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Section 1: Sample processing 

 

Gabriel Santpere, Alexander Cagan 35 
 

 

1. Samples 

 

1. Samples 40 
 

 The dataset we analyzed consists of whole-genome autosomal sequences from 83 individuals across 

all the major lineages of the Hominidae (with the exception of G.b. beringei) (Figure 1 & supplementary 

table S1). The dataset was originally presented in Prado-Martinez et al. (Prado-Martinez et al. 2013; SOM), 

where the SNP calling pipeline and filtering criteria are described in detail. All reads are mapped to the 45 
human reference genome (hg18). This approach has three main advantages. First, we take advantage of the 

extensive data-quality exploration and filtering performed in the original publication. Second, mapping to the 

human genome ensures that all species are mapped to a high-quality genome, avoiding the (hard to account 

for) biases that would result from mapping to genomes of low and different qualities. Third, the human 

genome has the most comprehensive annotation of gene coding regions, which is a central object of this 50 
study.   

 

1.1.  Filtering strategy 

 

 Genomic data is prone to many artifacts that can bias downstream analyses.  To account for this we 55 
applied a comprehensive series of filters which are summarized in supplementary fig S1.  To avoid errors 

introduced by miss-mapping caused by multi-copy sequences or structural variants among species, we 

restricted all analyses to genomic intervals with a unique mapping to the human genome. Using UCSC tracks 

we excluded from analysis all repetitive regions identified by RepeatMasker (~248 Mb), if repeat divergence 

were lower than 10%, and from Tandem Repeat Finder (~38 Mb). In both cases we only masked repeats 60 
longer than 80 bp, since repeats shorter than reads can be better mapped by their flanking non-repetitive 

sequence. We also masked segmental duplications (~154 Mb) and genomic gaps (~226 Mb). Finally, we also 

excluded structural variants detected in any of the great ape lineages (~334 Mb). These regions were detected 

in a previous study of structural variation in great apes which analysed this dataset (Sudmant et al., 2013). 

 Exclusion of regions that may contain unnanotated structural variants removes a potential source of  65 
false positives in our analyses. We expect filtering out structural variants to have a minor effect on our 

subsequent analyses. As our approach is empirical (except for the MK, where we compare synonymous and 

non-synonymous mutations and thus removing CNVs would have minimal effect) we do not attempt to 

estimate the proportion of the genome under natural selection. We expect the tails of the empirical 
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distributions of our selection tests to be enriched in true candidates of natural selection regardless of the 70 
removal of CNVs.  

  Furthermore, sites with depth of coverage (DP) < (mean read depth/8.0) and DP > (mean read depth 

* 3), were also removed. To maximize the number of sites to be analyzed we excluded multiple individuals 

with low coverage (supplementary tables S1 and S2). Some variable sites presented missing data introduced 

by an Allele Balance Filter used in Prado-Martinez et al. to account for the putative contribution of traces of 75 
genetic contamination. These positions were generally excluded particularly in analysis dependent on allele 

frequencies. Additionally, we also required positions to have at least 5x coverage in all individuals per 

species. To increase the number of callable sites we excluded low coverage individuals Only the resulting set 

of sites, which we termed 'callable sites', were used in further analysis. This resulted in a mean of 2,099 Mb 

of analyzable genome sequence per species (supplementary fig S1).  80 
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Section 2: HKA test 

Alexander Cagan, Christoph Theunert, Aida M. Andrés 

 

1. The HKA test  

 105 

 We aim to identify candidate targets of natural selection by analyzing the patterns of diversity and 

divergence in the genomes of each lineage. The neutral model predicts that the ratio of polymorphism to 

divergence will be approximately constant across the genome, and regions where this ratio is highly skewed 

in either direction represent potential deviation from neutrality due to selection. The Hudson-Kreitman-

Aguade (HKA) test is a neutrality test that contrasts intra-population diversity to inter-populations 110 

divergence in a test locus, and compares it with putatively neutral loci (Hudson et al. 1987). By contrasting 

patterns of diversity and divergence in genomic windows without any differentiation of loci by their function 

(e.g. coding and non-coding regions), the HKA test is able to detect signatures of selection without an a 

priori assumption that selection will be in a particular type of loci (e.g. coding regions). The ratio of diversity 

to divergence also allows the HKA test to detect selection at a greater time scale than many SFS-based tests, 115 

which lose power once the selected locus has recovered to equilibrium levels of diversity. A previous study 

comparing the statistical power of selection tests found the HKA test to have the most power to detect 

positive selection (Zhai et al. 2009). At the genome scale we apply a test based on the HKA by analyzing 

windows across the genome to identify loci that are outliers of the empirical distribution, either because their 

ratio of polymorphisms to substitutions is too high or because it is too low when compared with the rest of 120 

the genome; these regions represent candidate targets of natural selection in the great apes. Because different 

types of selection affect differently the ratio of polymorphism to divergence, this test allows us to distinguish 

among different types of selection. Regions with the lowest HKA scores, where diversity levels are lowest 

relative to divergence, are candidates for being under positive or negative selection (diversity-reducing types 

of selection). Regions of the genome where the HKA score is highest, due to high levels of diversity relative 125 

to divergence, are suggestive of long-standing balancing selection. Regions of the genome in the middle part 

of the empirical distribution are expected to be either neutral or subject to varying levels of purifying 

selection. 
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 When whole-genome data is unavailable, significance of the HKA test has been estimated based on 

neutral coalescent simulations, which allow us to predict the range of HKA scores expected under neutrality. 130 

Here, with availability of full genome data, and under the reasonable assumptions that the majority of the 

genome is evolving neutrally or under purifying selection, and that a small portion of the genome is evolving 

under positive and balancing selection, candidate targets of natural selection can be obtained from the tails of 

the empirical distribution. Regions of the genome with scores at either extremes of the HKA score empirical 

distribution have the most unusual ratios of polymorphism to divergence, and are thus potential targets of 135 

natural selection.  

  

 

1. Overview of steps taken to avoid and account for possible artifacts 

 140 

 An unusual level of polymorphism may result from technical artifacts and thus not represent true 

signatures of natural selection. We address this problem by taking several steps to ensure signals are not the 

result of technical artifacts. Particular attention was taken to artifacts that may result in increased 

polymorphism, since the HKA is the only test in this study that aims to identify the signatures of balancing 

selection, but our filtering strategy should be effective in removing artifacts that may result both in high and 145 

in low levels of diversity. We present here a summary of the steps we followed to ensure that we detect true 

biological signals rather than technical artifacts; details can be found in the sections below. 

  

1.1. Pre-test Filtering 

The fact that not all populations are analyzed for exactly the same sites can also lead to unequal power for 150 

the HKA test. To reduce the effect of these possible biases, data was filtered using the following criteria: for 

each pair-wise HKA test sites were excluded if they had a read depth of < 5x in any individual in either of 

the two populations analysed. 

 

 155 

1.2. Performing the HKA test 
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 The test, based on the HKA, was calculated in 30kb windows with a 15kb overlap between windows 

across the genome. For each window and population, we computed the number of polymorphic sites and the 

number of fixed substitutions to the out-group. Fixed substitutions are positions where both populations are 160 

fixed homozygous for alternative alleles. Here, our HKA score for each window was calculated by dividing 

the number of polymorphic sites (diversity) by the number of fixed substitutions (divergence). Windows with 

less than 300 callable sites or with less than 6 informative sites (substitutions between populations or within-

populations polymorphisms) were removed from the analysis as the scarcity of sites may introduce too much 

noise. H. sapiens was used as an out-group for all tests for consistency, and P. troglodytes was used as an 165 

out-group for analyzing H. sapiens. In P. troglodytes, the test was carried out at the sub-populations level, 

for each of the four P. troglodytes sub-populations separately and with H. sapiens as out-group. After 

performing the HKA test we confirm that the regions in the extreme tails of the HKA score distribution are 

not unusual in terms of their coverage, mapping quality, or the number of duplications they contain (which 

addresses possible mapping problems as well as gene conversion). We find no systematic bias in any of these 170 

categories (see Supplementary Materials HKA 1.3 and 1.4), showing that technical artifacts do not 

substantially contribute to the regions we detect as candidates of natural selection.  

 

1.3. Coverage Bias 

 175 

 One possible source of unusual diversity levels is extremely high or low coverage in the analyzed 

window. To ensure that this technical aspect of the data is not substantially contributing to the extremes of 

the HKA distribution (so we detect true biological signals rather than technical artifacts), we tested whether 

extreme HKA scores are biased towards lower or higher average coverage than other regions of the genome. 

To do this, we divided the 30kb windows which are the output of the HKA test into three categories based on 180 

their HKA score: regions with HKA scores in the top 1%, bottom 1% and middle 98% of the empirical 

distribution.  

 We also ran permutations from each of the three categories to ensure that there is no bias that is 

being obscured because the middle 98% of the distribution has a much larger number of data points than the 

top and bottom 1% distributions. For each permutation, 50 regions were randomly selected from each of the 185 

distributions and their average coverage was calculated. This was repeated 1000 times with replacement. 
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These results show no evidence of differences in coverage among the groups of loci with average and with 

extreme HKA scores (supplementary fig S2 for an example with G.g. gorilla).  

 

1.4. Mapping Quality Bias 190 

 

 To ensure that mapping problems did not affect our analysis, we calculated the average Mapping 

Quality score across all callable sites for the 30kb windows in the bottom 5%, top 5%, and middle 90% of 

the genomic distribution of HKA scores (see supplementary fig S3 for an example with G.g. gorilla). All 

regions have an average Mapping Quality Score within the range of 56-59, well above the mapping quality 195 

threshold of 25 used for the dataset, and with no skew towards lower Mapping Quality in the top tail of the 

distribution, suggesting no systematic bias towards low mapping scores in the extreme tails of the HKA 

distribution. 

