Supplemental Figs. 1-4
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Supplemental Fig. S1 | Entire amino acid sequences of the N-domain (green), mucin
domain (black), and Fc region (orange). The possible sites for displaying the
laminin-binding glycans are shown in red. T322 was substituted with arginine
shown in blue.
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Supplemental Fig. S2 | Representative HCD MS? spectra of tryptic
aDG373(T322R)-Fc glycopeptides, 3 AIGPPTTAIQEPPSR3Y, carrying at
least a phosphorylated core M3 with and without additional O-glycans. The
presence of the core M3 is defined by detecting i) a HexNAc2 oxonium ion at
m/z 407.166 and ii) a phospho-Hex increment from the singly and/or doubly
charged peptide core at m/z 1534.811 and/or 767.915%", respectively. Assignment
and annotation are similar to those described for Fig. 2.
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Supplemental Fig. S3 | HCD MS? spectra of tryptic oDG373(T322R)-Fc
glycopeptides carrying only one phosphorylated core M3 (A), two
phosphorylated core M3 moieties with two RboP (B), and two
phosphorylated core M3 moieties with one RboP + one GroP (C). As shown
in Fig. 2 and listed in Table S1, the presence of 1-2 phosphorylated core M3
along with other mucin-type O-glycans, with and without a single RboP or GroP
substituent, was common on the *"*pyrQIHATPTPVR?*? peptide derived from
aDG373(T322R)-Fc expressed in HEK293T cells. These glycoforms were also
commonly found on the same tryptic **pyrQIHATPTPVR3*? peptide core
derived from aDG373(T322R)-Fc expressed in HCT116 and its various mutants
(Table S1, Fig. 7), which also produced a higher proportion of non-
pyroglutamylated 3'*QIHATPTPVR*? glycopeptides (peptide core at 560.317%"
or 1119.512'). In general, glycoforms found on the latter could also be identified



on the pyroglutamylated peptide counterparts, except for the rare combination
of two RboP substituents detected only on non-pyroglutamylated peptide derived
from HCT116 AFKRP mutant (B). No fragment ion could be found to support
their occurrence as tandem RboP. Instead, these are most likely single RboP
substituents on each of the phosphorylated core M3 structures. Similarly, the
glycoforms with the combination of single RboP and single GroP could only be
detected on the pyroglutamylated peptide derived from HCT116 AFKRP mutant,
with no evidence for their occurrence in tandem (C). The assignment and
annotation are similar to those described for Fig. 2.
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Supplemental Fig. S4 | FKTN, FKRP, and TMEMS are not functionally
compensating one another.  Wild-type HCT116 and its mutants (AFKTN,
AFKRP, and ATMEMS) were transfected with or without FKTN-myc, FKRP-
Flag, and TMEM-Flag expression vectors. WGA-enriched cell lysates were

subjected to immunoblot analysis using I[TH6 and anti-B-DG antibodies. Cell

lysates were analyzed for the expression of FKTN-myc, FKRP-Flag, and
TMEM-Flag by Western blots using anti-FKTN, anti-Flag, and anti-Flag

antibodies.



