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S1: Scheme of the experimental geometry 22 A schematic representation of the experimental geometry is shown in Fig. S1. The 23 
ac-cut surface of a LBCO (x=9.5%) sample was illuminated with pump and probe 24 THz pulses, both polarized along the c direction (i.e., perpendicular to the Cu-O 25 layers). The probe beam had an incidence angle of 45°, while the pump hit the 26 sample at normal incidence.  27 

 28 
Figure S1. Schematic representation of the measurement geometry. The Cu-O planes are indicated along 29 
with propagation vector and polarization of the light fields. A top view is shown on the right. 30 
 31 
S2. Josephson equation as Mathieu equation 32 A Josephson junction can be approximated with an LC circuit equivalent. By 33 equating the capacitive current 
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where rε  is the dielectric permittivity of the Josephson junction, c  the speed of light, 39 
e the electronic charge, 0I  the critical current,  C  the capacitance of the junction, 40 and 41 
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The equation of motion of the Josephson phase with damping ( γ ) therefore reads 43 
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In a perturbed state in which the oscillator strength is modified as  45 
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the time dependence of the Josephson phase is described by  47 
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We note that Eq. (4) is a damped Mathieu equation of the form 49 
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 52 
S3. Simulation of the nonlinear optical properties from the sine-Gordon equation 53 A Josephson junction with semi-infinite layers stacked along the ݖ direction (with 54 translational invariance along the y direction) can be modeled with the one-55 



dimensional sine-Gordon equation1,2. Being x the propagation direction, the 56 Josephson phase evolution is described by: 57  58           ),(sin
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θ                              (6) 59  60 The damping factor γ  is a fitting parameter used to reproduce the optical properties 61 observed experimentally. In this section, we drop the subscripts for simplicity, i.e. 62 we redefine ),(),(1, txtxii θθ =+ . The pump and probe THz fields impinge on the 63 superconductor at the boundary ݔ = 0. The Josephson phase evolution is therefore 64 affected by the following boundary conditions at the vacuum-sample interface3. 65  66                  ሾE୧(t) + E୰(t)ሿ୶ୀି = Eୡ(x, t)|୶ୀା = H ଵனెౌ√க ப(୶,୲)ப୲ |୶ୀା,                             (7) 67                  ሾH୧(t) + H୰(t)ሿ୶ୀି = Hୡ(x, t)|୶ୀା = −Hλ ப(୶,୲)ப୶ |୶ୀା.                                 (8) 68  69 The subscripts i, r, and c denote the fields incident, reflected and propagating inside 70 the cuprate, respectively. Here H = Φ/2πDλ, where Φ is the flux quantum 71 ቀΦ = ଶቁ and D is the distance between adjacent superconducting layers. The 72 equilibrium Josephson Plasma Resonance (JPR) is an input parameter in the 73 simulations, which is chosen to be that of La1.905Ba0.095CuO4, i.e. ωୖ = 0.5 THz. 74 For fields in vacuum (ݔ < 0), the Maxwell’s equations imply 75  76                                     E୧ − E୰ = னஜୡ୩ (H୧ + H୰) = H୧ + H୰ .                                                 (9) 77  78 By combining Eq. (9) with Eq. (7) and (8) we obtain the boundary condition 79  80                               ଶ√கୌబ E୧(t)|୶ୀି = ப(୶,୲)னెౌ ப୲ |୶ୀା − √ε ப(୶,୲)ப୶/ె |୶ୀା.                                 (10) 81  82 



After solving the Josephson phase through Eq. (6) and Eq. (10), the reflected field is 83 calculated from Eq. (7). The equilibrium reflectivity of the cuprate is obtained by 84 computing the ratio between the Fourier transforms of the reflected field and a 85 weak input field 86  87                                     rୣ୯୳୧୪୧ୠ୰୧୳୫(ω) = E୰ୣ ୯୳୧୪୧ୠ୰୧୳୫(ω)/E୧(ω) .                                     (11) 88  89 The complex optical properties are then calculated from rୣ୯୳୧୪୧ୠ୰୧୳୫(ω) . In 90 particular, the equilibrium dielectric permittivity and loss function are computed as: 91  92 
ε(ω) = ൭ቆ1 − rୣ୯୳୧୪୧ୠ୰୧୳୫(ω)1 + rୣ୯୳୧୪୧ୠ୰୧୳୫(ω)ቇଶ൱ 