 

2. Percentage of windows containing exons analysis 200 

 

 To explore the results of the HKA test and to investigate the power of the test to detect regions under 

natural selection we tested if there was an enrichment of windows containing functional elements in the tails 

of our HKA score distribution. As most of the genome is believed to be non-functional but natural selection 

targets functional sites, we expect an enrichment of windows containing functional elements in the tails of 205 

the HKA empirical distribution.  

 

2.1. Methods 

 

 To test this we first created two different lists of functional sites based on the GENCODE annotation 210 

of the H. sapiens genome. We made one list with the start and end coordinates of all exons classified as 

being from protein-coding genes. We made another list with the start and end coordinates of all exons 

classified as being from either RNA (mtRNA , miRNA, Mt_rRNA, misc_RNA, rRNA, snRNA, snoRNA) or 

non-protein-coding genes. This allowed us to additionally test whether there was a difference in the pattern 

of HKA scores between protein-coding compared to non-protein-coding regions.  215 
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 For each list separately, and for each lineage, we annotated the 30kb HKA windows as overlapping 

(or not overlapping) with an exon by at least 1bp. We then defined different thresholds of the tail of the 

empirical distribution of the HKA score, and calculated what percentage of windows within each percentile 

overlap with exons.  

 220 

 

Results 

 

2.2. Protein-coding exons  

 225 

 The results for protein-coding exons show that there is a trend for the number of windows containing 

protein-coding exons to increase when moving from windows with high HKA scores to windows with low 

HKA scores, as long as the windows are not in the far tails of the empirical distribution (e.g. from the 99-5% 

bins, Figure 2 and supplementary table S3). As the lower HKA scores tend to be driven by reduction in 

diversity rather than an excess of divergence (supplementary fig S4) this suggests that this trend of exonic 230 

enrichment towards lower HKA scores is most likely driven by the effect of purifying selection, which are 

on average stronger in exonic regions of the genome (McVicker et al. 2009).  

 It is interesting that at the very bottom tail of the HKA empirical distribution all lineages show a 

slight difference in trends, with the percentage of windows containing protein-coding exons not always 

increasing further as we move further into the tail (depending on the populations at different points between 235 

the bottom 5% and the end of the bottom tail). There could be several reasons for this change, which is 

observed in all lineages. One explanation could be noise, as the number of regions decreases when moving 

further in the tail. An alternative explanation is that the most strongly selected targets of selection are non-

coding variants in regulatory regions that are not close to genes. A third explanation is that some selective 

sweeps targeting exonic regions extend far beyond the exons themselves, resulting in an excess of windows 240 

in the extreme bottom tail of the HKA empirical distribution that do not contain exons but have low diversity 

because they are part of a selective sweep on an exonic variant. This is not unexpected as fast selective 

sweeps can extend very long genomic regions because the short-term effects of recombination do not break 

the association across variants (Maynard Smith & Haigh, 1974). In fact, we observe an unusually high 
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clustering of windows among those present in the bottom tail of the HKA empirical distribution (see 245 

Supplementary Materials HKA 4) 

It is also interesting that in the extreme top tail of the HKA empirical distribution (candidate regions 

under balancing selection) we observe a change with respect to the overall trend described above. 

Specifically, we observe a drastic increase in the percentage of windows overlapping exons for the windows 

more strongly enriched in SNPs, in all the populations. This is unexpected under neutral evolution and under 250 

purifying selection, and is likely to be the result of balancing selection acting on or near these protein-coding 

exons. Also, the signature of long-term balancing selection is narrow due to the long-term effects of 

recombination (e.g. Kaplan et al. 1988; Charlesworth et al. 1997) and we do not expect several windows to 

show the signatures of one single event. This conclusion is further supported by the observation that in all 

lineages many of these genes are from the MHC region, a well-known target of balancing selection across 255 

vertebrates (Hughes et al. 1998). Therefore this analysis provides evidence to support the idea that long-term 

balancing selection is not prevalent across the genome (although we note that we may have limited power to 

detect its signatures in 30kb windows). Despite the small number of regions, many of them are shared across 

populations, emphasizing the important and conserved role that balancing selection plays in maintaining 

adaptive diversity, particularly with regards to immune function. Among the other genes in these windows 260 

with high HKA scores are novel candidates for being targets of long-standing balancing selection. 

 

2.3. Non-protein-coding exons  

 

The pattern we observe across the HKA empirical distribution for the percentage of windows 265 

overlapping non-protein-coding exons is strikingly different (supplementary fig S5 and supplementary table 

S4). There is no trend for an increasing percentage of windows overlapping exons as the HKA score 

decreases. Instead, the percentage of windows overlapping exons is flat along the middle 80% of its 

distribution, consistent with weaker influence of purifying selection. This may be due to weaker natural 

selection in non-protein-coding exons, a lower percentage of windows overlapping conserved elements (as 270 

non-protein-coding RNAs tend to be shorter than protein-coding ones), or a combination of both.  
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2.4. The percentage of protein-coding exons in different bins of the HKA empirical distribution 275 

correlates with effective population size  

 

 We observe some differences between populations in the patterns above, which may be explained by 

their differences in effective population size (Ne). The effective population size influences the effectiveness 

of natural selection (Lanfear et al. 2014). For example, with larger Ne slightly deleterious alleles are more 280 

effectively removed from the population through negative selection, and advantageous alleles are more likely 

to increase in frequency through positive selection. A consequence of negative selection is background 

selection, the removal of linked neutral variation along with truly deleterious alleles due to linkage. 

Therefore we expect a greater relative deficit in diversity in and around conserved regions in populations 

with larger effective population sizes as both positive and purifying selection act to lower diversity. 285 

 To test whether the differences observed between populations correlate with their effective 

population size we used two different estimates of Ne previously calculated from this data set (Prado-

Martinez et al. 2013). The first estimate of Ne used is an estimate of long-term Ne calculated based on 

Watterson's estimator (supplementary table S3 & Prado-Martinez et al. 2013). The second estimate of Ne 

corresponds to the size of the population since the split with its closest population in the dataset. This was 290 

previously estimated using the method of PSMC (Li & Durbin 2011) (supplementary table 5 of Prado-

Martinez et al. 2013) . We used two different estimates because they measure the effective population size 

during different evolutionary periods. We were interested in whether either recent or rather long-term Ne 

shows a stronger correlation with our power to detect the signatures of natural selection and/or with the 

efficacy of selection. Recent changes in population size can have dramatic effects on levels of genetic 295 

diversity, in turn affecting our power to detect localized reduction in diversity. If the differences we observe 

among populations are largely due to these power issues (higher power to detect local reduction of diversity 

in populations with a higher overall level of diversity) recent Ne should show the strongest correlation with 

the relative reduction in diversity around conserved sequences (protein-coding exons).  

 The results of a Pearson's correlation test show that the difference between populations in the 300 

percentage of windows containing protein-coding exons (E) in a given bin of the HKA empirical distribution 

significantly positively correlates with their estimated long-term Ne (Figure 2 and supplementary table S3) 
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for the 0.05% and 1-20% bins (0.1% bin marginally non-significant, p-value: 0.07). There is a significant 

negative correlation between E and estimated long-term Ne for the 55-99% bins. There is a significant 

positive correlation between E and an estimate of recent Ne for the 0.05-5% bins (Figure 2 and 305 

supplementary table S3). The estimate of recent Ne significantly correlates with E in fewer bins that the 

estimate of long-term Ne (4 compared to 13 bins) and the correlation with recent Ne is only stronger than the 

correlation with long-term Ne in the bottom 0.05-0.1% bins, suggesting that overall we observe the effects of 

the relatively long-term evolutionary history of each population, rather than merely differences in power due 

to the overall level of diversity. Nevertheless, putative differences in accuracy between the two Ne estimates 310 

may affect their comparison here. 

 The correlation notably changes from a positive correlation to a negative one when comparing the 

regions in the bottom and in the top half of the HKA empirical distribution. We observe a strong positive 

correlation for several bins in the bottom half of the HKA empirical distribution, which likely reflects the 

increased effect of negative selection lowering diversity in populations with historically large effective 315 

population sizes (possibly combined with our higher power to detect that reduction in samples with higher 

genetic diversity). This is particularly striking in the case of P. paniscus, which has among the lowest Ne of 

any of the lineages apart from H. sapiens and P.t. verus (according to the Ne estimate based on Watterson's 

estimator) and shows no trend for reduced diversity in regions overlapping protein-coding exons. 

Interestingly, P. paniscus showed little effect of purifying selection for loss-of-function variants, whose 320 

detection is not dependent on their levels of diversity (Prado-Martinez et al. 2013). On the other hand, 

populations with historically large effective populations sizes have a greater number of exons in regions with 

low diversity, likely reflecting the actions of purifying and background selection in removing deleterious and 

linked diversity in these regions respectively.  

 The strong negative correlation for most of the top half of the HKA empirical distribution also likely 325 

reflects less efficient purifying selection and weaker background selection in populations with low effective 

population sizes, combined with the fact that we may have higher power to detect unusual localized diversity 

peaks in populations with lower overall genetic diversity (due to higher Ne).  

