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Notations

We use the following notations in this supplemental
material. The notation is consistent with the original

paper.
® Zypq = E[z:|{y}. "] is the priori estimation

o 2 141 = E[z,_1|{y}{""] is the posteriori estima-
tion.

A~ A ’ . . .
o Py = E[(z; — Zt\tfl)(zt - Zt|t71) ] is the priori
estimate error covariance.

A A / .
o P i1 =El(ze—1 — Z¢—1)e—1)(Be—1 — Ze—1p¢—1) | I8
the posteriori estimate error covariance.

® ZyT E[z:|y], Mt|T ]E[ZtZ;‘Y]a My 11
Elziz,_4]y], Pt\T = VAR[zy], and Pt,t—l\T
VAR(zz,_4|y]

1 Kalman Filter Algorithm

The details of Kalman filter algorithm are shown
Algorithm 1.

in

Algorithm 1 Kalman filter algorithm for LDS
INPUT: Current
{A,C,Q,R,&,V}.
PROCEDURE:
1: // Initialize the recursion
2: 21‘1 = 5 and P1|1 =V.
3: // Start the recursion
4: for t =2 — T do
// Time Update:
Zyjp—1 = AZy_1)t—1 ,
Py =AP,_1, 1A +Q
// Measure Update:
K = Ptltflc/ (CPt\tAC, +R)!
10: 2y = Zeje—1 + Ke(ye — C2yje—1)
11: Py = Py — KiCPy_y
12: end for
OUTPUT: {it\tfl}tT:% {Zt\t}thlv {Pt|t}?:17 {Pt\tfl}?:Q and
{Kt}?zl-

step LDS parameters: Q =
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2 Kalman Smoothing Algorithm

The details of Kalman smoothing algorithm are shown
in Algorithm 2.

Algorithm 2 EM: E-step Smoothing algorithm for LDS
INPUT:
e Output from Kalman filter algorithm: {it‘t_l}tT:%
{it|t}$:17 {Pt|t}$:1y {Pt|t—1}f:2 and {Kt}$:1~
e Current step LDS parameters: Q = {A,C,Q, R, &, V}.
PROCEDURE:

1: // Initialize the recursion
2: Mpir = Prir + iT|Ti/T\T
3 Jro1 = PT—1|T—1A,(PT|T—1)71
4: Pr_yr = Pr_yor—1+ Jr—1(Prir — PT|T—1)'];“—1
5: Zp_1|7 = 2Zr_1j7-1 + Jr—1(Z7)]7 — AZT_1)T-1)
6: Pro_y7 = — KrC)APp_1j7_1
7 Mro_yr = Prr_yr+ iT\Ti/T_l\T
8: // Start the recursion
9: fort =T-1 - 1 do
10: Myr = Pyr + 2oryr
11: Ji1 = Pt—1|t—1A/(Pt|t—1)71
12: Pt,t—l\T = Pt|tJ;—1 + Jt(Pt+1,t|T - APt|t)J£—1
13 Myt = Piyr + it\Ti;,”T
14: 217 = Z—1jt—1 + Je—1(Zyyr — AZy_1j4—1)
150 Py = Piqpp—1 + Je1(Pyr _Pt|t71)Jt/71
16: end for

OUTPUT: {2,—1jr}{—1, {Myr}i—y and {My, 17 }{_;.

3 Theorem Proof
3.1 Theorem 3.1 Proof

THEOREM 3.1. Generalized gradient descent with a
fized step size p < 1/2(|Z_ZT||r +7/)\) for minimizing
eq.(3.22) has convergence rate O(1/k), where k is the
number of iterations.

