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S1. Observed mosquito and Wolbachia dynamics compared to the model
predictions.

Larval development times

Our predicted relationships between larval development times and larval
density for the infected and uninfected subpopulations describe the major
features of the observed weekly Wolbachia infection frequencies in the pupae
(Additional file3: Fig. S1.1A) and the observed average weekly pupal eclosions
(Additional file 3: Fig. S1.1B) for both populations. The model over-estimates the
Wolbachia frequency in weeks 11-13 for Population B and over-estimates pupal
eclosion in weeks 17-20 for Population A. These models of larval development
times accurately explain the cumulative production of pupae over time for both
populations (Additional file 4: Fig. S1.2).

Per-capita female fecundity

For Population A our predicted relationship between larval density and the per-
capita fecundity of uninfected females accurately describes the dynamics of the
numbers of uninfected larvae hatched (Additional file 5: Fig. S1.3; Population A).
For Population B, our predicted relationship between larval density and the per-
capita fecundity of (infected and uninfected) females describes the major
features of the dynamics of the total numbers of hatched larvae except for a drop
and rise in hatch size in the last four weeks of larval recruitment (weeks 11-15)
that is not captured by the model (Additional file 5: Fig. S1.3; Population B).
These models accurately explain the cumulative number of larvae hatched over
time for both populations (Additional file 4: Fig. S1.2).

S2. Differences in development times of Wolbachia-infected and uninfected
larvae

We determine whether there are credible differences between the predicted
mean development times of the infected and uninfected larvae in each cohort by
calculating the 95% credible interval (CI) of the differences in means for each
draw from the posterior distribution (based on 250000 draws; see section S8).
We use the same method to assess credible differences in the predicted
development time standard deviations for the infected and uninfected larvae in
each cohort.

For Population A, infected larvae were only present in cohorts hatched after
week 11 (cohorts 28-54). For Population A, the 95% CI of the posterior
distribution of the differences in mean development times contains zero for all
cohorts (Additional file 6: Fig. S2.1; Population A (blue lines)). The 95% CI of the
posterior distribution of the differences in the standard deviations also contains
zero for all cohorts (Additional file 6: Fig. S2.1; Population A (red lines)).

For Population B the 95% CI of the posterior distribution of the differences in
mean development times is greater than zero for all cohorts hatched in weeks 1-
5 (Additional file 6: Fig. S2.1; Population B (cohorts 1-15, blue lines)). Faster
development of infected larvae in these earlier cohorts resulted in a high wMel
frequency in the first week following pupation of the first individual (Additional
file 3: Fig. S1.1A; the observed frequency is 1.0 in week 6 for Population B)). The
predicted development times of infected larvae are more variable than those of
uninfected larvae (Fig. 3B), but this trend is not strongly supported because the



95% CI of the posterior distribution of the differences in the standard deviations
is close to zero for all cohorts (Additional file 6: Fig. S2.1; Population B (red
lines)).

S$3. Differences in per-capita fecundity of Wolbachia-infected and
uninfected adult females

For Population B, the fitted models of per-capita fecundity of infected and
uninfected adult females as functions of larval density describe the major
features of the wMel frequency dynamics in the first instar larvae (Additional file
7: Fig. S3.1). We determine whether there are credible differences between the
predicted per-capita fecundity of the infected and uninfected females by
calculating the 95% credible interval (CI) of the differences in per-capita female
fecundity for each draw from the posterior distribution (based on 400000
draws; see Additional file 1: section S8). Predicted differences in per-capita
female fecundity between infected and uninfected females were clearly not
significant (Additional file 8: Fig. S3.2).

S4. Mathematical model of mosquito-Wolbachia dynamics

We develop a stage-structured model to describe the dynamics of both the
mosquito population and Wolbachia infection (Fig. 1). Definitions and values of
the model parameters are provided in Additional file 1: Table S1.1. The
dynamics of the larval, pupal and adult stages are described by the following
equations:

Larvae
For each day i, we define 4, and A, as the per-capita fecundity of adult

females that are old enough to produce eggs. For uninfected mosquitoes we
consider only adult females with compatible matings (unaffected by CI; see
Methods and section S6). As described in the Methods, 4, and 4, are
modeled as functions of the larval density averaged over a fixed time lag.
Females infected with Wolbachia transmit the bacteria to a fraction 1-w of their
offspring. Thus, the numbers of Wolbachia-infected and uninfected first instar
larvae that are hatched onday ¢, H.,, and H,,, are given by:

H. , =2 A +oA_, A

Ty U” “c-Ty U Ty W* STy W

=heg, w(-0)A (S4.1)

where A,-,W and A,A,U are the numbers of infected and uninfected adult females

c,W

capable of contributing offspring on day i (defined in below in eqns S4.4).