 

3. B-scores support the influence of positive and balancing selection in the tails of the HKA empirical 330 

distribution. 
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 To further investigate the role of purifying and background selection in driving the different HKA 

scores observed between regions we tested whether regions with low HKA scores tend to be highly 

conserved. To do this we calculated the average B score per base of every genomic region for which we have 335 

an HKA score. The B score is a measure of the amount of background selection operating on a region, with a 

lower B score representing a higher level of background selection and being the same for a given position in 

all populations (McVicker et al. 2009). If purifying selection is shaping patterns of genetic diversity in the 

genome by removing deleterious variants, then we should observe that as the average HKA score of regions 

decreases (due to a reduction in diversity) the average B score of these regions also decreases. This general 340 

pattern is indeed what we observe (supplementary fig S6 and supplementary table S5) across the HKA 

empirical distribution if we exclude the tails (between the 5-99% range of the HKA empirical distribution), 

suggesting that the relative influence of purifying and background selection, which is greatly influenced by 

the effective population size, may play a role in shaping the relative levels of genetic diversity between the 

lineages studied.  345 

 We observe an upturn in the average B scores of regions in the 5% or lower tail of the HKA 

empirical distribution in all populations, showing that many of the regions with the lowest HKA scores do 

not have as low a B score as expected given their extreme reductions in diversity relative to the genome-wide 

distribution. This might be due to noise, as there are few of these regions relative to larger cutoffs in the 

HKA distribution. Alternatively, it could be due to strong positive selection acting on these regions, reducing 350 

their levels of diversity much more than predicted based on negative selection (B-score) alone. Finally, this 

pattern could be explained by the relatively large selective sweeps, as diversity is removed in unconserved 

regions that are close to the selected variants due to hitch-hiking. In any case, the data suggests that we 

cannot explain well the regions in tails taking into account only purifying selection, supporting the idea that 

positive selection has contributed significantly to the tails. 355 

 We were interested in investigating the effect of Ne in the correlation between a window’s HKA 

score and its B-score. A Pearson's Correlation test comparing the correlation of the average B-scores per 

window for different cut-offs in the HKA empirical distribution with the two different estimates of Ne 

described above shows that the average B-score correlates significantly with Ne from the 1-10% tail for both 

estimates of Ne (supplementary fig S6 and supplementary table S5). The Ne values from Watterson's 360 
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estimator show a significant negative correlation with Ne from the 0.05-40% range of the HKA empirical 

distribution and a significant positive correlation from the 50-99% range. This suggests that effective 

populations size likely has a significant effect on the ability of the different populations to remove 

deleterious variants from conserved functional regions.  

 The 5% tail of the empirical distribution shows the strongest negative correlation with Ne (calculated 365 

using Watterson's estimator) with an R of -0.9 and a p-value of 0.0009. This supports the hypothesis that the 

Ne of a population has a very strong influence on its ability to remove variation in conserved regions through 

either purifying selection or selective sweeps due to positive selection, although differences in power among 

the populations may also play a role here.  

 370 

 

4. Spatial clustering of windows supports the influence of balancing and positive selection in the top 

and bottom tails of the HKA empirical distribution. 

 

 Neutral evolutionary processes are expected to act uniformly across the genome while selection is 375 

considered to be locus-specific. If the windows we observe in the extreme tails of the HKA empirical 

distribution are the result of drift we would not expect to see increased clustering of these windows in terms 

of their spatial proximity in the genome relative to the clustering of regions from other parts of the HKA 

distribution. Therefore any evidence of an increase in spatial clustering of windows in the tails relative to 

what is observed across the HKA empirical distribution would be indicative of selection acting at specific 380 

loci in the genome greater than 30kb in size.  

 To investigate whether we find any such evidence of spatial clustering we calculated the average 

distance between all possible pairs of windows in the top and bottom 0.1 % of the HKA empirical 

distribution respectively for each population. This distance was only calculated between windows on the 

same chromosome. To determine whether this average distance showed evidence of increased clustered 385 

relative to the neutral expectation we compared it to the average distance between an equal number of 

regions randomly selected from the remaining 99.8% of the HKA empirical distribution. We observe an 

increase in spatial clustering in the 0.1% tails of the HKA empirical distribution relative to the central 99.8% 

for almost all populations (supplementary table S12). This suggests that the extreme tails of the HKA 
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distribution are enriched for regions that contain targets of selective processes. We compared the mean 390 

mapping quality and depth of coverage of sites in these regions to randomly sampled regions from the 

genome-wide distribution. We find no evidence that regions in the extreme tails of the HKA distribution are 

unusual in these regards (see Supplementary Materials HKA 1.3 and 1.4). 

 The only exception to this pattern is the 99.9% tail of the HKA empirical distribution in P.t. 

schweinfurthii, where the windows do not show an excess of spatial clustering relative to the central 99.8%. 395 

However closer inspection of the location of the windows in the 99.9% tail shows that there is a strong 

pattern of clustering at the chromosomal level, with 42 windows on chromosome 6. The chromosome with 

the 2nd largest number of windows is chromosome 9, which has only 16 windows in the 99% tail. The high 

number of windows on chromosome 6 in the 99.9% tail of the HKA empirical distribution is a feature shared 

across populations and is likely to primarily reflect long term balancing selection acting on the MHC region. 400 

As P.t. schweinfurthii has several chromosomes with only two or three windows in the 99.9% tail of the 

HKA empirical distribution it is possible that the large distance between these windows masks the signal of 

spatial clustering of windows under balancing selection in the MHC region and other potential cases of 

balancing selection.  

 The increased spatial clustering of windows in the 0.1% tail of the HKA empirical distribution 405 

relative to the general distribution is observed across all populations (supplementary table S12). This may be 

due to positive selection causing selective sweeps, which result in the loss of diversity in a wide region 

flanking the selected variant. This observation may explain the reduction in exonic regions in the extreme 

bottom tail of the HKA empirical distribution we report above (see Supplementary Materials HKA 2.4), if 

genic targets of selection are flanked by selective sweeps with similarly low levels of diversity and high 410 

levels of divergence. Alternatively this may be due to the strongest targets of selection being non-genic.   

 To investigate if these results were related to differences in Ne between the populations we ran a 

Pearson's Correlation test with two different measures of Ne described above (supplementary table S12). 

Although we observe no significant correlations with either estimate of Ne, the amount of spatial clustering 

in the bottom 0.1% of the HKA empirical distribution approaches significance with a p-value of 0.06 and an 415 

R score of -0.6 when using the long-term Ne values based on Watterson's estimator. This suggests that Ne 

may be influencing the strength and/or number of selective sweeps that occur in a population, with more 

and/or stronger selective sweeps occurring in populations with larger Ne. These results suggest that among 
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the Hominidae selective sweeps may be more prevalent in populations with larger long term Ne, although 

differences in power between species with different levels of diversity could also play a role. 420 

 

5. Correlation of results with Tajima’s D 

 

 To search for additional evidence that the candidate regions we identified as evolving under positive 

and balancing selection were true positives we calculated Tajima’s D, another commonly used test for 425 

detecting positive and balancing selection, genome-wide  for each species and performed permutation testing 

to explore Tajima’s D signatures in the 1% extreme of the FWH (one-tail, see Supplementary Materials 

Section 3) and HKA (two-tails) empirical distributions. The results (supplementary table S107) show that 

windows in the tails of the FWH and HKA distribution are highly enriched for extreme values of Tajima’s D 

(highly significant in 25 out of 27 comparisons). The Tajima’s D test thus identifies similar outlier genes to 430 

the FWH and HKA tests and demonstrates that are results are broadly consistent with another test for 

selection. 

 

6. Candidate selected regions and genes 

 435 

  For each population we produced two separate tables of the 200 protein coding genes with the 

strongest signal of positive or balancing selection as determined by the rank of the windows they overlap in 

the HKA empirical distribution. Genes in windows with the lowest HKA score in the empirical distribution 

are candidates for being under positive selection while genes in windows with the highest HKA scores are 

candidates for being under balancing selection. These tables can be found in supplementary table S6. For 440 

each gene we report the rank of the window it overlapped, its chromosomal location, the HKA score of the 

window, the p-value of the window based on its rank in the HKA empirical distribution, and further 

information about the gene including its Ensembl ID and gene name, the gene type (e.g. protein-coding, 

lincRNA etc) and how many base pairs of exons overlapped the window.  

 445 

7. Functional annotation in candidate regions  
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 We sought to identify whether the regions with signatures of positive selection in the HKA test are 

enriched for functional elements, such as protein coding genes. To identify any potential signals of functional 

enrichment among the regions with signatures of positive selection in the HKA test we calculated the 450 

percentage of windows in the 0.1% tail containing either functional annotation, protein-coding exons or non-

protein-coding exons. Windows were annotated using GENCODE hg18 annotation (Harrow et al. 2012 ). 

Across all lineages values ranged from 62-90% for windows containing any type of functional annotation, 

50-85% for protein coding exons (a subset of functional annotation) and 15-24% for non-protein coding 

exons. 455 

 To test whether these values were greater than expected for each lineage we performed random 

sampling of an equal number of windows as found in the 0.1% tail from across the genome-wide distribution 

of 30kb windows. From these regions we similarly calculated the percentage of regions containing functional 

annotation. This process was repeated 100 times for each lineage. The results of these random permutations 

were compared to the results in the 0.1% tail (supplementary figs S7-S15). We find that the proportion of 460 

candidate windows with signatures of positive selection that overlap functionally annotated elements or 

protein coding exons is significantly greater than the proportion that these annotation categories represent in 

the genome for the majority of lineages except P. paniscus, P.t. verus and P. pygmaeus. In contrast, no 

lineage showed an enrichment of non-protein coding genes in the 0.1% compared to sub sampling from 

across the genome These results suggest that the candidate regions do not simply reflect the tail of a neutral 465 

distribution and provides clues as to the targets of adaptive evolution. 

 

8. Length bias of GO categories 

 

As the HKA and FWH tests are performed using genomic windows there is a potential for variation in gene 470 

length to bias the results of category enrichment. Assuming a null hypothesis of no selection acting on the 

genome, then the genes in the extreme tail of the distribution may be overrepresented by long genes, because 

these cover more genomic windows and are therefore more likely to appear in the tail by chance. Any 

biological categories that are enriched for long genes may therefore show signals of significant enrichment 

due to this length bias. This potential effect of gene length on enrichment tests is rarely accounted for in 475 

window-based selection analyses.  
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 To investigate if our results are influenced by this potential source of bias, we calculated, for each 

lineage, the mean length of the 200 genes in the bottom tail of the HKA empirical distribution. We compared 

this to the mean gene length of 200 genes in a random sample of genomic windows, 100 times. We observe 

no evidence of genes in the bottom tail of the HKA distribution being longer than the genomic mean based 480 

on the mean of the 100 means generated by this sub sampling procedure.  

