effective parameters of the theory

(ne and g) cannot generally be interpreted as biological ob-

servables,22,31 preventing quantitative analyses of mecha-

nisms and dynamics.3 In particular, ne does not generally

correspond to a minimum mtDNA copy number (see
rnal of Human Genetics 99, 1150–1162, November 3, 2016 1155



Figure 3. Correcting the Wright Formula to Include mtDNA
Turnover and Connect to Biological Observables
Application of the Wright formula Equation 13 to stochastic
mtDNA populations subject to division is only semiquantitative:
the Unadjusted Theory lines (dashed) for given effective popula-
tion sizes ne do not describe the behavior of simulations of mtDNA
populations of that size (crosses). Correcting for mtDNA turnover
with Equation 14 quantitatively connects Theory lines (solid) and
simulation (crosses); further improvement can be achieved using
the ODE approach in Figure 2.
Appendix B), and, being a genetic rather than a physical

parameter, ‘‘is unlikely ever to correspond closely to the

number of anything.’’31

The Wright formula, however, does accurately describe

the heteroplasmy variance due to binomial sampling of

2ne real elements at cell divisions for an observable popu-

lation size, and, as seen in the previous section, the addi-

tional effect of mtDNA turnover based on observable

values can be included as an extra linear contribution. In

general, this termwill depend on the dynamics controlling

the mtDNA population and can easily be calculated via the

ODE approach above (Figure 1).

In the case where no systematic change in mtDNA

population size occurs with time, we can use the observa-

tion that hh2i trajectories are often comparable across a

variety of different possible cellular control mechanisms

(and identical in the steady state; Figure 1 and Equation

12) to produce a simple approximate description linking

hh2i0 to observables. The simple steady-state behavior is

given by Equation 12. To construct an approximation,

we use a simple estimate of mean population size over a

cell cycle, writing n0 ¼ 3=2n, where n is the mtDNA popu-

lation size immediately after division and n0 thus gives a

population size ‘‘average’’ over the changes within a cell

cycle. Using the above analysis with w0 ¼ ð1� hhiÞn0,
m0 ¼ hhin0 (representing the ‘‘average’’ populations of

wild-type and mutant mtDNA), and b0 ¼ 1=t (so that t is

the timescale of mtDNA degradation), the corresponding

expression in terms of h and n is then given by a ‘‘turn-

over-adjusted’’ Wright formula (see Appendix B):

�
h2
�0 ¼ 1�

�
1� ð2nÞ�1

�g

þ 4t
.
ð3ntÞ; (Equation 14)
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where g is the number of cell divisions that have occurred

and t is the amount of time that has expired since an initial

state with hh2i0 ¼ 0. This expression is subject to the condi-

tions for system size expansion validity described above;

thus, as fixation probability increases, the increase of

hh2i0 will drop below this prediction.

Figure 3 illustrates the agreement between Equation 14

and stochastic simulation for the range of control mecha-

nisms we consider under different population sizes and

heteroplasmies. It is worth reiterating that more exact

solutions for a given control mechanism can easily be

computed using the preceding ODE approach, and sto-

chastic analysis can also be used to quantitatively describe

the effects of more specific circumstances (for example,

the systematically varying population size through the

mtDNA bottleneck14). In the case of no such systematic

variation, and, crucially, if the Poissonian model of Equations

1, 2, 3, and 4 holds, then Equation 14, a modified Wright

formula, represents a simpler, approximate way to establish a

quantitative link between observed normalized heteroplasmy

variance hh2i0 and observable quantities (Box 1, IV), i.e.,

n (mtDNA copy number immediately after division),

g (number of cell divisions), and t (timescale of mtDNA

turnover).

Applications II: Linking Physical and Genetic Rates

with the Modified Wright Formula

The Wright formula is traditionally used to compare a

heuristic, effective ‘‘bottleneck size’’ across experimental

systems (for example, in studies of different organisms22

and of human disease32). In its uncorrected form, this

bottleneck size can only be semiquantitatively treated—

bottleneck sizes can be ranked, but absolute values and

differences cannot be straightforwardly interpreted. Our

adaptation allows us to use this formula to connect the

rates of physical subcellular processes with the resulting

rates of genetic change.

To illustrate this connection, we focus on a partic-

ular period during mouse development. Between 8.5 and

13.5 days post conception (dpc) in the developing mouse

germline, cell divisions occur with a period of about

16 hr,33 giving g ¼ 7 or 8 cell divisions in this period (of

length t ¼ 5 days). Copy-number measurements during

this period show that the mean total number of mtDNA

molecules per cell remains of the order of n ¼ 2,000

(Figure 4A).28,34,35 During this period, heteroplasmy

variance hh2i0 increases on average (but with substantial

variability) from around 0.01 to 0.02 (Figure 4B).28,36

Figure 4B shows a best-fit line to hh2i0 data, with slope

1.52 3 10�3 day�1 (5%–95% confidence intervals (1.11–

1.92) 3 10�3 day�1).

We can use these measurements in conjunction with

the turnover-adjusted Wright formula (Equation 14) to

obtain estimates for the rate of mtDNA turnover dur-

ing this period. Using Equation 14 with the best-fit

hh2i0 ¼ 1:52310�335 ¼ 7:6310�3, and g ¼ 7 divisions,

n ¼ 2,000 mtDNA molecules, t ¼ 5 days gives the resulting
mber 3, 2016



Figure 4. Using the Adapted Wright Formula to Estimate
mtDNA Turnover
(A) mtDNA copy number n, taken to correspond to hw þmi, in the
mouse germline during development. Data from several existing
studies, referred to by first author.28,34–36

(B) Normalized heteroplasmy variance hh2i0 in this time period
(points). Dark gray line is the mean inferred increase (which is
linear, in agreement with our theoretical predictions, as in
Figure 3). Light gray lines give the 95% confidence intervals in
the 8.5–13.5 dpc window, from a linear model fit. Values used
in the turnover-adjusted Wright formula (Equation 14) are given.
estimate tx0:57 days (5%–95% confidence intervals 0.43–

0.88 days, using the same values for n, g, t) for the charac-

teristic timescale of mtDNA degradation. This increase in

mtDNA turnover (relative to the tx5� 50 day timescale

in differentiated tissues23) in the germline during this

developmental period matches quantitative results from

a more detailed study of the bottleneck reporting t within

the range 0.38–2.1 days (based on posteriors for n ¼ 1=t be-

tween 0.02 and 0.11 hr�1)14 and illustrates how a suitable

mathematical model can be used to estimate biological

quantities that are challenging to directly address with

experiment.37

Influence of Mutations, Replication Errors, and

Selective Differences: Quality Control of Replication

Errors

Our approach is easily generalized to include other pro-

cesses than those described by Equations 1, 2, 3, and

4: in Supplemental Data Section 6 we demonstrate that

adding and changing appropriate processes allows us to

analyze the effects on mtDNA mean and variance due to

de novo mutations, replication errors, and multiple selec-

tive pressures. Our approach can be thus used to char-

acterize variability arising from selection and mutation

under any control mechanisms, without requiring stochas-

tic simulation.

