Predicting Wolbachia invasion dynamics in Aedes aegypti populations using models of density-dependent demographic traits Penelope A. Hancock, Vanessa L. White, Scott A. Ritchie, Ary A. Hoffmann, H. Charles J. Godfray BMC Biology 2016 **Additional file 1: Table S1.1.** Definitions and values of model parameters. | Symbol | Definition | Value | | Source | |--|---|--|---|-----------------------------| | T_P | Duration of the pupal stage | 2 days | | This study | | T_G | Minimum time for females to become gravid following emergence | 4 days | | This study | | T_H | Time between oviposition and hatching of eggs | 6 days | | This study | | ω | The proportion of uninfected offspring produced by <i>Wolbachia</i> -infected females | 0.01 | | (Walker <i>et al.</i> 2011) | | Sh | The proportion of unviable offspring from an incompatible mating | 0.99 | | (Walker <i>et al.</i> 2011) | | | | Semi-field cage population | Field release
simulations | | | $(lpha_U,eta_U,\gamma_U); \ (lpha_W,eta_W,\gamma_W)$ | Parameters of functions describing mean larval development time | (0.68, 0.16, 0.68) ^a ;
(2.2, 0.013, 0.98) ^a ;
(1.8, 0.54, 0.53) ^b ;
(4.5, 0.22, 0.64) ^b ; | (1.8, 0.54, 0.53);
(1.8, 0.54, 0.53); | This study | | $(u_U, \eta_U, \psi_U);$
(u_W, η_W, ψ_W) | Parameters of functions describing the standard deviation of larval development time | (8.3, 0.81, 0.33) ^a ;
(4.1, 1.7, 0.27) ^a ;
(0.22, 0.017, 0.87) ^b ;
(4.8, 0.029, 0.80) ^b ; | (0.22, 0.017, 0.87);
(0.22, 0.017, 0.87) | This study | | a_{U} , b_{U} ; a_{W} , b_{W} | Parameters of functions describing per-capita female fecundity | (29.5, -3.36) ^a ;
(28.5, -3.25) ^b ;
(29.1, -3.35) ^b ; | (28.5, -3.25);
(28.5, -3.25); | This study | | μ_L^c | Daily larval mortality | 0.25-0.01 | 0.05 | This study | | μ_A^c | Daily pupal and adult mortality | 0.03 | 0.03 | (Walker <i>et al.</i> 2011) | | $\lambda_{ ext{min}}, \mu_{ ext{max}}, \ \sigma_{ ext{max}}$ | Lower limit on per-capita female fecundity, and upper limits on larval development time means and standard deviations | 0.5, 60 days, 40
days | 0.5, 60 days, 40
days | This study | a,b Value corresponding to the MCMC iteration with the highest posterior probability when observations from Population A (a) and Population B (b) are used to inform the Bayesian MCMC model (see text)