 We repeated the process for the top tail of the HKA empirical distribution (candidate genes for 

balancing selection). For most lineages the mean gene length falls within the distribution of means obtained 

from random sampling. However for P. paniscus the mean length of genes in the top tail falls above the 

distribution of means obtained by random sampling. This trend may be partially driven by large intronic 485 

regions in these genes, where the absence of purifying selection permits diversity to accumulate. 

 We additionally explored the potential influence of length bias on our gene category enrichment test 

results by randomly sampling 200 windows from our genome-wide distribution using the process described 

above, 100 times. This process was repeated across lineages. For each pseudotest set we ran the GO 

enrichment analysis using FUNC (a software for biological enrichment analyses that can be run at the 490 

command line and is therefore capable of performing this number of tests) (Prüfer et al. 2007). The most 

frequently enriched GO category in these re-samplings is the 'biological process' category 'homophilic cell 

adhesion', which appears as significantly enriched in 6 out of the 100 re-samplings in P. abelii 

(supplementary tables S7-S11). Most other categories that appear as significantly enriched appear only once 

in a given population. In our actual results the GO category 'dendrite' appears as significantly enriched in 495 

three lineages (supplementary tables S16-S29. In the random sampling in two lineages this category is 

significantly enriched by chance in one of the 100 random sampling procedures and in one population it is 

significantly enriched in three of the 100 cases. The probability of this occurring by chance in all three 

lineages where we observe significant enrichment is thus extremely low. Therefore, these results suggest that 

gene length bias is unlikely to affect our enrichment of biological categories results (supplementary tables 500 

S7-S11). 

  

 

 

 505 
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Section 3: FWH test 

Hafid Laayouni, Marc Pybus, Ferran Casals, Jaume Bertranpetit 

 

1. Fay Wu’s H statistic calculation: 

 The Fay and Wu H statistic (FWH; Fay and Wu, 2000) measures departures from neutrality reflected 535 

in the difference between derived segregating sites at high-frequency and intermediate-frequency alleles. 

This statistic is especially robust to population demographic history, making it an improvement over 

Tajima's D in this regard (Tajima, 1989)). FWH takes advantage of ancestral information and is implemented 

in an overlapping window approach. The algorithm is run in windows of 30Kb with an offset of 15Kb. We 

validated the algorithm using simulations under neutral and selective scenarios with human demographic 540 

parameters (supplementary fig S19). 

 Windows with less than 300 callable sites were removed from the analysis to increase the quality of 

the data. Finally, an empirical p-value is calculated for each window for which we have a score thus 

generating a genome-wide ranking of scores. 

 545 

2. Results 

 The Fay Wu’s H algorithm was run on each lineage. In order to obtain a list of genes under positive 

selection for each lineage, windows were annotated following the same procedure as for the HKA pipeline 

(see Supplementary Materials HKA).   

 Using the empirical p-value of the FWH score, we first focus on the 1% extreme distribution of 550 

windows analyzed (approx. 1600 windows). Once annotated, for most lineages approximately 45% of these 

windows correspond to protein coding genes, 12% are lincRNA, 8% are pseudogene, 15% belong to other 

functional elements while 20% are not annotated as functional elements.  

2.1 Genes with extreme footprints of selection 

 The supplementary table S74 lists the top candidate gene targets of positive selection for the lineages 555 
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analyzed. All genes are provided with a rank value for the FWH statistic. Ranks correspond to the empirical 

distribution of windows in the analyzed genome. Many genes involved in immune response appear among 

the top of genes putatively having evolved under positive selection (which we refer to as outliers with 

reference to the empirical distribution). Some of these genes also belong to the 1% extreme tail of many 

lineages analyzed. For example, FER (cytokine-mediated signaling pathway) is an outlier in G.g. gorilla, P. 560 

abelii and P. pygmaeus and in P.t. ellioti. STAB2 (defense response to bacterium) is outlier in P. paniscus, 

P.t. ellioti and P. abelii. HLA-DMA (immunoglobulin mediated immune response) is outlier in P.t. verus and 

P.t. schweinfurthii. All the other genes involved in immune response appearing in the 200 top genes are 

outliers in two lineages or are specific to one lineage, a finding expected if there is stratification in the 

pathogenic environment among groups. 565 

 Many genes involved in neurobiological processes appear among the top genes putatively evolving 

under positive selection. KCNIP4 (neuronal cell body and signal transduction) belong to this extreme 1% in 

P. paniscus, P. t. troglodytes, P.t. schweinfurthii, and P.t. verus. ITGA8 (nervous system development; 

memory) belong to the 1% extreme tail of the distribution in P. paniscus, P.t. verus, P.t. schweinfurthii and 

P.t. ellioti. FAM169B (neuronal cell body and signal transduction) is an outlier in P.t. troglodytes. GPR98 570 

(neurological system process; sensory perception of sound) is an outlier in P.t. schweinfurthii. NELL1 

(nervous system development) is an outlier in P. paniscus. FGF14 is also involved in the development of 

nervous system and is an outlier in P. paniscus, G.g. gorilla and P.t. verus. NRG3 (member of the neuregulin 

gene family and implicated in susceptibility schizophrenia and schizoaffective disorder.) is an outlier in P. 

abelii and P. pygmaeus, P. t. ellioti, P.t. schweinfurthii and P.t. troglodytes. NRXN3, a gene encoding a 575 

member of a family of proteins that function in the nervous system as receptors and cell adhesion molecules 

shows up as extreme in three Pan troglodytes subspecies (P.t. schweinfurthii, P.t. troglodytes, P.t. ellioti) and 

in P. pygmaeus.  

 Interestingly, many genes involved in reproductive processes show up among the targets of positive 

selection; LGR4 is involved in the development of male genitalia and is an outlier in the P.t. troglodytes 580 

lineages. BARD1 is involved in spermatogenesis and is an outlier in P.t. schweinfurthii and P.t. ellioti. 

HSD17B4 is involved in androgen and estrogen metabolic processes and is an outlier in P. paniscus and P. 

abelii. RAD23B is involved in spermatogenesis and is an outlier in P. abelii. SPAM1 is involved in fusion of 
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sperm to egg plasma membrane and is an outlier in G.g. gorilla. IQCJ-SCHIP1 is involved in female gonadal 

development and is an us outlier in G.g. gorilla, P. paniscus, P. abelii, and P.t. schweinfurthii. Worth noting 585 

is that PCDH15, a gene involved in adult walking behavior and visual perception, shows up as an outlier in 

P.t. schweinfurthii and P.t. ellioti and P. paniscus. 

 The 200 coding genes in the 1% tail of the FWH distribution, containing putative signals of positive 

selection, show considerable overlap across lineages (supplementary table S73). The average pair-wise 

intersection is 7.4% (ranging from 3% between G.g. gorilla and P. abelii, and between P.t. troglodytes and 590 

P. pygmaeus to 25% between P.t. troglodytes and P.t. schweinfurthii). This suggests that there are multiple 

cases of shared genic targets of positive selection between lineages. 
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Section 4: MK test 605 

 

Gabriel Santpere, Arcadi Navarro  

 

1. Methods 

 610 

1.1. Selection scan 

 

 We carry out a scan of natural selection in each of the studied lineages. To do so we focus on 

protein-coding genes and use the classical McDonald-Kreitman (MK) test (McDonald & Kreitman, 1991). 

This test compares the variation accumulated in a given species to the divergence between this and other 615 

species at two site classes (e-g. at synonymous versus non-synonymous sites). This first version of the test 

assumes that all non-synonymous changes are neutral, strongly advantageous or strongly deleterious. 

Considered this way, strongly deleterious mutation would have been eliminated by selection while strongly 

advantageous ones would have been fixed or contribute very little to polymorphism. Thus, existing diversity 

at non-synonymous sites is assumed to be mostly neutral. Another assumption of the test is that evolution 620 

occurred in a diploid panmictic scenario with stationary size. The MK test has been shown to be more 

powered to detect negative rather than positive selection using simulated H. sapiens-P. troglodytes genetic 

data (Zhai, Nielsen, & Slatkin, 2009). 

 

1.2. Samples 625 

 

 For the MK test scan, we considered only species with at least five individuals (in the case of 

P.t.verus, we included the admixed Donald). We excluded individuals based on coverage to increase the 

proportion of the genome that could be evaluated (supplementary table S93 and Tables S1-S2). 

 630 

1.3. Protein-coding sequences for selection scan 
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 We extract coordinates for the coding part of all coding autosomal transcripts annotated in the 

RefSeq hg18, considering only unique identifiers (n=31,703, covering ~32Mb of genome). 

 We then intersect these CDS coordinates with the callable portion of the unique part of the genome 635 

that considers a position if all individuals used in the analyses show a minimum coverage of 5x. This leaves 

~15.1Mb of coding sequence (collapsing overlapping transcripts). 

 For each species and coding sequence we count all present SNVs and substitutions (supplementary 

table S94). We require both SNVs and substitutions to have appeared after the split with the most recent 

common ancestral node with H. sapiens (in the case of H. sapiens, we take the ancestral node with Pan). We 640 

oriented variants using the reconstruction of variant ancestralities from (Prado-Martinez et al., 2013). For the 

H. sapiens, Pan and Gorilla genus we only consider variants that present a monomorphic ancestral node. For 

Pongo, we get only those variants that are different from a monomorphic ancestral node between Gorilla and 

H. sapiens, and from Macaca mulatta. Missing data was allowed in the case of counting a position with a 

SNP but no missing data was allowed when counting substitutions. 645 

 

1.4. Variant annotation and MK test 

 

 We use the ANNOVAR software (http://www.openbioinformatics.org/annovar/) to annotate the 

synonymous (S)/non-synonymous (NS) effect of all SNPs and substitutions occurring in a transcript. 650 

Positions with more than two alleles were excluded. 