We can use this ability to explore a particular scientific

question: if mtDNA replication errors occur and the cell

attempts to clear the resulting mutant mtDNA through

selective quality control, how do cellular mtDNA popu-

lations change? To investigate this question, we intro-

duce the process fw;mg/mwfw;mþ 1g (replication errors—
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leading to the production of a new mutant mtDNA—

occurring with rate m) and reparameterize Equation 4 as

fw;mg/ð1þεÞmnðw;mÞ fw;m� 1g (an increase of ε in mutant

degradation rate compared to wild-type degradation). We

thus model the situation where replication errors arise

and the cell attempts to clear them through quality con-

trol, while a control strategy for mtDNA populations is

also in place.

Figure 5 illustrates the mean and variance of w and m in

two different cases, distinguished by the relative magni-

tude of the selective difference (ε) and error rate (m). This

ratio is crucial in determining whether mutant mtDNA is

cleared or increased: Figure 5A shows that mutant is

cleared when ð1þ εnÞ[m (selection is sufficiently strong

to overcome errors), but when selective difference ε is

insufficiently high, mutant mtDNA mean and variance

(and heteroplasmy) increase with time. In both cases, we

also observe substantial differences inmtDNA behavior de-

pending on the control model in place. Control models

lacking an explicit target copy number (D, no feedback;

F andG, immigration-like) experience substantial increases

in wild-type variance while mutant is being removed.

Models involving a target wild-type copy number and

weak or no coupling to mutant mtDNA (B, C, E) admit

an order-of-magnitude lower increase in wild-type vari-

ance as mutant is cleared. Relaxed replication (model A),

which combines a target copy number with a strong

coupling between mutant and wild-type mtDNA, displays

an intermediate increase on wild-type variance as mutant

is cleared.

Theoretical approaches that consider only the mean

behavior of mtDNA populations (Figure 5A) cannot ac-

count for this cellular heterogeneity and the important

fact that quality control acting to remove mutant mtDNA

can also induce variability in wild-typemtDNA (Figure 5B).

The action of quality control may therefore yield a subset

of cells with wild-type mtDNA substantially lower than

the mean value across cells—potentially placing a physio-

logical challenge on those cells where wild-type mtDNA is

decreased. In addition to the important point that the

simple presence of quality control does not guarantee the

clearing or stabilization of mutant load, we thus find that

quality control may have substantial effects on wild-type as

well as mutant mtDNA if cellular control couples the two

species (Box 1, V).
Applications III: Variance Induced through Mutant

Clearing

The A>G mutation at position 3243 in human mtDNA is

the most common heteroplasmic pathological mtDNA

mutation, giving rise to MELAS (mitochondrial encepha-

lomyopathy, lactic acidosis, and stroke-like episodes), a

multi-system disease. The dynamics of c.3243A>G hetero-

plasmy are complex and tissue dependent; its behavior in

blood has been characterized in particular detail using a

fluorescent PCR assay for heteroplasmy38 in a way that
rnal of Human Genetics 99, 1150–1162, November 3, 2016 1157



Figure 5. Variability in Quality Control
Clearing of Mutants from Replication
Errors
Co-evolution of (A) means and (B) vari-
ances of mutant m and wild-type w
mtDNA in cells where replication errors
occur. Solid lines (downward trajectories;
labels A0–F0) give the case where quality
control is sufficiently strong to clear
the resulting mutant molecules (hence
decreasing hmi in A); dashed lines (upward
trajectories; labels A1–F1) give the case
where quality control cannot clear mu-
tants (hence increasing hmi). Colors and
labels correspond to different control
models (see text and Figure 2). Points
show stochastic simulation. Importantly,
regardless of the success of quality control

in clearing mutants, wild-type mtDNA variability hw2i can increase substantially during the action of quality control (rightward move-
ment in B), and some strategies lead to order-of-magnitude differences in this increase (starred arrow).
allows us to explore our theoretical predictions about

mtDNA statistics with mutant clearing.

Pyle et al.38 took two blood samples, several years apart,

from human patients, and quantified c.3243A>G hetero-

plasmy (h) and mean mtDNA copy number per cell for

both samples. Although single-cell data are not presented

in the publication, progress can be made with the averaged

quantities. A strong decrease in (h) with time is observed

for all patients, confirming that mutant mtDNA is being

cleared (Figure 6A). The behavior of total mtDNA mole-

cules per cell (wþm) is less consistent, with a range of large

increases and moderate decreases in total number. As

shown in Figures 6B and 6C, patient-to-patient variance

in both w and m increases with time in conjunction with

h decreases.

Although the measurements in Pyle et al.38 are averages

over groups of cells, an approximate quantitative compar-

ison of these data with the predictions of our theory can

be made. In the spirit of ‘‘back-of-the-envelope’’ calcula-

tions,39 we estimate that each sample of cells giving rise

to a measurement corresponds to approximately 103 cells

(see Supplemental Data Section 8). Then, using an esti-

mate of t ¼ 5 days (by comparison with other mamma-

lian species, as above), we find that a selective pressure

of ε8x1:2310�4 day�1 matches the observed decrease in

heteroplasmy, corresponding, for example, to a decrease

from 0.15 to 0.14 over 8 years, as in Figure 6A. Solving

the ODEs resulting from this system, using control model

D as the simplest case, predicts increases in cell-to-

cell copy-number variance of approximate magnitude

hw2i � 105 and hm2i � 23104 over 8 years. We can trans-

late these cell-to-cell values into the variance expected

across samples of cells by dividing by the number of sam-

ples (taken as 103 as above). The resulting variance corre-

sponds, for example, to expected standard deviations in

wild-type and mutant copy number after 8 years of 10.0

and 4.0, respectively, for a sample with hwi ¼ 85 and

hmi ¼ 15 (consistent with the increasing spread of values

in Figures 6B and 6C). We used the Kolmogorov-Smirnov
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test to test the alternative hypotheses that the experimen-

tally observed hwi and hmi at the later time point differed

from those predicted by our model; no test yielded p <

0.05 (see Supplemental Data Section 8). Of course, an

absence of support for an alternative hypothesis cannot

be taken as support for a null hypothesis, but shows

that the existing experimental data are not incompatible

with our model.