Pupae
The number of infected larvae in a cohort hatched on day c that eclose as pupae
ondayi, £, . ,was estimated by:

Bwe=H.y n (= Py cw

f=c+1 (S54.2)
The number of uninfected larvae hatched in cohort c that eclose as pupae on day
i, P, ., is given by the same equation with subscript U substituted for subscript



W. As discussed in the main text, the probabilities of pupation, p;.y and p, .,

are modeled as functions of the average larval density, L, (see Methods and
section S6).

Adults
The numbers of infected and uninfected adults in the population on day i, 4,
and A, are given by:

i-T,

Ay = E Pyw(d-u, )i_k_l
k=0

i~T)

Ay = EB(U (I-p)™, i=T,
k=0 (54.3)

The numbers of infected and uninfected adult females capable of contributing

offspring on day i (see Methods) are given by:

i~Tp=Tg-Ty

Ai,W =05 E Bow(l-u, )™
k=0
_ i~Tp-Tg-Ty '
Ay=05 Y P, (-p) " (A=s,fl), iz2T,+T,+T,
k=0 (S4.4)

Equilibria in the absence of Wolbachia

Assume Wolbachia is not present in the mosquito population and let A* denote
the equilibrium number of adult females old enough to produce offspring, and P
and H* denote the equilibrium numbers of pupae that eclose and larvae that
hatch on each day, respectively. Then define the equilibrium per-capita female

fecundity, A", and the equilibrium probability that a larvae pupates at age a, p, .
Then,

H =1A (S4.5)
P =H Y T0-u)"p; (S4.6)
a=0 k=0

where larvae are assumed to live no longer than a., . We then define the total

survival through the juvenile and pre-mature adults stages (including the larval
and pupal stages and the early part of the adult stage when females are too

young to produce offspring), 8,, given by:

6, = [[0-u)"pi6,6,, (S4.7)
a=0 k=0
where 6, and 6, are the probabilities of surviving through the pupal and

immature adult stages respectively. Then,

A =P'0,0, Y 1-u)"

L (54.8)
A6

Uy




=1 (54.9)

Modelling genetic susceptibility to insecticides

According to a two-allele model of insecticide resistance, we define three
genotypes: homozygote susceptible, heterozygote and homozygote resistant. We
denote these genotypes by subscripts SS, SR and RR respectively. We categorize
the infected and uninfected mosquitoes in the population according to these
genotypes, giving six classes. We denote the frequencies of homozygote
susceptible, heterozygote and homozygote resistant adults in the total

population on day i as ¢;°.q;" and ¢ . If we assume for simplicity that

cytoplasmic incompatibility is complete (s, =1) and maternal transmission of
Wolbachia is perfect (w=0) then the numbers of Wolbachia-infected offspring
hatched on day c of each genotype are given by:

HfiV =O.SA«C Ty W((q, —Tp-T, +0 Sql T, TG)A;%]'_P e THW(I SS i~Tp-Tg— 1+
(0.5q.; 11, 0. PRV Ty-Tg )AISI;p et (1= wy ) rteTh

Hcsﬁf =054 T, W((qz Tp-T, +0. qu _T,-T, )AiRI;,, “Ty-T. W(l_‘ufR)i_TP_TG_l +
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(S4.10)
Uninfected females can only mate successfully with uninfected males, so we

define the adult gene frequencies in the uninfected subpopulation as qf f,,qf 5 and

qf . Then, the numbers of uninfected offspring hatched on day c¢ of each

genotype are:

HCSS =0.5(1- f Tp- TG)A’C THU(((L Tpe TGU+0 5‘]1 I TgU)Al ST THU(I MSS): TpTo-1
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Predicted dynamics of the mosquito population in the absence of Wolbachia
releases.



When larval densities exceeded those that we observed (>5000; Additional file 9:
Fig. S5.1), our predicted values of the density-dependent demographic rates
(per-capita adult female fecundity and larval development time means and
standard deviations) reached extreme values that we consider unlikely to occur
in real populations. Therefore we set maximum and minimum limits on the
values of these density-dependent demographic rates (Additional file 1: Table
S1.1). These values are close to the limits estimated from our data (Fig. 2A-C).
For all sets of parameters and initial conditions that we explored (see Results
and Additional file 1: Table S1.1), numerical simulations of our model showed a
single non-zero equilibrium that displayed stable fluctuations, defining the
carrying capacity of the mosquito population (e.g Additional file 13: Fig. S4.1).
The number of larvae and adults at carrying capacity was estimated by the mean
value obtained from the final year of the simulation, by which time the
population had reached equilibrium (e.g. Additional file 13: Fig. S4.1).