 We then count how many S and NS polymorphisms and substitutions we observe in each transcript. 

We then construct a contingency table and test for association with a one-tailed Fisher exact test. The test is 

performed only when a transcript shows three or more S changes (Ps+Ds) and three or more NS changes 

(Pn+Dn). For each transcript we obtain a p-value and an odds ratio (OR). For OR calculations, we added 0.5 655 

to all cells if one of the cells was zero. In supplementary table S95 we present all transcripts evaluated for 

each species. 

 

1.5. Estimates of rate of adaptive substitutions in the different primate species 

 660 
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 We estimate the proportion of adaptive substitutions (α) and their rate (ωα) in all studied species, 

using an extension of the MK test (Eyre-Walker & Keightley, 2009) as implemented in the DFE-alpha 

software. This method compares the site frequency spectrum from neutral and selected sites and infers a 

distribution of fitness effects of new deleterious mutations by maximum likelihood, and models recent 

demographic changes, to emit an estimation of α and ωα. This more sophisticated method has limitations in 665 

the number of sites evaluated to gives proper estimates, and makes it unsuitable to study individual genes. To 

estimate the rate of protein adaptation in the different primate species we used a concatenated data-set of 

3859 orthologous genes non-overlapping with any other described transcribed genomic elements in the 

human genome according to Refseq. 4fold synonymous sites were used as a neutral reference to estimate the 

proportion and rate of adaptive substitutions in 0fold non-synonymous sites using the DFE-alpha software. 670 

Unfolded site frequency spectra for each primate species were obtained using ancestral states in the closer 

node splitting each species with H. sapiens, as described for the classical MK test scan.  

Correlation between Ne and various DFE-Alpha estimates was studied while attending to phylogenetic non-

independence of the traits in the tree of the species analyzed using BayesTraitsV2, setting the methods to 

employ random-walk and maximum likelihood. Significance was assessed by comparing a model with a free 675 

correlation with another model with correlation fixed to 0, by means of a likelihood ratio statistic.  

 

2. Results 

 

2.1. Significant genes in MK scans 680 

 

 We tested for genes significant in the MK test at both tails indicating genes especially constrained 

(under strong purifying selection) and genes putatively under positive selection. In supplementary table S96 

the number of genes significant in the MK test with p < 0.05 are shown. The MK test is more powered to 

detect instances of strong purifying selection (Zhai et al., 2009) as observed by the increased number of 685 

significant transcripts obtained. P-log columns indicate transcripts that are significant and at the same time 

possess an extreme (p<0.05) OR value. The complete list of significant transcripts can be found in 

supplementary table S97.  
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 We compared our results with a previous MK genome-wide scan (Bustamante et al., 2005). We 

obtained from this study a list of genes described as positively selected (115) or negatively selected (215) 690 

between H. sapiens and P. troglodytes. Fifty positively selected genes in Bustamante et al. (2005) were also 

evaluated in our study and none of them gave a significant signal for positive selection with a p-value < 0.05. 

Of the 215 genes determined to be under strong purifying selection we had power to evaluate 147, and found 

four genes (P2RX7, TIAM1, COL12A1, CNGB3) that were also significant in our MK test. For the 

overlapping genes in both studies we performed a density plot of the logOR obtained for these genes in our 695 

analysis (supplementary fig S16). Clearly, genes with described strong purifying selection in Bustamante et 

al., 2005 are skewed to the left and separated from the overall distribution of logOR in our study. The 

distribution of logOR of genes with described positive selection appear bimodal with one peak skewed to the 

right and one other peak overlapping the average of the total gene-set. In general, the overlap between both 

studies is higher regarding purifying selection. 700 

 Several significant genes are related to nervous system function (supplementary table S98) and 

development. In particular MCPH1, CASC5, PHGDH, FTO and NBN, when mutated in H. sapiens, carry 

associated changes in brain size. Variants in other genes, such as SETX, MTPAP, RNF213 or VCAN are 

related to neurodegenerative processes in H. sapiens. Interestingly, SETX, a gene involved in spinocerebellar 

ataxia and amyotrophic lateral sclerosis, has been also described to be a target of recent positive selection in 705 

CEU (Grossman et al., 2013). Another well-represented group of significant genes are related to the immune 

system (supplementary table S99). Strikingly, we find several genes that help in the defense against viruses, 

such as ZC3HAV1, HIVEP1, MX1. Finally, we obtained a list of other significant genes related to several 

other human disorders (supplementary table S100). 

 Lifespan and attributes of the senescence process are important divergent features among primates. 710 

Longevity in humans is notably enhanced compared to non-human primates even if they are in captivity; the 

oldest living human was 122 years old compared to the record of 74 years for chimpanzees (de Magalhães & 

Church, 2007). However, the genetic bases of these differences are yet to be revealed. Many comparative 

studies on ageing have been performed on Rhesus monkeys but much less is known about the ageing and 

cognitive decline in great apes, with chimpanzees being the most studied. We have identified ageing-related 715 

genes with signatures of positive selection particularly in Pongo, which present a maximum lifespan in 

captivity of around 59 years. For example we detected one gene related to ageing, WRN, with evidence of 
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positive selection in P. pygmaeus using the MK test. Mutations in WRN in humans can cause Werner 

syndrome which is a dramatic progeroid syndrome, i.e. causes premature ageing (Goto, 1997). Interestingly, 

previous studies reported possible adaptive acceleration in WRN since humans and chimpanzee diverged 720 

(Clark et al., 2003; de Magalhães & Church, 2007). We also found NBN under positive selection in P. 

pygmaeus, a gene also considered to be involved in progeroid syndromes in humans. Mutations in NBN 

cause a chromosomal instability syndrome called Nijmegen breakage syndrome (Martin & Oshima, 2000), 

that is accompanied by features of senescence. P. abelii shows also signals of positive selection in ERCC5. 

ERCC proteins play a role in DNA repair and have been linked to senescence. Mutations in ERCC6 and 725 

ERCC8 have been reported as causes of premature ageing in humans (de Magalhães & Church, 2007). 

Finally, PPM1D shows evidences of positive selection in P. t. elliotti, which has been shown to reduce 

longevity in PPM1D-null mice, specifically in males (Nannenga et al., 2006).  

 

 730 

 

2.2. Functional enrichment analysis 

 

 We performed a functional enrichment analysis with WebGestalt 

(http://bioinfo.vanderbilt.edu/webgestalt/) to test for gene set enrichment in functional categories in non-735 

slimmed Gene Ontology, KEGG pathways, Pathway Commons, Wikipathways, Disease (PharmGKB and 

GLAD4U) and PheWAS associated. In this case, according to a Bonferroni correction adjusted p-value < 

0.05 and requiring at least two genes to be present in one category, we obtained several enriched categories 

(supplementary table S101). For instance, 'pancreatic function' appeared enriched in positively selected genes 

in P.t. ellioti, P.t. schweinfurthii and P. pygmaeus. P. paniscus selected genes showed an enrichment in 740 

'potassium voltage-gated channel activity' and also in diseases of the nervous system such as 'Amyotrophic 

Lateral Sclerosis'. Gorilla selected genes are enriched in the 'glycoprotein metabolic process' and 

'glycosaminoglycan binding' categories, and also some of these same genes drove significance to the 

cartilage disease category. 

 Since the small number of significant transcripts obtained precludes a properly powered functional 745 

enrichment analyses we concatenated all genes belonging to each PANTHER pathway (Thomas et al. 2003) 
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and performed the MK test. In supplementary table S102 the p-values obtained for each of these pathways 

are shown. We observed that many pathways were under strong negative selection in many great ape species 

at the same time (p-value <= 0.05). In particular, 'Alzheimer’s disease-presenilin pathway', 'Integrin 

signaling pathway' and 'Wnt signaling pathway' appeared significantly constrained in all lineages. The 750 

Integrin pathway includes the components involved in the downstream events triggered by the interaction of 

integrins with elements of the extracellular matrix, such as actin related genes and MAPKs. Actin and 

MAPK related KEGG pathways have also been reported to be enriched in genes under purifying selection 

between human and chimpanzees and between mouse and rats in previous studies (Serra et al. 2011). The 

Wnt pathway has been related to many important biological processes and may have a universal role in 755 

configuring the primary axis of animals (Nusse & Varmus, 2012). The Alzheimer's disease (AD) pathway 

includes genes involved in this human neurodegenerative disease. In agreement with our results, crucial AD 

genes such as APP and MAPT were reported to be conserved between human and chimpanzees (Hamilton, 

2004; Holzer, Craxton, Jakes, Arendt, & Goedert, 2004; Rosen et al., 2008). This is an interesting finding 

because although the main neuropathological hallmarks of AD (i.e. Aβ and hyper-phosphorylated tau 760 

deposition) have also been observed in the ageing brain of chimpanzees (Gearing, Rebeck, Hyman, Tigges, 

& Mirra, 1994; Rosen et al., 2008), the complete AD clinical and neuropathology seems  to be presented by 

humans only. 

 A few pathways showed a nominally significant p-value for positive selection: i.e. 'Plasminogen 

activating cascade' in P.t. verus and P.t. schweinfurthii, 'Axon guidance mediated by semaphorins' also in P.t. 765 

schweinfurthii, 'Glutamine glutamate conversion' in P. paniscus, 'Serine glycine biosynthesis' in G.g. gorilla, 

and finally the 'Thyrotropin-releasing hormone receptor signaling pathway', 'Formyltetrahydroformate 

biosynthesis' and the 'Alpha adrenergic receptor signaling pathway' in P. abelii. But only one pathways, 

'Plasminogen activating cascade', appeared in more than one lineage: P.t. verus and P.t. schweinfurthii. 