The observations in Figure 6 support the predictions

made in Figure 5, where mutant load is decreased but vari-

ance in wild-type copy number (and mutant copy num-

ber) increases. The bottom-left quadrant of Figure 5B

shows that different control mechanisms display similar

initial behavior; follow-up studies on these subjects could

be used to distinguish possible mechanisms for mtDNA

control. For example, if the rate of wild-type variance in-

crease decreases over time, models B, C, and E are more

likely; if wild-type variance continues to increase, models

A, D, F, and G are more likely. More detailed model

discrimination based on the time behavior of w and m

variances are possible (Figure 1) and can be performed us-

ing statistical methods accounting for mean and variance

behavior.29,40
Discussion

A general, bottom-up theory has been produced to

describe the time behavior of cell-to-cell variance in

mtDNA populations subject to controlled biogenesis

and/or degradation, mutation, selection, and cell divi-

sions. This theory is based around the microscopic

behavior of mtDNA molecules, allowing a hitherto ab-

sent connection between widely used ‘‘effective’’ statisti-

cal genetics approaches (Equation 13) and measurable

biological quantities, and motivating experiments to

further elucidate the mechanisms acting to control

mtDNA (described in Supplemental Data Section 7). We

have shown that the predictions of this theory agree
mber 3, 2016



Figure 6. mtDNA Evolution in MELAS
Patients from Pyle et al.38

(A) Changes in mean heteroplasmy hhi
between two samples from patient blood,
showing a general decrease in hhi over
time.
(B) Changes in mean cellular wild-type
content w between these samples.
(C) Changes in mean cellular mutant con-
tent m.
In both (B) and (C), an overall increase in
variance over time is observed: hence
hw2i and hm2i increase while hhi decreases,
consistent with Figure 6.
with experimental observations of mixed mtDNA popu-

lations and that the application of appropriately vali-

dated mathematical theory allows us to make estimates

of important biological quantities that remain chal-

lenging to directly address with experiments. Our theory

describes the cell-to-cell variability in mtDNA popu-

lations and thus provides a framework with which to

understand the inheritance and onset of mtDNA dis-

eases.6,14

Our theoretical platform unifies several existing

modeling approaches that have driven advances in the

study of mtDNA populations. We have specifically

demonstrated that the ‘‘relaxed replication’’ model1,19,34

(our model A), simple birth-death models14,20 (our model

D), and cellular controls based on homeostatic princi-

ples15,16 (our models B, C, and G) can naturally be repre-

sented within our framework. As a result, analytic expres-

sions for the expected behavior of heteroplasmy variance

and other population statistics can readily be extracted

for these and other mtDNA models (see Supplemental

Data Section 3), allowing the detailed characterization

of mtDNA dynamics, including the probability of

crossing disease thresholds,7 which can be computed

from heteroplasmy statistics.14 We have also used the

theoretical ideas developed herein to refine a widely

used model for mtDNA populations of changing size

(the Wright formula), explicitly connecting it with

cellular processes and allowing a link between physical

and genetic quantities (Equation 14, Figure 4).

Further, our theory also describes the dynamics of heter-

oplasmy change with time in the presence of selective pres-

sure for onemtDNA type. Given an initial heteroplasmy h0
and a selective pressure b (positive b corresponding to

positive selection for the mutant mtDNA type), we find

(see Supplemental Data Section 5) that heteroplasmy

evolves according to:

h ¼ 1

1þ 1� h0

h0

e�bt

: (Equation 15)
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This behavior immediately motivates a transformation,

allowing the evolution of heteroplasmy to be compared

across different starting values h0:

Dh0hbt ¼ log

�
hðh0 � 1Þ
h0ðh� 1Þ

�
; (Equation 16)

allowing, as in our previous work,23 heteroplasmy results

from different biological samples to be compared together,

accounting for different initial heteroplasmies (in other

words, the same selective pressure will produce the same

Dh0 regardless of h0).
It is likely that control mechanisms found in biology

have nonlinear forms (for example, sigmoidal response

curves are common in cellular signaling). We have shown

that a linearization satisfactorily describes some non-

equilibrium behavior (for example, in the case of our

cell division model), but further investigation of more

general nonlinear behavior and modulation of wider cell

behavior by mtDNA populations (for example, by influ-

encing cell cycle progression15) are important future de-

velopments. In Supplemental Data Section 1 we discuss

a linear stability analysis of our expressions for mean

mtDNA behavior, which highlights a link between the

‘‘sensing’’ of an mtDNA species (in the sense that the pres-

ence of that species modulates replication or degradation

rates) and the ability to control the mean level of that

species.

The control of stochastic systems is a well-established

field within control theory.41 Optimal control mecha-

nisms addressing the mean and variance of stochastic pro-

cesses have been derived in a variety of contexts (see, for

example, Borkar42 and citations therein), particularly in

financial applications,43 and often find tradeoffs between

controlling themean and variance of a process.We observe

a comparable tradeoff, that tight control on moments of

one species leads to loose control on another. We have

focused on providing a general theoretical formalism

with which to treat any given control mechanism; it is
rnal of Human Genetics 99, 1150–1162, November 3, 2016 1159



anticipated that the above treatment may also be of value

in describing heterogeneity in other systems where repli-

cation and/or death rates of individuals depend on feed-

back from current numbers of individuals (for example,

through terms describing competition for resources in

ecology). Within the context of mtDNA populations, we

anticipate that this theoretical framework will assist in

understanding natural processes of mtDNA inheritance

and evolution within an organismal lifetime (including

segregation and increasing variance with age)14,23 and in-

forming applied approaches to control mitochondrial

behavior with genetic tools.4,5
Appendix A. Interpretation of Relaxed Replication

The relaxed replication model1,19 describes a cellular pop-

ulation of mtDNAmolecules according to the following al-

gorithm. mtDNAs randomly degrade as a Poisson process

with rate 1=t. Every time step Dt, the value of C(w,m), a

deterministic function of w and m, is computed, then

DtCðw;mÞ mtDNAs are added to the population. The

genetic properties of these added mtDNAs are random—

each is assigned a genetic type based on a random sam-

pling of the existing populations—but their physical

properties (i.e., the total copy number added at each

step) are deterministic. We argue that, as both replication

and degradation of mtDNAs depend on complicated

behavior and thermal, microscopic interactions, it makes

more sense to model both processes as stochastic. Thus,

C(w,m) is interpreted as the rate of a Poisson process

describing replication, just as 1=t is the rate of a Poisson

process describing degradation. This interpretation recon-

ciles the nature of the two processes.

Although this feature is less interesting than the

underlying scientific behavior, the original algorithm also

raises a (not insurmountable) technical problem with

implementation. If a time step Dt < 1=Cðw;mÞ is chosen,
the algorithm will never add any mtDNA to the sys-

tem. But, in order to suitably characterize the stochastic

degradation without using the Gillespie algorithm,44 it is

desirable to choose a time step Dt as low as possible. There

is therefore a risk that one or other of the deterministic

replication and stochastic degradation processes is inade-

quately captured in a given simulation protocol.