S5. Semi-field experimental study of mosquito-Wolbachia dynamics

Both populations were maintained and monitored following the procedures
described in (Hancock et al. 2016). In brief, adult females were allowed to feed
on blood from a live human three times a week. A larval habitat consisted of a
single container (a 5L bucket) filled with 2L of water. The larval container
received a fixed amount of food (0.32g ground lucerne) three times per week.
The larval container was lined with flannel cloth strips on which adult females
oviposited eggs. All eggs that had been oviposited on the strips were removed
from the cage three times a week, placed in an incubator at 26°C for two days,
then stimulated to hatch. All newly-hatched larvae in each cohort were counted,
a sample of 30 was retained, and the remaining individuals were placed back in
the semi-field cage larval container. A. aegypti population dynamics were
monitored by daily counts of all newly eclosed pupae and counts three times a
week of all larvae (categorized as first, second, third or fourth instar) (Additional
file 9: Fig. S5.1). A sample of 20% of the pupae that eclosed on each day was
retained. We ceased adding newly-hatched larvae to the population after day
147 (week 21) for Population A and after day 108 (week 16) for Population B,
and the remaining individuals either matured or died.

Estimating daily larval survival
The larval survival from day j to day i, s, can be calculated at frequent intervals

using the three weekly counts of the total number of larvae, L;, and the daily

counts of the number of eclosed pupae, P (Additional file 1: Table S1.1):

L+ Y P,

k=j+1
S, = ]

i 7
L (S6.1)

The s, were interpolated to estimate the daily larval survival values between all
days k-1 to k, s, as follows:

)1/(i—j>

= (5 (S6.2)



The observed and interpolated survival values are shown in Additional file 10:
Figure S5.2.

S$6. Bayesian MCMC estimation of density-dependent mosquito
demographic traits

We use Bayesian Markov Chain Monte Carlo (MCMC) methods to estimate the
parameters of functions predicting mosquito demographic rates by variation in
larval density (eqns 2 & 3). We focus on two mosquito demographic rates: the
larval pupation probability and the per-capita adult female fecundity. We derive
separate estimates of these demographic rates for the Wolbachia-infected and
uninfected subpopulations. We use different measures of average larval density
to predict each of the demographic processes. To predict the probability of
pupation we use the estimated average larval density that the larvae in cohort ¢
experience during the time period from hatching to eclosion of the first pupa

from the cohort, L, . We use the time average of the larval density over a fixed
time lag ending on day n=i-Ts-Tp, L, , to predict per-capita female fecundity. We
set this time lag to three weeks (Hancock et al. 2016).

(i) Estimating larval development time distributions
The pupation probabilities of the infected and uninfected larvae in each cohort c,

Dicw and p;.,, are modeled as gamma distributions where the means and

standard deviations are power law functions of L, (eqn 2). The average larval
density that larvae in cohort c experience during the time period from hatching
to eclosion of the first pupa from the cohort, L , is calculated as:

T,
L =EL_, /I(T.-c)

j=e (S6.1)
where Ljis the total larval density on day j and T.is the time that the first pupa
from cohort c ecloses. This allows us to obtain an estimate of L, that is fixed

following the time that the first pupa from the cohort ecloses.
The mean number of pupae eclosing in week i, u, is estimated by

Up, = (E Bow+F. .y
ve (S6.2)

where P, and F_., are the estimated numbers of infected and uninfected

/7

larvae in a cohort hatched on day c that emerge as pupae on day i. For the
infected subpopulation:

Pye=H.y 1_[ (A= IPiew

k=cl (S6.3)
where Hw is the number of Wolbachia-infected larvae hatched on day c and u, ,
is the daily larval mortality on day k (see section S5). F,., is estimated using

the same equation as S6.3 with subscript U substituted for subscript W. The
numbers of infected and uninfected larvae hatched on day c are estimated by

H.,=f'H. and H, ., =(1-f")H,_ where is H. the total number of larvae hatched



on day c and f. is the observed Wolbachia frequency in the larvae sampled on
day c.