 770 

2.3. Correlation between rate of adaptive substitutions (ωα) and effective population size (Ne). 

 

 Proportion of adaptive substitutions (α) and rate of adaptive substitutions (ω(α)) were estimated 

using DFE-alpha by combining its estimated distribution of fitness effects (out of the species SNP data) and 

each species derived substitutions, considering modeled recent demography/sweeps effects. The 775 
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supplementary table S103 shows the estimates of α and jointly with estimates of synonymous and non-

synonymous polymorphism (θs and θn) and the evolutionary rate (omega, ω) in non-synonymous 0fold sites. 

The values for Ne calculated from Watterson’s θ, from (Prado-Martinez et al., 2013) are also indicated. We 

obtained in general low values of both α and ω(α), in agreement with previous estimates (Eyre-Walker, 2006; 

McManus et al., 2015). P.t. schweinfurthii presented the highest values probably as the result of including 780 

two of the six individuals (Vincent and Andromeda) with high levels of inbreeding.  

 According to the nearly neutral theory, selection efficiency depends on the effective population size, 

because the fate of a mutation is determined by the product NeS (Ohta, 1976; Tomoko Ohta, 2002)(Otha 

1976,2002; Lynch and Connery 2003). We check this theory correlating the estimates of rate of adaptive 

substitutions with the estimates of effective population size for each primate species. Correlations were 785 

calculated while controlling for the phylogenetic non-independence using the generalized least square 

approach (Table S105) implemented in BayesTraitsV2 and using the random walk/maximum likelihood 

method. We obtained a measure of significance by comparing the likelihood of the model with free 

correlation value with a model with a correlation fixed to 0. The correlation is positive for alpha and 

omega(alpha) but non-significant. The observed rate of adaptive evolution in P. pygmaeus was poorly 790 

supported by bootstrap and fell close the 95% quantile; removing them together with P.t. schweinfurthii, that 

included inbreed individuals from a different geographical region and also excluding humans, that presented 

very different Ne between African and Non-African individuals as in (Prado-Martinez et al., 2013), we 

obtained a significant correlation between ω(α) and Ne (supplementary fig S16(C)). This all suggests that 

primate species with higher effective population size have a higher rate of adaptive evolution in proteins. 795 

 Estimated DFE for new mutations at 0-fold sites (supplementary table S104 and supplementary fig 

S18) shows that most mutations are deleterious at this class of sites with little variation among species (sites 

with predicted NeS>10 account for more than 65% in all primates). Additionally, we also consistently found 

a marginally significant negative correlation between proportions of neutral or nearly neutral sites with a 

long term Ne, indicating that the deleterious effect of mutations is greater in populations with larger Ne, 800 

illustrating a more efficient action of selection in the latter. 
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Section 5: ELS test 

 

Alexander Cagan, Christoph Theunert, Kay Prüfer, Aida M. Andrés 

 890 

 

1. Extended Lineage Sorting (ELS) Test and Motivation 

 

 We aim to identify lineage-specific targets of natural selection by identifying regions of the genome 

where variation falls external to an outgroup species and which are longer than expected under neutrality. 895 

For a detailed description of the Extended Lineage Sorting test see Supplementary Information 7 in Prüfer et 

al. (2012) and also SOM 13 in Green et al. (2010) where it was first used. Briefly, strong positive selection 

on a new mutation is expected to cause a selective sweep at that locus. This pattern is produced by the 

haplotype carrying the selected allele rising to fixation, removing neutral diversity in the region. The effect is 

equivalent to a bottleneck of one individual around this locus, as all lineages in the population will coalesce 900 

at the time of the sweep. Over time variation in this region will recover due to new mutations and 

recombination. The new variation will be unique to this lineage. Thus, when comparing diversity in this 

region in relation to an outgroup, the variation in the outgroup will always fall outside the variation in the 

ingroup (external). When two sister species with a divergence time that is recent enough for the majority of 

coalescent events to occur in the common ancestor (internal) are compared, the presence of large external 905 

regions can thus be used as a signal for detecting positive selection. The size of external regions is a product 

of the selection coefficient and the recombination rate. The stronger the selection and the lower the 

recombination rate, the longer we expect the external regions to be. By controlling for variation in 

recombination rate it should be possible to identify regions based on the strength of selection they have 

experienced since their divergence with the species used as an outgroup. It is worth noting that purifying 910 

selection is also expected to result in shallow trees and external regions. Nevertheless, under purifying 

selection the external signal is not expected to extend to the same extent as under positive selection, and thus 

we expect the longest external regions in the genome to be highly enriched for targets of positive selection. 

 This method allows for the detection of regions that experienced positive selection at a time depth 

not usually reached by other tests based on the departure of present-day intra-specific diversity from neutral 915 
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expectations, such as those based on haplotype length (where the signal of selection decays once the sweep 

has reached fixation) or the site frequency spectrum (where the signal fades as the locus reaches 

equilibrium). Therefore this method has the potential to detect lineage-specific positive selection with a 

greater time depth than many other selection tests which rely on selection being ongoing or very recent. In 

some species, this includes selection around the time of speciation, which could have played an important 920 

role in creating species-specific adaptive traits. 

 

1.1. Pre-test Filtering 

 

We applied a series of pre-test filtering steps to make the data as comparable as possible within and between 925 

populations. Variability in the number of individuals with genotype calls across sites results in unequal 

power to detect selection (for general pre-test filtering see Methods). For each comparison the dataset is 

further filtered to only include sites where at least one of the lineages is polymorphic, as these are the most 

informative sites for the test. 

 930 

1.2. Performing the ELS Test 

 

 The ELS test requires two lineages as input. The test is most powerful when the divergence time of these 

lineages is recent enough that the majority of loci have a coalescence time in the common ancestor of the two 

lineages (internal) but where there has been sufficient time for diversity to recover after lineage-specific 935 

selection (external). 

 For each comparison, neutral coalescent simulations were performed using the program ms to infer 

the expected fraction of the genome for which the tested population falls inside the variation of the outgroup 

(internal) compared to outside this variation (external) (Hudson 2002). Simulations were performed using a 

uniform recombination rate. The simulations require demographic parameters of the lineages being 940 

compared, such as estimates of current effective population size for the test and outgroup lineages, mutation 

rate and generation time (parameters taken from Prado-Martinez et al., 2013; supplementary table S66). The 

results of the simulations were compared to the observed fraction of derived sites in the data. The 

simulations were generally found to closely match the observed fraction of derived sites (supplementary fig 
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S20). The simulations were run for the following comparisons: P. troglodytes-P. paniscus (outgroup), P. 945 

paniscus-P. troglodytes (outgroup), G.g. gorilla-G.b. graueri (outgroup), G.b. graueri-G.g. gorilla (outgroup), 

P. abelii-P. pygmaeus (outgroup), P. pygmaeus-P. abelii (outgroup). We also looked at the P. troglodytes 

sub-species P.t. ellioti-P.t. schweinfurthii (outgroup), P.t. schweinfurthii-P.t. ellioti (outgroup), P.t. 

troglodytes-P.t. ellioti (outgroup), P.t. verus-P.t. ellioti (outgroup). For comparisons with G.g. gorilla we 

used G.b. graueri although due to the low number of individuals (three) they were excluded from other 950 

analyses.  

 The simulations provided information regarding which species comparisons are adequate for this 

test, and which ones would be underpowered due to too high a percentage of their genome falling external to 

the outgroup under neutrality (supplementary table S67). For example, both P. paniscus and P. pygmaeus had 

over 75% of their genome falling external to their outgroup under neutral simulations, and thus the test was 955 

not run for these species. We also excluded G. b. graueri because of our inability to find adequate 

demographic parameters (the frequencies of derived to ancestral alleles in simulations did not closely match 

the data, suggesting that the test would produce inaccurate results, supplementary fig S11).  

 

 960 

1.3. Hidden Markov Model 

 

A hidden Markov model (HMM) is used to assign all SNP positions with a hidden state of internal or 

external. For a full account of the calculation of the emission and transition probabilities see Prüfer et al. 

(2012). The HMM uses all available individuals from the test lineage and one individual from the outgroup 965 

lineage. Due to the presence of multiple individuals in the outgroup populations, the HMM was run 

repeatedly on the test lineage, using a different individual from the outgroup lineage each time.  

 After running the HMM, the output is filtered to remove SNPs with a posterior probability < 0.8 for 

being internal or external. Neighboring SNPs that have been classified as external are merged to form 

external regions along the genome. Larger regions should be indicative of stronger positive selection. 970 

However, region size may also be influenced by recombination rate and low SNP density. To correct for this, 

regions are scored as a function of their size, the local recombination rate, and physical distance between 

adjacent SNPs. Specifically, each region is re-scored by calculating the 1Mb average human recombination 
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rate (rr) for the midpoint between any two adjacent SNPs in a region. The recombination map is taken from 

Kong et al (2002). Each pair of adjacent SNPs is assigned a value of 1000/rr if their physical distance 975 

exceeds this value. Otherwise the physical distance is given in base pairs. These values are then summed 

over all pairs of SNPs and multiplied by the average recombination rate of the entire region. This provides a 

SNP-corrected value of genetic distance per region.  

 For each lineage the results of the multiple runs of the HMM (each run obtained using a different 

outgroup individual) are combined to eliminate the effect of using a single outgroup individual, and thus 980 

reduce the number of false positives. This is done as follows: For each run of the HMM, the results are 

ranked by score as described above. The top 5% of external regions from each run are selected and are given 

a rank based on their score. Regions are only retained if they appear in the top 5% in all runs (thus, 

regardless of the outgroup individual used). To refine the detection of the signal, the regions are then 

trimmed to only the part of the region present in all runs. This list of regions is then ranked based on the 985 

cumulative total of the rank score from the multiple runs.  