We have illustrated the excellent agreement between

our theoretical approaches and stochastic simulation (for

example, Figure 1). Toquantitatively connectwithprevious

analyses of specific control strategies, we confirm that the

behavior for model A (relaxed replication) matches that

observed in previous simulation studies19 with a back-of-

the-envelope calculation.39 The rate of variance increase

with time with t ¼ 5 days (comparable in magnitude to

the (1 � 10)3 log 2 days used in Chinnery and Samuels19)

andwopt¼ 1,000 from Figure 1 is roughly 40 day�1. Consid-

ering 50 years of evolution of this system, we expect a stan-

dard deviation of roughly
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
403503365

p
x850 in mutant
1160 The American Journal of Human Genetics 99, 1150–1162, Nove
copy number. This value is consistent with the simulations

in Chinnery and Samuels.19

We connect to an additional numerical result in Capps

et al.1 In the absence of a mutant population, the variance

of the wild-type population was reported to be stable

at wopt=ð2aÞ, with the original model interpretation of

mtDNA replication as deterministic. Under the interpreta-

tion of stochastic replication, an absent mutant popula-

tion (mss ¼ 0) permits stability in the wild-type population

variance, which after a little algebra is calculated to be

wopt=a. Intuitively, modeling both replication and degrada-

tion as stochastic does not affect mean copy number but

does increase variance.
Appendix B. Interpretation of Wright Formula for

mtDNA

The Wright formula

�
h2
� ¼ hhið1� hhiÞ

�
1�

�
1� ð2neÞ�1

�g�
(Equation 17)

has been proposed as amodel for the time evolution of het-

eroplasmy variance hh2i in a population with effective size

ne subject to random partitioning at each of g generations.

This picture has been successfully employed to investigate

heteroplasmy distributions in real systems,22 with ne and g

interpreted as parameters of the theory without immediate

biological interpretation.

The mapping of the original genetic system considered

by Wright21 to cellular populations of mtDNA requires

some discussion. If ‘‘generations’’ are interpreted as cell

divisions, the mechanism by which mtDNA copy num-

ber is redoubled between divisions is assumed by the

model to be deterministic. Cell divisions will result in a

halving of the mtDNA population. Application of the

Wright model assumes that the original population is

thenceforth recovered with no increased variance in the

population. In other words, the mtDNA population is

assumed to exactly double between divisions with no

stochasticity in the process. As we underline in the

main text, the effects of (inevitable) stochasticity due

to mtDNA turnover are not explicitly captured by the

Wright formula. Other complications exist, as described

in Wonnapinij et al.,22 but play less important roles

here. As a result, the ‘‘bottleneck size’’ ne cannot immedi-

ately be interpreted as an observable minimum cellular

copy number of mtDNA molecules (a quantity that is re-

ported by, for example, a qPCR experiment measuring

cellular mtDNA content), but rather the size of an effec-

tive ‘‘founder’’ population.
Supplemental Data

Supplemental Data include mathematical derivations, two figures,

and two tables and can be found with this article online at http://

dx.doi.org/10.1016/j.ajhg.2016.09.016.
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S1. Expansion of the control law.

If we write εw = w − wss, εm = m−mss, the expansion of replication and degradation rates λ(w,m) and ν(w,m)
about the steady state {wss,mss} gives

λ(w,m) ' λ(wss,mss) +
∂λ(w,m)

∂w

∣∣∣∣
(wss,mss)

εw +
∂λ(w,m)

∂m

∣∣∣∣
(wss,mss)

εm +O(ε2) (1)

ν(w,m) ' ν(wss,mss) +
∂ν(w,m)

∂w

∣∣∣∣
(wss,mss)

εw +
∂ν(w,m)

∂m

∣∣∣∣
(wss,mss)

εm +O(ε2). (2)

This expansion represents a model of a given control strategy λ(w,m), ν(w,m), which, if the original function is
well behaved, we expect to reasonably reflect behaviour of the system close to {wss,mss}. Simulation results show
that this expectation is fulfilled for a wide variety of cases (see figures in the Main Text).

To find wss and mss we solve the equations describing the deterministic behaviour of the system:

dw

dt

∣∣∣∣
(wss,mss)

= wssλ(wss,mss)− wssν(wss,mss) = 0 (3)

dm

dt

∣∣∣∣
(wss,mss)

= mssλ(wss,mss)−mssν(wss,mss) = 0 (4)

It will be observed that for this steady state to exist, the terms λ(wss,mss) and ν(wss,mss) in Eqns. 1-2 must
be equal. We can write the general expansion form of λ(w,m) and ν(w,m), truncated to first order, as

λ(w,m) ' β0 + βw(w − wss) + βm(m−mss), (5)

ν(w,m) ' δ0 + δw(w − wss) + δm(m−mss), (6)

with βw = ∂λ/∂w|wss,mss , βm = ∂λ/∂m|wss,mss , δw = ∂ν/∂w|wss,mss , δm = ∂ν/∂m|wss,mss . Clearly, to sup-
port convergence to a steady state, βw and βw must be negative and δw and δm must be positive. Given this model
for control dynamics, we next characterise the variance of the system. We can thus describe the system with a set
of R = 4 processes with rates

f1 = w (β0 + βw(w − wss) + βm(m−mss)) (7)

f2 = m (β0 + βw(w − wss) + βm(m−mss)) (8)

f3 = w (δ0 + δw(w − wss) + δm(m−mss)) (9)

f4 = m (δ0 + δw(w − wss) + δm(m−mss)) (10)

and stoichiometry matrix describing the effects of these reactions on the N = 2 species we consider as

S = ((1, 0), (0, 1), (−1, 0), (0,−1))T . (11)

Using index i = 1 to correspond to species w and i = 2 to correspond to species m, the master equation for the
system, describing the time evolution of Pw,m (the probability of observing w wildtype and m mutant mtDNAs)
can then be written

∂Pw,m
∂t

=

R∑
j=1

(
N∏
i=1

E−Sij − 1

)
fj(w,m)Pw,m (12)

where E−Sij takes its normal meaning as a raising and lowering operator [1], adding −Sij to each occurrence
of index i that follows it on the right (so e.g. as S11 = 1 and w corresponds to index 1, E−S11fj(w,m)Pw,m →
fj(w − 1,m)Pw−1,m).

The potential nonlinearities and coupling between species in this equation prevents a full general solution.
To make progress, we employ Van Kampen’s system size expansion [1, 2] and write w = φwΩ + ξwΩ1/2,m =



φmΩ + ξmΩ1/2, representing copy numbers as the sum of deterministic components φi and fluctuation components
ξi scaled by powers of system size Ω. Following the standard expansion procedure, by writing E, Pw,m and fi in
terms of Ω and collecting powers of Ω in Eqn. 12, first gives equations for the deterministic components of the
system (corresponding straightforwardly to the macroscopic rate equations):

∂φi
∂t

=

R∑
j=1

Sijfj , (13)

then gives a Fokker-Planck equation for the time behaviour of the fluctuation components in terms of the
bivariate probability distribution Π(ξ, t) of ξ = (ξw, ξm) at time t:

∂Π(ξ, t)

∂t
=

N∑
i,j=1

Aij
∂(ξjΠ)

∂ξi
+

1

2

N∑
i,j=1

Bij
∂2Π

∂ξi ∂ξj
, (14)

where

Aij =

R∑
k=1

Sik
∂fk
∂φj

, (15)

Bij =

R∑
k=1

SikSjkfk. (16)