L(ω) = −Imag ൭ቆrୣ୯୳୧୪୧ୠ୰୧୳୫(ω) + 1rୣ୯୳୧୪୧ୠ୰୧୳୫(ω) − 1ቇଶ൱  93 For the pump-probe configuration, the input field is the sum of the pump and probe 94 fields (with a defined delay between them):  95  96                                              E୧(t) = E୮୳୫୮(t) + E୮୰୭ୠୣ(t).                                                      (12) 97  98 Correspondingly, the Josephson phase can be written as 99  100                                                    θ = θ୮୳୫୮ + θ୮୰୭ୠୣ.                                                                 (13) 101  102 And the sine-Gordon equation (6) decomposes into two coupled equations 103  104 
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 107 For a weak probe (θ ≪ 1), cos θ୮୰୭ୠୣ ≈ 1 and the effect of θ୮୰୭ୠୣ on θ୮୳୫୮ can be 108 neglected in Eq. (14). The phases θ୮୳୫୮ and θ୮୰୭ୠୣ are calculated in two steps: (i) 109 Eqs. (14) and (10) are solved with the driving field E୧ = E୮୳୫୮ to get θ୮୳୫୮(x, t) and 110 then (ii) Eq. (15) and (10) are solved by substituting θ୮୳୫୮(x, t) with the input field 111 E୧ = E୮୰୭ୠୣ , to obtain θ୮୰୭ୠୣ(x, t)  and the reflected probe field E୰୮ୣ୰୲୳୰ୠ . The 112 perturbed reflectivity is given by 113  114                                          r୮ୣ୰୲୳୰ୠ(ω, t) = E୰୮ୣ୰୲୳୰ୠ(ω, t)/E୧(ω).                                           (16) 115  116 The optical response functions of the perturbed material are extracted from the 117 complex optical reflectivity r୮ୣ୰୲୳୰ୠ. For instance, the dielectric permittivity and loss 118 function are calculated as: 119                                                   ε(ω) = ቆቀଵି୰౦౨౪౫౨ౘ(ன)ଵା୰౦౨౪౫౨ౘ(ன)ቁଶቇ 120 
                                      L(ω, t) = −Imag ቆቀ୰౦౨౪౫౨ౘ(ன,୲)ାଵ୰౦౨౪౫౨ౘ(ன,୲)ିଵቁଶቇ. 121 
 122 
S4. Pump spectrum 123 The electric field profile of the THz pump pulse measured at the sample position is 124 displayed in Fig. S2A along with the corresponding frequency spectrum (Fig. S2B). 125 This is peaked at ~0.5 THz, being therefore resonant with the JPR of LBCO9.5 (see 126 reflectivity edge in the blue curve of Fig. S2B). The input pump field used in the 127 simulations is also displayed (dashed), both in time (Fig. S2A) and frequency 128 domain (Fig. S2B).  129 
 130 



 131 
Figure S2. (A) Electro-optic sampling trace of the THz pump pulse measured at the sample position and 132 
(B) corresponding frequency spectrum. The c-axis equilibrium reflectivity of LBCO9.5 at T = 5 K is also 133 
displayed. Dashed lines in both panels refer to the input pump field used in simulations. The ringing 134 
observed on the trailing edge of the pulse (black line in A) is due to narrow water absorption lines at ~0.5 135 
THz and ~1.2 THz (see also corresponding spectrum in B). These can be ignored because all measurements 136 
but that reported in this figure have been performed under high vacuum condition (P = 10-6 mbar). 137  138 
 139 
 140 
S5. Pump field dependence 141 The spectrally integrated pump-probe response is displayed in Fig. S3 for different 142 pump field strengths. A minimum field of ~30 kV/cm was required to induce a 143 response of sufficient amplitude to be detected in our experiment. 144 The oscillatory behavior at twice the equilibrium JPR frequency was found to be 145 only weakly dependent on the pump field strength. Note that pump-field-146 independent 2ωJP0 oscillations are only observed at t ≳ 0 ps, i.e. after the early-time 147 dynamics (t ≲ 0 ps) dominated by perturbed free induction decay4,5,6 (shaded region 148 in Fig. S3). 149 The time-delay and frequency dependent loss function measured with a pump field 150 of 40 kV/cm is displayed in Fig. S4, along with the corresponding theoretical 151 calculations. These can be compared with the data of Fig. 5 in the main text, which 152 were taken with a higher pump field (~80 kV/cm). Remarkably, while the 2ωJP0 153 oscillatory behavior is observed in both data sets, periodic amplification is only 154 present with stronger pump field (consistently in both experiment and calculations). 155 