 

 

2. Results 

 990 

 The number of unusually long external regions in the 5% extreme of the score distribution varies for 

each species tested (supplementary tables S68-S70). We detect 27 external regions candidates to contain 

targets of selection in P. troglogytes, 11 regions in G.g. gorilla, and 26 regions in P. abelii. These regions 

contain 15 genes in P. troglodytes, 7 genes in Gorilla and 27 genes in P. abelii. The average external region 

size is 30,723bp for P. troglogytes, 29,875bp for Gorilla and 65,451bp for P. abelii. Many of these regions 995 

do not contain genes, suggesting that selection has been acting on both coding and non-coding variation.  
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Section 6: Subsampling analysis 

Alexander Cagan, Christoph Theunert, Aida M. Andrés, Gabriel Santpere, Arcadi Navarro  1025 

 

Investigating the influence of  sample size variation on results 

 

 The dataset analysed in this manuscript consists of population level whole-genome sequence data 

from multiple lineages. The number of individual genomes available varies between lineages, from three in 1030 
the case of G.b. graueri to 12 for P. paniscus and G.g gorilla). This raises concerns that differences in 

sample size may influence our ability to detect signatures of selection in each lineage. This could lead to 

results that are due to differences in power rather than being biologically meaningful.  

 

 1035 
1. Methods 

 

 To assess the influence that variation in sample size has on our results we took a subsampling 

approach. For each of our selected tests we re-ran the entire analysis using only subsets of individuals. The 

overlap in the results obtained with these subsets could then be compared to the original results (using all 1040 
individuals) to obtain a measure of how much variation in sample size is likely to be influencing our results.  

 For the HKA, FWH and MK tests we chose the G.g. gorilla and P. paniscus lineages for 

subsampling. We chose these lineages they have the largest sample sizes, providing the greatest opportunity 

to see the impact of sample size variation when subsampling. Coincedentally these lineages are also very 

different in their Ne (Figure 1), thus by subsampling in both lineages we may simulatenously explore 1045 
whether differences in Ne may influence the effect of subsampling. For the ELS test we only use G.g gorilla 

for subsampling as P. paniscus is not included in the original ELS analysis. 

 

 

1.1. HKA subsampling results 1050 
 

 For the HKA we randomly selected four and eight individuals from G.g. gorilla and P. paniscus. 

This was repeated 100 times for each lineage and sample size respectively. For each of these subsamplings 

we re-ran the HKA analysis for chromosome one only and compared the results with the original results 

based on using all individuals. We analysed regions in the 0.001% and 0.01% tails for the positive and 1055 
balancing selection tails respectively. For each region that occurred in a given tail on chromosome one in the 

original results we calculated the percentage of times it also appears in the tail in the subsamplings. So a 

region that remains in the tail in all 100 subsamplings has a percentage of 100%. The results are presented in 

supplementary figure S21. 
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 The results suggest that for the HKA analyses variation in sample size does not have a major impact 1060 
on the candidate positively selected regions. We observe that with the larger 0.01% tail there are a greater 

number of outlier regions that occur less frequently in the tail subsampling. However for both tails in G.g 

Gorilla and for the P. paniscus 0.01 tail for subsampling from either four or eight individuals the mean 

overlap of regions across subsamplings is almost 100%. The lowest mean overlap we observe is in the P. 

paniscus 0.01 tail when subsampling with eight individuals, where the  mean overlap is 90%. It is 1065 
unexpected that the overlap is lower when subsampling with eight individuals rather than four, however in 

both cases we consider the overall amount of overlap across subsamplings to be high. Therefore for the HKA 

positive selection tails we conclude that variation in sample size is not causing a strong bias in detecting 

putatively selected regions.  

 The results indicate that the balancing selection candidates for the HKA are much more influenced 1070 
by sample size variation (supplementary figure S21). This may be due to the general rarity of balancing 

selection in the genome relative to positive selection. We expect only a small number of true targets of 

balancing selection on chromosome one, if any. Therefore the 'candidate' regions in the balancing selection 

tail on chromosome one may just be neutrally evolving regions, which may explain the low overlap between 

regions depending on sample size. Given that we detect the MHC region, a known target of balancing 1075 
selection across a wide-range of vertebrates, in all our lineages despite their variation in sample size, we do 

not think that sample size variation is preventing us from detecting the strongest targets of balancing 

selection in the genome. 

 

 1080 
1.2 FWH subsampling results 

 

 We repeated the same subsampling analysis for FWH, though only for positive selection as this test 

does not detect signatures of balancing selection (supplementary figure S21). We observe that FWH is more 

sensitive to sample size variation than the HKA test for detecting candidate regions under positive selection. 1085 
As expected, we observe a greater overlap with the original results when using the subsampling of eight 

individuals compared to when we use only four (supplementary figure S22(E-J)). We also observe higher 

overlap with the original results with the more stringent 0.001% tail compared to the 0.01% tail, suggesting 

that the strongest candidates of positive selection are relatively robust to subsampling. We also observe 

subsampling results in a higher mean percentage of overlaps with the original results with P. paniscus 1090 
compared to G.g. gorilla�, although the ranges overlap. 

 The differing sensitivity to sample size variation between these two tests may be due to the different 

types of information that they use to detect signatures of selection. The HKA test is dependent on the ratio of 

substitutions to polymorphisms, without considering the allele frequency of polymorphisms.  This should 

make it particularly robust to sample size variation. In contrast, methods that are more reliant on fluctuations 1095 
in the allele frequency spectrum to detect selection, such as FWH, are more sensitive to variation in sample 
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size. Therefore, our results provide support for using the HKA test to detect selection in cases where sample 

size is low or unequal between populations.  

 

 1100 
1.3 ELS subsampling results 

 

 We performed a similar subsampling analysis for the ELS test, randomly subsamplinging four or 

eight randomly selected individuals from G.g. gorilla 100 times in both cases. We find that overlap of 

candidate selected regions between the original results and the subsamplings is generally low, with a mean 1105 
overlap of ~20% for each putatively selected region across subsamplings. This may be due to the reliance of 

ELS on using simulations to infer parameters, which makes the test vulnerable to errors if the demographic 

model in the simulations is inappropriate.  

 

 1110 
1.4 HKA and Ne correlations subsampling results 

 

 We observe significant correlations between the long term Ne of lineages and the percentage of 

protein coding exons in several bins of the HKA empirical distribution (Supplementary Materials 2.2). To 

ensure that these correlations are not due to variance in sample size between lineages we re-ran these 1115 
correlations after excluding lineages with either high or low sample-sizes. We re-ran the correlations using 

only populations with < 10 individuals (excluding G.g gorilla, P. paniscus and P.t. ellioti) and only 

populations with > 5 individuals (excluding P. abelii, P. pygmaeus, P.t. troglodytes and Pt. Verus). In both 

cases there were at least five lineages.  

 The results for both sub-sampled correlations are very similar to the original results with all lineages 1120 
(supplementary table S106, supplementary fig S22). The subsampling excluding lineages with larger sample 

sizes has the most similar correlation scores to our original results (supplementary table S106). However the 

R values are very similar to the original results in both cases (supplementary figure S22).  This suggests that 

the correlation between the long-term Ne of a lineage and the percentage of protein-coding exons in bins of 

the HKA empirical distribution, which we infer as a measure of the strength of background selection, is 1125 
robust to variation in sample size between lineages. 

 

 

 

 1130 
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Section 7: Targets of selection 1135 

Alexander Cagan, Christoph Theunert, Jaume Bertranpetit, Aida M. Andrés 

 

1. Introduction 

 Here we provide further discussion of genes and pathways with signatures of selection identified by 

our analyses which were not presented in the main Discussion section. 1140 
 

1.1. Diet 

 

 All lineages of the Hominidae are omnivorous, with all lineages apart from H. sapiens having a preference for 

frugivory (Boyd & Silk, 1997). However, there is still considerable variation in diet between lineages (Uchida, 1996). 1145 
Adaptations that maximize the extraction of energy from food are expected to be highly beneficial. As a result we 

might expect genes related to digestive processes to have been targeted by positive selection.  

 Human populations tend to consume high levels of starch rich foods compared to other members of the 

Hominidae (Hohmann et al. 2012), a trend exacerbated by the transition to agriculture and the wide-spread availability 

of starchy foods (Zohary et al. 2012). Previous work identified copy number variation in AMY1 in humans as 1150 
advantageous to increase the benefits from starchy foods (Perry et al. 2007). We provide additional evidence that 

genes related to starch metabolism have been targets of positive selection in humans. In H. sapiens the strongest 

category enrichment among the HKA candidate targets of positive selection is for the KEGG pathway 'starch and 

sucrose metabolism' (p-value=0.02), a signal not shared among any of the other ape lineages. This signal is driven by 

the genes GAA, AMY2B and GUSB. Incidentally, copy number increase of AMY2B in dogs is considered an adaptation 1155 
to starch-rich diets that arose during cohabitation with humans (Axelsson et al. 2013). The evidence of positive 

selection on this gene in humans suggests that adaptation to a starch-rich diet may have a partially shared genetic basis 

between dogs and humans.  

 

1.2 Anatomy 1160 
 

 There is considerable anatomical variation between the different lineages of the Hominidae. One of the most 

clearly visible differences between lineages is in body size, with gorillas being the largest extant primate. The ELS 

test detects signatures of positive selection in G.g. gorilla in a region containing the gene IGF2R, which encodes 

insulin growth factor receptor 2. Mutations in this gene are associated with variation in body size traits in cattle 1165 
(Berkowicz et al. 2012). Biological category enrichment analysis also shows significant enrichment on the KEGG 

pathway 'vascular smooth muscle contraction' (p-value=0.03). Changes in the vascular system, which regulates blood 

pressure, may have been necessary to cope with the changes in body size that must have occurred during evolution of 

the gorilla lineage. Therefore it is possible that selection on these genes are related to body size differences between 

the Gorilla subspecies, with G.g. gorilla considered to have less sexual dimorphism in body size and a smaller male 1170 
body size than G.g. beringei (Taylor 1997). 
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 The Hominidae lineages display a variety of anatomical adaptations to their various forms of quadrupedal and 

bipedal locomotion. Pongo are the only lineage in the Hominidae that regularly brachiate (a form of arboreal 

locomotion based on swinging through trees using only the arms), which likely involved some molecular adaptations. 