The form of Eqns. 7-10 and Eqn. 11 gives, for steady state copy numbers and δ0 = β0, A11 = κwwss, A12 =
κmwss, A21 = κwmss, A22 = κmmss, B11 = 2β0wss, B22 = 2β0mss, B12 = B21 = 0, where κw = (βw − δw), κm =
(βm− δm). From this Fokker-Planck equation expressions for the moments of ξi can be extracted [1], leading to the
expressions:

d〈ξ2
w〉
dt

= 2A11〈ξ2
w〉+ 2A12〈ξwξm〉+B11 (17)

d〈ξwξm〉
dt

= (A11 +A22)〈ξwξm〉+A12〈ξ2
m〉+A21〈ξ2

w〉+B12 (18)

d〈ξ2
m〉
dt

= 2A22〈ξ2
m〉+ 2A21〈ξwξm〉+B22, (19)

A linear stability analysis of the deterministic ODEs describing mean behaviour is straightforward to perform.
Linearising Eqns. 3-4 about (wss,mss) gives

dw

dt
' (βw − δw)wss(w − wss) +O(w2) +O(wm) (20)

dm

dt
' (βm − δm)mss(m−mss) +O(m2) +O(wm), (21)

from which it is straightforward to see that if κw < 0 and κm < 0, the mean dynamics of w and m respectively
are linearly stable. This condition is met for w and m in control laws A and E, for w in B, C, and F, and for neither
in D. These specific examples illustrate the principle that if a species is explicitly ‘sensed’ – in the sense that it
modulates replication or degradation rate – its mean dynamics can be controlled to be linearly stable. If a species
is not explicitly sensed (replication and degradation are not functions of its copy number) then its mean dynamics
are not explicitly linearly stable, but may be ‘balanced’, as the corresponding κ term is zero. Perturbations in these
unsensed ‘balanced’ variables are neither damped away by control nor guaranteed to explode with time; hence the
variables are unconstrained but not explicitly unstable.

S2. Full solutions for steady state ODEs.

Eqns. 17-19 can be solved exactly for the Aij , Bij corresponding to the steady state condition above. The complete
solutions for arbitrary 〈ξ2

w〉, 〈ξwξm〉, 〈ξ2
m〉 at t = 0 are lengthy and do not allow much intuitive interpretation.

For 〈ξ2
w〉 = 〈ξwξm〉 = 〈ξ2

m〉 = 0 at t = 0 (noiseless initial conditions), we can solve and separate the long-term



behaviour from the transient behaviour. The transients, given by Eqns. 25-27 below, involve terms in t′ ≡
exp((κmmss + κwwss)t). As the κi are nonpositive (for stability, βi are nonpositive and δi are nonnegative), t′ is
either a constant or an exponentially decaying function of time t; in the cases we consider, it either decays with
time (all models except D) or the associated term is always zero (model D).

〈ξ2
w〉 = F decay1 (t′) +

(
2β0msswss(mss + wss)κ

2
m

(mssκm + wssκw)2

)
t

+

(
−β0w

2
ss(wssκ

2
w +mssκm(4κw − 3κm))

(mssκm + wssκw)3

)
(22)

〈ξwξm〉 = F decay2 (t′) +

(
−2β0msswss(mss + wss)κmκw

(mssκm + wssκw)2

)
t

+

(
β0msswss(mssκm(κm − 2κw) + wssκw(κw − 2κm))

(mssκm + wssκw)3

)
(23)

〈ξ2
m〉 = F decay3 (t′) +

(
2β0msswss(mss + wss)κ

2
w

(mssκm + wssκw)2

)
t

+

(
−β0m

2
ss(mssκ

2
m + wssκw(4κm − 3κw))

(mssκm + wssκw)3

)
, (24)

where the F decayi functions characterising the transient behaviour are

F decay1 (t′) =
β0w

2
sst
′(κ2

wwsst
′ + κmmss(κm(t′ − 4) + 4κw))

(κmmss + κwwss)3
(25)

F decay2 (t′) =
β0wssmsst

′(κ2
mmss(t

′ − 2) + 2(mss + wss)κwκm + κ2
wwss(t

′ − 2))

(κmmss + κww2
ss)

3
, (26)

F decay3 (t′) =
β0m

2
sst
′(κ2

mmsst
′ + κwwss(κw(t′ − 4) + 4κm))

(κmmss + κwwss)3
(27)

(28)

Eqns. 22-24 with Eqns. 25-27 then give the full transient behaviour displayed in Fig. 1 in the Main Text ,
decaying to the aforementioned linear behaviour with characteristic timescale (κmmss + κwwss).

S3. Interpretation and behaviour of specific control strategies.

The mechanisms described in the Main Text have simple interpretations in the language of stochastic processes.
Mechanism A, as discussed, corresponds to the ‘relaxed replication’ picture studied previously (Appendix A1).
Mechanism D corresponds to independent birth-death processes acting on both species (analysed in [3]). Mechanism
F corresponds to an immigration-death process acting on the wildtype (the dependence of replication rate on 1/w
means that overall production is constant with time), and model C can be regarded as a birth-immigration-death
process on the wildtype (analysed in [4]). Both these mechanisms are thus expected to tightly control wildtype
behaviour (including controlling variance: immigration-death processes yield a constant steady-state variance), but
do not sense (and, therefore, do not apply feedback to) mutant load. We also note that mechanisms F and G are
in a sense ‘dual’, in that they apply similar control manifest through replication with rate ∼ 1/w and degradation
with rate w respectively. The previous result that control applied to (a) biogenesis rates and (b) degradation rates
yields similar population behaviour is visible in the behaviour of F and G in Fig. 1 in the Main Text .

Table S1 gives, for each example control strategy in the Main Text, the corresponding steady state {wss,mss}
and the expansion terms for the strategy β, δ. The corresponding behaviours of variances, from Eqns. 22-24, are
given in Table S2 .

In the Main Text we discuss the implications of an increasing extinction probability of one mtDNA type. A non-
negligible extinction probability challenges the validity of the linear noise approximation and leads to departure
from results derived using the system size expansion. To illustrate this behaviour, we reduce the characteristic
timescale of the parameterisations used to explore models A-G in the Main Text, setting τ = 1 rather than τ = 5,
and simulate for a longer time window (see Fig. S1 ). It will be observed that as extinction probability increases
(as

√
〈m2〉 → 〈m〉), the numerical behaviour departs from that predicted analytically; in particular, the increase of

〈h2〉 slows from a linear to sublinear regime as discussed in the Main Text.



We note that, in some physiological circumstances, the representation of one mtDNA type in a cellular population
may be low – for example, the appearance of one mutant mtDNA through de novo mutation or replication error,
or the presence of a small percentage of a foreign mtDNA haplotype due to carryover in gene therapies [5]. In these
cases, a non-negligible extinction probability may occur quickly and the transition of 〈h2〉 to a sublinear, or flat,
regime will be an important aspect of the long-term dynamics. In the case of mtDNA disease inheritance, however,
situations with a macroscopic fraction of mutant mtDNA are often the most important, due to the presence of a
‘heteroplasmy threshold’ [6] beyond which disease symptoms manifest. With two mtDNA haplotypes represented
in comparable proportions in the cell, our linear analysis holds and can be used to describe heteroplasmy variance
in somatic and germline cells.