Proof. g(A) is differentiable with respect to A, and its
gradient is

Vg(A) =2(AZ_ZT —Z,ZT +~/)\A)

Using simple algebraic manipulation we arrive at



v 9(X) —vg(Y)llr
=2[[(X — Y)(Z-Z1) +7/MX = Y)|lr
<2|Z_ZI|p - |IX = Ylr + 29/ [|X = Y||F
=2(|1Z-ZL|p +~/N) - IX = Y|[F
The inequality holds because of the sub-
multiplicative property of Frobenius norm.  Since
we know for eq.(3.22), mina g(A) + vall4|l«, and

g(A) has Lipschitz continuous gradient with constant
2(|Z_ZT||F + /), according to [1, 2] we have

l9(A®) + 7l AP, = g(A®) = 4]l AP,

2
§HA<0> —ar|| /2t

where A is the initial value and A* is the optimal
value for A; k is the number of iterations. W

3.2 Theorem 3.2 Proof

THEOREM 3.2. Minimizing A from eq.(3.7) with
Ra(A) = 0 is equivalent to minimizing the following
problem:
(3.1) mina' Ba —2q"a

where a = vec(A"), B = I;® (Z-Z1), ¢ = (Ia ®
Z_Z])vec(ly).

Proof. We will use the following equation to show the
equivalence.

tr(AkxiBixmCmxn) = vec(AT)T(Ik ® B) vec(C)

min |24 — AZ_[}
©min Tr((Z] —ZIA")(Zy — AZ_)]
©min TrlAZ_Z'A" —21,Z,7Z" A7)
<:>mgn vec(AT) T (I @ Z_Z")vec(AT)

—2vec(Iy) " (I;® Z+ZT) vec(AT)
smina (I;0Z_Z")a—2vec(ly) (14 @ Z,Z")a

+

emina' (I;,0Z_Z")a — 2<(Id ®Z 7)) Vec(Id)) a
<mina' Ba—2¢'a

where a = vec(A"), B =1, ® Z_Z' and q = (I; ®
Z_Z])vec(l;). W

4 Qualitative Prediction Analysis

In this section, we qualitatively show the prediction ef-
fectiveness of the gLDS-smooth model from our frame-
work. Figure 1 and Figure 2 show the predictions results
for the flour price series in Minneapolis and Kansas City.
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Figure 1: Predictions for flour price series in Minneapo-
lis.
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Figure 2: Predictions for flour price series in Kansas
City.

4.1 Quantitative Prediction Analysis In this sec-
tion, we quantitatively compute and compare the pre-
diction accuracy of the proposed methods (gLDS-ridge
and gLDS-smooth) with the standard LDS learning ap-
proaches: EM and spectral algorithms. The results are
shown in Table 1 and Table 2.

5 Stability Effects of gLDS-stable

In this section, we show the stability effects of the gL.LDS-
stable model learned using our framework by generating
the simulated sequences in the future for flourprice,
h20-evap and clinical datasets, which are shown in
Figures 3 - 5.



Table 1: Average-MAPE results on flourprice dataset.

Training: 80% Training: 90%
# of states 5 10 5 10
Spectral 6.25 5.86 6.61 5.93
EM 3.62 4.15 3.63 3.94
gLDSridge  3.37 314 3.29  2.82
gLDS-smooth  3.24 2.71 2.86 2.50

Table 2: Average-MAPE results on h20_evap dataset.
Training: 80% Training: 90%

# of states 5 10 5 10
Spectral 36.26 32.20 13.73 15.88
EM 39.53 68.68 17.33 17.46
gL.DS-ridge 27.97 28.53 16.12 14.42
gL DS-smooth 26.38  26.46 14.01 14.08
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Figure 3: Training data and simulated sequences from
gLDS-stable model in fourprice data.
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Figure 4: Training data and simulated sequences from
gLDS-stable model in h20_evap data.

gLDS-stable

% ——MCHC
—MCH
80+ | —MCV
| Future ——MPV
g 60 History ! RBC
E RDW
§ 40 r : o
]
20 }
—
0 I I 1 1 1 1 1 |
0 50 100 150 200 250 300 350

Time indices

Figure 5: Training data and simulated sequences from
gL DS-stable model in clinical data for one patient.

6 Sparsification Effects of gLDS-low-rank

In this section, we show the sparsification effects of
the gLDS-low-rank model learned using our framework.
The gLDS-low-rank model is able to identify the intrin-
sic dimensionality of the hidden state space. The results
are shown in Figure 6 and Figure 7.
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Figure 6: Intrinsic dimensionality recovery of the hidden
state space in flourprice dataset.
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Figure 7: Intrinsic dimensionality recovery of the hidden
state space in clinical dataset.
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