This indicates that phase-sensitive amplification of Josephson Plasma Wave can be 156 achieved only for THz pump field amplitudes above a threshold of  ~70 kV/cm.  157  158  159 

 160 
Figure S3. (A) Spectrally-integrated pump-probe response measured for different pump field strengths at a 161 
sample temperature T = 5 K. The dashed line is an example of background which was subtracted to extract 162 
the oscillatory components shown in the inset. The negative time delay region, interested by perturbed free 163 
induction decay, is shaded in grey. (B) Normalized Fourier transforms of the oscillatory signals. 164  165 
 166 
 167 

 168 
Figure S4. Time-delay and frequency dependent loss function determined (A) experimentally and (B) by 169 
numerically solving the sine-Gordon equation in nonlinear regime. The applied THz pump field is 170 
40 kV/cm. 171 
 172 



S6. Temperature dependence 173 In Fig. S5 we show the measured equilibrium reflectivity of LBCO9.5 at two different 174 temperatures. The JPR exhibits a red shift from ~0.5 THz to ~0.35 THz upon 175 increasing the sample temperature from 5 K to 30 K.  176 The temperature dependence of the spectrally integrated pump-probe response has 177 also been determined experimentally (only the oscillatory component of this 178 response is shown in Fig. S5B). As expected, the measured oscillations slow down 179 with increasing T. Indeed their frequency reduces from ~ 1 THz at 5 K to ~0.75 THz 180 at 30 K, scaling as 2ωJP0. 181 
 182 

 183 
Figure S5. (A1) Eprobe(τ) measured in absence of pump field at different temperatures above and below Tc. 184 
(A2) Frequency-dependent reflectivity at T = 5 K and T = 30 K, extracted from the Eprobe(τ) trace of panel 185 
(A1). (B1) Oscillatory component of the spectrally-integrated pump-probe response, measured at T = 5 K 186 
and T = 30 K at the same τ (arrow in (A1)). (B2) Corresponding Fourier transforms of the oscillatory 187 
integrated response. 188 



 189 
S7. Parametric Amplification 190 
An increase of the signal amplitude along the sampling time axis τ, which is in fact the 191 
Fourier transform of the spectrum, is shown in Fig. 4 of the main text. Amplification is 192 
demonstrated even more directly in Fig. 5, where we show the energy loss function. As 193 
discussed in the text, this function is proportional to ߝଶ(߱), and it is shown to become 194 
negative at selected time delays. 195 
 196 
 197 

 198 
Figure S6. (A) Frequency-dependent reflectivity and (B) corresponding absorption coefficient, determined 199 
before and after excitation (at a selected pump-probe delay t). Experimental data (A2, B2) are displayed 200 
along with simulations (A1, B1), consistently showing amplification at ߱~߱. Dashed lines at R = 1 and 201 
α = 0 are visualized to emphasize the amplification. Error bars (blue ticks in A2, B2) are propagated from 202 
the standard deviation in the measured Δܧோ/ܧோ signal (estimated from different scans). 203 

 204 
 205 

In order to quantify the level of amplification, we use the absorption coefficient ߙ, as in 206 
Ref. 7. The lowest value determined at 0JPω  is ߙ = ଶఠ Im( ݊) ≃ (−0.090 ± 0.003)μmିଵ 207 



(here n~  is the complex refractive index), as shown in the Fig. S6B for both experiment 208 
and simulations.  209 
For clarity, we also include the reflectivity in Fig. S6A, which for a specific frequency 210 
becomes larger than 1 ( ܴ = 1.042 ± 0.008 ), providing a further demonstration of 211 
amplification.  212 

 213 
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