S4. Steady state solution.

Eqns. 17-19 give, for steady state,

2wss(β0 + κm〈ξwξm〉+ κw〈ξ2
w〉) = 0 (29)

wssκm〈ξ2
m〉+mssκw〈ξ2

w〉+ (mssκm + wssκw)〈ξwξm〉 = 0 (30)

2mss(β0 + κm〈ξ2
m〉+ κw〈ξwξm〉) = 0 (31)

Attempting to solve these equations for 〈ξ2
w〉, then 〈ξwξm〉, then 〈ξ2

m〉 first gives 〈ξ2
w〉 = (−β0 − κm〈ξwξm〉)/κw,

then 〈ξwξm〉 = (β0mss − κmwss〈ξ2
m〉)/(wssκw), leaving Eqn. 30 reduced to

2β0mss(mss + wss)

wss
= 0, (32)

a condition only fulfilled (due to the non-negativity of mss and wss) if mss = 0. If one proceeds through the
analysis by first solving for 〈ξ2

m〉, then 〈ξwξm〉, then 〈ξ2
w〉, a symmetric expression is obtained

2β0wss(mss + wss)

mss
= 0. (33)

Eqns. 32-33 illustrate the symmetry in the system: if the copy number of either species is zero then a situation
where variance does not increase is supported (but not inevitable: compare the behaviour of relaxed replication
model (A, fixed variance) and the birth-death model (D, increasing variance) in the case of zero mutant population).

The effect of selection, mutations, and replicative errors on mtDNA variances can straightforwardly be included
in this analysis. In this general case, we replace Eqns. 1-4 in the Main Text with:

{w,m} ε1+(1+ε2)wλ(w,m)−−−−−−−−−−−−→ {w + 1,m} (34)

{w,m} ε3+(1+ε4)mλ(w,m)−−−−−−−−−−−−−→ {w,m+ 1} (35)

{w,m} ε5+(1+ε6)wν(w,m)−−−−−−−−−−−−→ {w − 1,m} (36)

{w,m} ε7+(1+ε8)mν(w,m)−−−−−−−−−−−−→ {w,m− 1} (37)

{w,m} wµ1−−−→ {w − 1,m+ 1} (38)

{w,m} wµ2−−−→ {w,m+ 1} (39)

{w,m} wµ3−−−→ {w − 1,m+ 2}. (40)

Here, we have added processes corresponding to spontaneous mutation of a given wildtype mtDNA (µ1), and two
types of replicative error affecting wildtype mtDNA, giving rise to one (µ2; original molecule remains intact, new
molecule is mutated) and two (µ3; both original and new molecules are mutated) mutant mtDNAs respectively.
Differences manifest either through replicative or degradation advantages (or both) are incorporated with even-
indexed εi (providing multiplicative changes to the bare rates) and odd-indexed εi (providing additive changes).
We thus have two ways of provoking selective advantages in each case: increasing wildtype biogenesis, increasing
mutant biogenesis, increasing wildtype degradation, and increasing mutant degradation.

Fig. S2 shows example trajectories arising from each of our control mechanisms in the presence of the mutation
processes above, and the selective pressures (ε3, ε4, ε5, ε6) that favour mutant mtDNA. An excellent agreement
between ODE theory and stochastic simulation is again illustrated, and there is substantial similarity between



the behaviours caused by selection (favouring mutant mtDNA) and mutation (producing mutant mtDNA). In
several cases (mechanisms B, C, F, G), 〈m〉 and 〈m2〉 simply increase exponentially with time under favourable
selective or mutational pressures; this situation straightforwardly gives rise to a sigmoidal change in heteroplasmy
〈h〉 ∼ 1/(1 + e−∆ft(1 − h0)/h0), with ∆f an effective selective difference, as used in previous work [7, 8]. In
mechanisms coupling wildtype and mutant content (A and E), mutant increase is slower and accompanied by a
decrease in wildtype, attempting to keep total copy number constant. In these circumstances, variance behaviour
can be more complex: for example, under relaxed replication with pressure favouring mutant mtDNA, 〈w2〉 initially
increases then subsequently decreases as 〈w〉 decreases in magnitude. Mechanism D, where control does not couple
mutant and wildtype, has correspondingly perpendicular trajectories in (〈w〉, 〈m〉) space under different selective
pressures, but the coupling action of the mutation operations lead to curved trajectories under mutational influence.

S5. Heteroplasmy.

For a general function h = h(x, y),

〈h2〉 = 〈(h− 〈h〉)2〉. (41)

We will consider an expansion about (x0, y0), a state such that h(x0, y0) = 〈h〉. Using the first-order Taylor
expansion of h(x, y) around (x0, y0):

〈h2〉 = 〈(h− 〈h〉)2〉 (42)

'

〈(
h(x0, y0) + (x− x0)

∂h

∂x

∣∣∣∣
(x0,y0)

+ (y − y0)
∂h

∂y

∣∣∣∣
(x0,y0)

− h(x0, y0)

)2〉
(43)

=

〈
(x− x0)2

(
∂h

∂x

)2

(x0,y0)

+ (y − y0)2

(
∂h

∂y

)2

(x0,y0)

+ 2(x− x0)(y − y0)

(
∂h

∂x

∂h

∂y

)
(x0,y0)

〉
(44)

= 〈x2〉
(
∂h

∂x

)2

(x0,y0)

+ 〈y2〉
(
∂h

∂y

)2

(x0,y0)

+ 2〈xy〉
(
∂h

∂x

∂h

∂y

)
(x0,y0)

. (45)

We now consider h(x, y) = x/y, so that

〈h2〉 '
(
〈x2〉 1

y2
+ 〈y2〉x

2

y4
− 2〈xy〉 x

y3

)
(x0,y0)

(46)

=

(
x2

y2

(
〈x2〉
x2

+
〈y2〉
y2
− 2〈xy〉

xy

))
(x0,y0)

. (47)

Finally, given that x0 = 〈x〉 and y0 = 〈y〉, and setting x ≡ m and y ≡ w +m, we obtain

〈h2〉 ' 〈m〉2

〈w +m〉2

(
〈m2〉
〈m〉2

+
〈(w +m)2〉
〈w +m〉2

− 2〈m(w +m)〉
〈m〉〈w +m〉

)
(48)

To see that exponential growth or decay in one mtDNA type while the other remains constant gives rise to
sigmoidal heteroplasmy dynamics, consider (without loss of generality) m = h0n0e

βt, w = (1 − h0)n0, where n0 is
an initial population size which will cancel. Then, as m (and hence n = m+ w) increases with time,

h =
m

m+ w
=

h0n0e
βt

n0(h0eβt + (1− h0))
=

1

1 + 1−h0

h0
e−βt

, (49)

as used in Refs. [5] and [3], with β corresponding to a selective pressure (in this derivation, positive β favours
mutant mtDNA).