Interestingly, in P. abelii HKA candidate targets of positive selection are significantly enriched for genes in the GO 1175 
molecular function category 'structural constituent of muscle' (p-value=0.01). One of the genes driving this signal is 

NEB, which encodes nebulin, a protein that helps to maintain the structural integrity of myofibrils in skeletal muscle. 

Deficits in nebulin result in a dramatic decrease in the force production capacity of skeletal muscle (Bang et al. 2006). 

This gene also shows a signature of positive selection from the HKA test in P. abelii and also P.t. verus, as well as a 

recent signature of positive selection in P. abelii from the FWH test. 1180 
 Another feature differentiating the Hominidae lineages is the morphology and distribution of their body hair 

(Yesudian 2011). However, the genetic basis of such differences is not well understood. Genes related to 'hair follicle' 

development were identified as accelerated in the gorilla lineage in a recent study that used dN/dS ratios to compare 

protein coding sequences in humans, chimpanzees and gorillas (Scally et al. 2012). One of the genes they identified as 

contributing to this signal is DSG4. We find that this gene appears particularly constrained in all species of the genus 1185 
Pan (MK results) but it shows signatures of positive selection in G.g. gorilla. This gene encodes the protein 

desmoglein 4, which plays an important role in the maintenance of hair follicle keratinocytes (Bazzi et al. 2006). 

Mutations in DSG4 can cause hypotrichosis in humans, which is an abnormal condition of hair that affects its amount 

and results in atrophied hair follicles and shafts (Shimomura et al. 2006).  

 1190 
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 1225 
Supplementary Figure S1. Flowchart of filtering steps. A. Filtering steps that were applied across the 
entire dataset. Each red box represents a particular filtering step and the amount of the genome (Mb) that was 
excluded. Green boxes show the amount of the genome available for analysis before and after these filtering 
steps. B. Portion of the genome evaluated in each species, based on filtering of sites with < 5x coverage 
across all individuals per species 1230 
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Supplementary Figure S2. Plot showing relationship between coverage and HKA score for 
G.g. gorilla. The X-axis shows average coverage. The Y-axis shows the frequency. Red lines 
represent results from the top 1% of the HKA score distribution, blue lines from the bottom 1% and 
black lines from the middle 98%. The vertical bars represent the mean coverage after 1000 
permutations from each distribution.  1260 
 
 
 
 
 1265 
 
 
 
 
 1270 
 
 
 
 
 1275 
 
 
 
 
 1280 
 
 
 
 



45 

 1285 
 
 
 
 
 1290 
 

 
 
Supplementary Figure S3. Plot showing relationship between the Mapping Quality Score and 
HKA score for G.g. gorilla. The X-axis represents the mean Mapping Quality Score in each 30kb 1295 
window. The Y-axis represents the frequency. Red lines represent results from the top 1% of the 
HKA score distribution, blue lines from the bottom 1% and black lines from the middle 98%. The 
vertical bars represent the mean coverage after 1000 permutations from each distribution. 
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Supplementary Figure S4. Number of of substitutions and polymorphic sites per window 
across the HKA empirical distribution for P. troglodytes. The Y-axis shows the number of sites 
in a window. The X-axis shows the position of windows in the HKA empirical distribution. The 
HKA score of windows increases along the X-axis.  1335 
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Supplementary Figure S5. Percentage of windows overlapping non-protein coding exons. 
Percentage of windows overlapping non-protein coding exons (>=1bp overlap exon with genomic 1370 
window) for non-cumulative bins of the HKA empirical distribution (X-Axis). We plot this for each 
lineage as a shaded line. Furthermore, for each bin we measure the correlation between the % of 
windows overlapping non-protein coding exons and Ne among all lineages using a Pearson's 
correlation analysis. We do this separately with an estimate of short-term and long-term Ne, derived 
from PSMC and Watterson's estimator respectively (taken from Prado-Martinez et al. 2013). The 1375 
right-side Y-axis shows the R score. R score is plotted with dashed lines. Only R values with 
significant P values (P <0.05) are shown.  
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Supplementary Figure S6. Average B-score for windows with different cut-offs of the HKA 1400 
empirical distribution. Average B-scores for each cumulative bin of the HKA empirical 
distribution (X-axis). B-scores were calculated according to McVicker et al. (2009). We plot this 
for each lineage as a shaded line. Furthermore, for each bin we measure the correlation between the 
average B-score and Ne among all lineages using a Pearson's correlation analysis. We do this 
separately with an estimate of short-term and long-term Ne, derived from PSMC and Watterson's 1405 
estimator respectively (taken from Prado-Martinez et al. 2013). The right-side Y-axis shows the R 
score. R score is plotted with dashed lines. Stars indicate R scores with significant P values (P 
<0.05).  
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See file 'Cagan_S7_S15.pdf' for Supplementary Figures S7-S15 
 1430 
Supplementary Figures S7-S15. Annotation in HKA 0.1% tail compared to neutral sub-
sampling. For each lineage we separately calculated the percentage of windows in the 0.1% tail of 
the HKA distribution containing any type of functional annotation, protein coding exons, or non-
protein coding exons (see title of figure for category presented). These results were compared to 
100 random sub-samplings of an equal number of windows from the genome-wide distribution. The 1435 
value from the 0.1% tail is given as a horizontal line while the results from the neutral sub-
samplings are given as a box-plot. P-values indicating whether the percentage of annotation in the 
0.1% tail is significantly enriched relative to the genome-wide sub-sampling are presented below 
the X-axis.  
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Supplementary Figure S16. DFE of deleterious mutations in 0-fold sites. Density plot of MK-1465 
test logOR for genes showing different signals of selection in Bustamante et al., 2005. 
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Supplementary Figure S17. Correlation between rate of adaptive substitutions (ω_a) and 1475 
effective population size (Ne). Using all species (A), excluding P.t.schweinfurthii and P. abelii (B), 
also excluding  H. sapiens (C). 
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Supplementary Figure S18. Distribution of fitness effect of mutations at 0-fold sites. 
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Supplementary Figure S19. Validation of Fay and Wu's H algorithm with simulations. 

Validation of FWH algorithm in a neutral simulation (left) and with a selective event in the central 

region (right). COSI simulator (Schaffner et 2005) was run under the best fit model (validated 

human demography) to generate 1000 realistic simulations under neutrality and under selection. 1525 

Simulations with selection consisted in a selective sweep starting 500 generations ago with a 

selection coefficient of 0.022 located in the middle position of the 1.2Mb simulation. Both scenarios 

were then analyzed using Fay Wu's H algorithm. Plots were generated averaging the obtained 

scores in windows of 25Kb. 
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Supplementary Figure S20. Pairwise comparison between 2 analyzed lineages, species 1 – species 2. Each graph shows the fraction of sites where species 1 is 
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derived in dependence of number of individuals in species 2. Simulated results in green, observed results in black. 1545 

A. P. troglodytes – P. paniscus. B. P. paniscus – P. troglodytes. C. P.t. ellioti – P. paniscus. D. P.t. schweinfurthii – P. paniscus. F. P.t. troglodytes – P. paniscus. F. 

P.t. verus – P. paniscus. G. G.g. gorilla – G.b. graueri. H. G.b. graueri – G.g. gorilla. I. P. abelii – P. pygmaeus. J. P. pygmaeus – P. abelii.  
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Supplementary Figure S21. Subsampling results for HKA, FWH and ELS with 4 and 8 individuals for G.g. gorilla and P. paniscus. 1550 

Box plots summarizing the amount of sharing of candidate regions from the original test results with the 100 subsampling analyses. For HKA test, the left-side plot 

presents results for the positive selection tail. The right-side plot presents results for the balancing selection tail. The X-axis shows the fraction of regions from the 

empirical distribution that are considered in the tail (far-left tail for positive selection, far-right for balancing selection). The Y-axis shows the percentage of overlap 

between regions from the original results compared to the 100 subsamplings. For FWH, Box plots summarizing the amount of sharing of candidate regions from the 

original test results on positive selection with the 100 subsampling analyses. For ELS, Box plots summarizing the amount of sharing of the top 5% of putatively 1555 

selected regions from the original test results with the 100 subsampling analyses. 

A. Subsampling results for HKA with 8 individuals for G.g. gorilla. 

B. Subsampling results for HKA with 8 individuals for P. paniscus.  

C. Subsampling results for HKA with 4 individuals for G.g. gorilla.  

D. Subsampling results for HKA with 4 individuals for P. paniscus.  1560 
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E. Subsampling results for FWH with 8 individuals for G.g. gorilla. 

F. Subsampling results for FWH with 8 individuals for P. paniscus.  

G. Subsampling results for FWH with 4 individuals for G.g. gorilla.  

H. Subsampling results for FWH with 4 individuals for P. paniscus.  

I. Subsampling results for ELS with 4 individuals.  1565 

J. Subsampling results for ELS with 8 individuals. 
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Supplementary Figure S22. Subsampling results for HKA Ne correlations. Correlations between Watterson's Ne estimates for each lineage and the 

percentage of regions overlapping protein-coding exons in non-cumulative bins of the HKA emipirical distribution. Results from using all lineages are 

plotted alongside results calculated using only lineages with a sample size < 10 or > 5. The X-axis shows the non-cumulative bins of the HKA 

empirical distribution. The Y-axis shows the Pearson correlation (R) between the E statistic and Ne within each HKA bin and across all lineages.  1580 

 

 