S6. Fokker-Planck terms for nonequilibrium regimes.

The system size expansion approach above can be applied to the general system without employing an expansion
of the control strategy about a steady state, by considering the processes



f1 = wλw(w,m) (50)

f2 = mλm(w,m) (51)

f3 = wνw(w,m) (52)

f4 = mνm(w,m) (53)

If the expansion about steady state is not used, the corresponding terms are

A11 = λw(φw, φm)− νw(φw, φm) + φw(∂wλw(φw, φm)− ∂wνw(φw, φm)) (54)

A12 = φw(∂mλw(φw, φm)− ∂mνw(φw, φm)) (55)

A21 = φm(∂wλm(φw, φm)− ∂wνm(φw, φm)) (56)

A22 = λm(φw, φm)− νm(φw, φm) + φm(∂mλm(φw, φm)− ∂mνm(φw, φm)) (57)

B11 = φw(λw(φw, φm) + νw(φw, φm)) (58)

B22 = φm(λw(φw, φm) + νw(φw, φm)) (59)

B12 = B21 = 0, (60)

where ∂xf(φi, φj) means ∂f
∂x

∣∣∣
φi,φj

. We include the mutational processes in the text by adding f5 = µ1w, f6 =

µ2w, f7 = µ3w and setting the corresponding stoichiometry matrix to

S = ((1, 0), (0, 1), (−1, 0), (0,−1), (−1, 1), (0, 1), (−1, 2))T . (61)

If λw = λm = λ and νw = νm = ν (no selective differences between mtDNA types), the Fokker-Planck terms
become

A11 = −µ1 − µ3 + λ(φw, φm)− ν(φw, φm) + φw(∂wλ(φw, φm)− ∂wν(φw, φm)) (62)

A12 = φw(∂mλ(φw, φm)− ∂mν(φw, φm)) (63)

A21 = µ1 + µ2 + 2µ3 + φm(∂wλ(φw, φm)− ∂wν(φw, φm)) (64)

A22 = λ(φw, φm)− ν(φw, φm) + φm(∂mλ(φw, φm)− ∂mν(φw, φm)) (65)

B11 = φw(µ1 + µ3 + λ(φw, φm) + ν(φw, φm)) (66)

B22 = (µ1 + µ2 + 4µ3) + φm(λ(φw, φm) + ν(φw, φm)) (67)

B12 = B21 = −(µ1 + 2µ3)φw. (68)

Including selection terms (without mutation) requires no change to the original structure of reactions and
stoichiometries and immediately gives

A11 = (1 + ε2)λ(φw, φm)− (1 + ε6)ν(φw, φm) + φw((1 + ε2)∂wλ(φw, φm)− (1 + ε6)∂wν(φw, φm)) (69)

A12 = φw((1 + ε2)∂mλ(φw, φm)− (1 + ε6)∂mν(φw, φm)) (70)

A21 = φm((1 + ε4)∂wλ(φw, φm)− (1 + ε8)∂wν(φw, φm)) (71)

A22 = (1 + ε4)λ(φw, φm)− (1 + ε8)ν(φw, φm) + φm((1 + ε4)∂mλ(φw, φm)− (1 + ε8)∂mν(φw, φm)) (72)

B11 = ε1 + ε5 + φw((1 + ε2)λ(φw, φm) + (1 + ε6)ν(φw, φm)) (73)

B22 = ε3 + ε7 + φm((1 + ε4)λ(φw, φm) + (1 + ε8)ν(φw, φm)) (74)

B12 = B21 = 0, (75)

The same approach as above can be used to obtain Eqns. 17-19 for the time evolution of fluctuation moments,
this time valid for a full temporal trajectory of the system.

S7. Experimental observations to distinguish mechanisms.

Our theoretical results suggest measurements to further elucidate the control mechanisms underlying mtDNA
evolution within cells, without using heteroplasmy variance 〈h2〉 (the shortcomings of which are manifest because



seven different feedback controls all yield the same dynamics in 〈h2〉′ – Fig. 1 in the Main Text ), and in conjunction
with further molecular elucidation of processes governing mtDNA [9, 10] which providing bounds on the types and
rates of molecular processes involved (for example, disallowing unphysically high rates of mtDNA replication).

If 〈w2〉 increases with time, mechanisms with weaker constraints on wildtype copy number are more likely
(including relaxed replication (A), mechanisms sensing a combination of mutant and wildtype copy number (E),
and the case with no feedback (D)). If 〈w2〉 is low and constant, mechanisms involving differential (B) or ratiometric
(C) control are likely. If 〈w2〉 is high and constant (of the order of 〈w〉), mechanisms resembling immigration-death
processes (with propagation scaled by inverse copy number, F and G) are more likely. The behaviour of 〈wm〉 can
be used to further distinguish mechanisms which strongly couple wildtype and mutant (including relaxed replication
and total copy number control) from those with less coupling.

In all these cases, the likelihood functions associated with specific biological observations will be complicated.
Model selection and inference in this case could be performed through comparison to simulation, or using likelihood-
free inference [11] for the mean and variance of mtDNA populations [12].

S8. Back-of-the-envelope calculations for leukocyte heteroplasmy measurements.

Average cellular mtDNA copy number measurements in Ref. [13] are made by normalising the signal from the
mtDNA-encoded ND1 gene by that from the nuclear-encoded GADPH genes using real-time PCR using iQ Sybr
Green on the BioRad ICycler. The published protocol [14] for this technique suggests using 50ng-5pg of genomic
DNA. Diploid human cells contain ∼ 6pg of genomic DNA; the mass of several hundred (much smaller) mtDNA
genomes is negligible by comparison. The protocol thus implies the presence of 1-10000 cells’ genomic DNA content;
we assume 1000 as an estimate consistent with qPCR standards (Joerg Burgstaller, personal communication).

In our analysis of the data from Ref. [13] we use τ = 5 days and the processes:

{w,m} wλ−−→ {w + 1,m} (76)

{w,m} mλ−−→ {w,m+ 1} (77)

{w,m} wν−−→ {w − 1,m} (78)

{w,m} (1+ε8)mν−−−−−−→ {w,m− 1} (79)

with λ = ν = 1/τ , and ε8 a selective difference acting to increase degradation of the mutant mtDNA species.
We first estimate a value for ε8 consistent with the heteroplasmy changes involved. Using the transformation

βt = log

(
h(h0 − 1)

h0(h− 1)

)
, (80)

from Eqn. 49 above, where h0 is initial heteroplasmy and h is heteroplasmy at time t, we obtain an estimate
β̄ = −1.2 × 10−4 day−1. We thus set ε8 = 1.2 × 10−4 day−1, to produce the required selective difference manifest
through mutant degradation.

Solving the ODEs arising from our theoretical approach (Eqns. 17-19) then give values for 〈w2〉 and 〈m2〉 over
time for a given initial condition. Assuming that each datapoint consists of a sample of 103 cells, we divide these
values by 103 to obtain an estimated distribution for each later w,m pair, given the paired initial w,m state. We
combine these distrbutions to build an overall distribution over later results, and use the Kolmogorov-Smirnov test
to test the alternative hypothesis that the later results were incompatible with draws from this distribution. The
results were p = 0.054 for wildtype mtDNA copy number and p = 0.861 for mutant mtDNA copy number. As
highlighted in the text, the absence of a p < 0.05 result cannot be interpreted as support for the null hypothesis,
but this analysis suggests that the available data is not incompatible with the predictions of our model.



Figure S1: Influence of fixation on expansion analysis. The models from the Main Text, simulated for a longer
time window and for a shorter characteristic timescale τ , illustrating the behaviour of the systems when extinction
becomes possible. Pm0 gives the numerically computed probability that m = 0; it can be seen that an increase in
this quantity corresponds to a moderate increase of 〈m〉 and 〈m2〉 relative to their predicted values, and a decrease
of 〈h2〉 relative to its predicted value (shifting towards a sublinear increase as discussed in the Main Text).
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Figure S2: MtDNA copy number and variability under mutational and selective advantages for mutant
mtDNA. Mean, variance, and CV trajectories with (i) selection pressures, and (ii) mutation rates favouring mutant
mtDNA, under models A-G from the text. Some control strategies (A, E) keep mutant relatively bound but sacrifice
wildtype and provoke large increases in variability; others (B, C, F, G) focus on wildtype stability, allowing mutant
to grow unbound. Labels give the control model (letter) and the parameter varied (ε3 = 20; ε4 = 1; ε5 = 20; ε6 = 1
for (i); µ1 = 0.1;µ2 = 0.1;µ3 = 0.1 for (ii)); all other ε, µ parameters are set to zero. Results are shown for theory
(lines) and stochastic simulation (points), progressing from an initial condition with w0 = 900,m0 = 100 with the
parameterisations in Fig. 1 in the Main Text .



Control λ(w,m) (ν(w,m) for G) wss mss βw (δw for G) βm (δm for G)

A
α(wopt−w−γm)+w+γm

τ(w+m)

w0woptα

m0+w0α+γm0(α−1)

m0woptα

m0+w0α+γm0(α−1)
−m0−w0α−m0γ(α−1)
m0woptτ+w0woptτ

−(1+(α−1)γ)(m0+w0α+m0(α−1)γ)
(m0+w0)woptατ

B α(wopt − w) wopt − 1/ατ
m0
w0

(wopt − 1/ατ) −α 0

C α
(wopt

w
− 1

) woptατ

1+ατ
m0
w0

woptατ

1+ατ
−(1+ατ)2

woptατ
2 0

D 1/τ w0 m0 0 0

E αwopt − αw − αmm
w0(woptατ−1)

τ(w0α+m0αm)

m0(woptατ−1)

τ(w0α+m0αm)
−α −αm

F 1/w ατ
m0
w0

ατ −1

ατ2
0

G 1/τ −
wopt−w
woptτ

wopt
m0wopt
w0

1
woptτ

0

Table S1: Steady states and expansion terms for control strategies A-G.



Control Time-independent part of 〈ξ2w〉 Time-independent part of 〈ξwξm〉 Time-independent part of 〈ξ2m〉
w2

0(m0+w0)woptα(w0α
2−m0(1+γ(α−1))(3−4α+3γ(α−1)))

(m0+w0α+m0(α−1)γ)4

A
−m0w0(m0+w0)woptα(m0(1+α(γ−2)−γ)(1+γ(α−1))+w0α(α−2+2γ−2αγ))

(m0+w0α+m0(α−1)γ)4

m2
0(m0+w0)woptα(m0(1+γ(α−1))2+w0α(4−3α+4γ(α−1)))

(m0+w0α+m0(α−1)γ)4

B 1
ατ

−m0
w0ατ

−3m2
0

w2
0ατ

C
woptατ

(1+ατ)2

−m0woptατ

w0(1+ατ)2

−3m2
0woptατ

(w0+w0ατ)
2

D 0 0 0

E
w2

0(w0α
2+αmm0(4α−3αm)

(αw0+αmm0)3τ

m0w0(2ααm(m0+w0)−w0α
2−m0α

2
m)

(αw0+αmm0)3τ

m2
0(m0α

2
m+αw0(4αm−3α)

(αw0+αmm0)3τ

F ατ
−m0ατ
w0

−3m2
0ατ

w2
0

G wopt
−m0wopt

w0

−3m2
0wopt

w2
0

Control Time coefficient of 〈ξ2w〉 Time coefficient of 〈ξwξm〉 Time coefficient of 〈ξ2m〉

A
2m0w0(m0+w0)woptα(1+(α−1)γ)2

(m0+w0α+m0(α−1)γ)3τ

−2m0w0(m0+w0)woptα
2(1+(α−1)γ)

(m0+w0α+m0(α−1)γ)3τ

2m0w0(m0+w0)woptα
3

(m0+w0α+m0(α−1)γ)3τ

B 0 0
2m0(m0+w0)(woptατ−1)

w2
0ατ

2

C 0 0
2m0(m0+w0)woptα

w2
0(1+ατ)

D 2w0/τ 0 2m0/τ

E
2m0w0(m0+w0)α2

m(woptατ−1)

(w0α+m0αm)3τ2

−2m0w0(m0+w0)ααm(woptατ−1)

(w0α+m0αm)3τ2

2m0w0(m0+w0)α2(woptατ−1)

(w0α+m0αm)3τ2

F 0 0
2m0(m0+w0)α

w2
0

G 0 0
2m0(m0+w0)wopt

w2
0τ

Control Time coefficient of 〈h2〉 increase

A
2m0w0(αw0+m0+γ(α−1)m0)

(m0+w0)3woptατ

B
2m0w

2
0α

(m0+w0)3(woptατ−1)

C
2m0w

2
0(1+ατ)

(m0+w0)3woptατ
2

D
2m0w0

(m0+w0)3τ

E
2m0w0(w0α+m0αm)

(m0+w0)3(woptατ−1)

F
2m0w

2
0

(m0+w0)3ατ2

G
2m0w

2
0

(m0+w0)3woptτ

Table S2: Post-transient time behaviour of copy number and heteroplasmy variances in control strate-
gies A-G.



References

[1] N. Van Kampen. Stochastic processes in physics and chemistry, volume 1. 1992.

[2] J. Elf and M. Ehrenberg. Fast evaluation of fluctuations in biochemical networks with the linear noise approx-
imation. Genome Res., 13:2475, 2003.

[3] I. Johnston, J. Burgstaller, V. Havlicek, T. Kolbe, T. Rülicke, G. Brem, J. Poulton, and N. Jones. Stochas-
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