The mean number of pupae observed in week w, P, , is assumed to follow a
normal distribution N(u,,0,) . The number of pupae uninfected with

. P . P . .
Wolbachia, n,,;,, observed in a sample of 7, pupae from week w has a binomial

distribution B(n, ,.n. fF) where f! is the expected Wolbachia frequency in the
pupae that eclose in week w. The likelihood is given by:

p({nﬁ,u,nff,y},{l’i}|{H(.,ff},{Li},@)=HN(PW,MPW,GP)B(nf,,Unf,,W,ff)
vi (S6.4)

where (G is the vector of constant model parameters,
O =[0,,0ty.Ly. By YysYwsVy>Vew sy >N Wy Ww-0»1. The posterior distribution is
proportional to the product of the likelihood (eqn S6.4) and the prior p(®). We
use uniform prior distributions: U(0,%) for a, and «;; U(0,10) for B, and f,;
U0.2,20) for y, and v, ; U(0,5) for v, and v, ; U(0,») for n, and 1, ;
U0.2,20) for ¥y and ¥, ; U(1,5) for o,. We found that the model fit to the
observations for Population B was improved by setting o, =1.0 for pupae that

eclose in the first 3 weeks. This reflects our belief that larval development times
can be estimated with greater accuracy for these individuals because there are
fewer larval cohorts that contribute to these pupae.

We use a Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithm to
sample from the posterior, with a fat-tailed student ¢ distribution as the proposal

distribution. For each parameter the jth proposal is given by:
(=D (e o) = o UD ()

al’=ai"+ce”; o =af " +c,E
D 2 BUD L gDy B 2 U 4 ¢ )
vl 1 =g v
Vil =viiV+c el v =viT el
W e - n el
o =0y +c,eY (56.5)

where ¢,....,¢,, are random variables drawn from a student ¢ distribution with

0.8 degrees of freedom. For Population A ¢;=4.0; c2=4.0; ¢3=0.01; c4=0.01 ;
¢5=0.01 ; Ce6—= 0.01; Cc7= 6.0,' cg= 6.0,' Co= 0.125; C10= 0.125; C11= 0.04; C12=0.04;
c13=1.0 and for Population B ¢;=4.0; c2=4.0; ¢3=0.075; c4=0.1 ; ¢5=0.01 ; c6= 0.01;
Cc7= 6.0; cg= 6.0; Co= 0.125; C10= 0.125; Ci1= 0.025; C12=0.04; c13=1.0.

For larval cohorts that were hatched within two weeks before the final hatch
date we found that the model provided an improved fit to the observed numbers

of eclosed pupae by multiplying F,., and P, by a factor F.(i)=vN-c/N-i
until all larvae in these cohorts had either pupated or died. We justify this

assumption by the fact that larval densities decline rapidly after the final hatch
date (Additional file 9: Fig. S5.1).



(ii) Estimating per-capita female fecundity

Cytoplasmic incompatibility (CI) affects the uninfected subpopulation when
Wolbachia infection is present in the mosquito population, and the number of
uninfected females that can reproduce normally is reduced in proportion to the
Wolbachia frequency (under assumptions (i)-(iii) defined in the second section
of the Methods). Thus the numbers of Wolbachia-infected and uninfected

females capable of producing offspring that are present on day | ALW and A,.,U,

are estimated by:
i~Tp-Tg

Ai,W =05 E P (-u, )i_k_lf?wp
k=0
_ i~Tp-Tg _
Ay=05 Y P(-p ) A=-f))1=5,fl); kEw, izT,+T,
=0 (56.6)

where P, is the number of pupae that eclose on day k, £l is the Wolbachia
infection frequency in the pupae that eclose during week w (estimated from our
data), s is the strength of CI (Additional file 1: Table S1.1) and f;" is the
Wolbachia infection frequency in the adult mosquito population on day k.
Calculation of £ is based on estimation of the total numbers of infected and

uninfected adults in population on day i, A;;, and A, :
i-Tp

Ay = E P(-u, )i_k_lpr
k=0

i-Tp _

Ay =D PA-p )" A=) kEw, i=T,
k=0 (S6.7)

Then f* = A,y (A +A;y) . The per-capita fecundity of infected and uninfected

adults on day i, 4, and 4, is then:

H

A’. — cW . _ cU

i\W 1 ’ (R

4 A (S6.8)
where ¢ = i + Ty, As described in the Methods, 4,,, and 4,, are modeled as
functions of L, (eqn 3). The mean total number of larvae hatched in week w,
uy is estimated by:

Uy, = E (A'C—TH,UAC—TH,U + )LC-TH,WAC—TH,W)/ n, (56.9)

cEw

where ny is the number of days in week w on which eggs were hatched.
The observed mean number of larvae that hatch in week w, H, , is assumed to

follow a normal distribution N(u, ,0,). The Wolbachia frequency in each

cohort ¢ follows a beta distribution, Beta(n., +1,n., +1), where n., and n_, are

the numbers of newly-hatched infected and uninfected larvae observed in a
sample from cohort c¢. We use these beta distributions to estimate the

distribution of the Wolbachia frequency in the larvae hatched in week w, ff; ,
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using numerical methods, and denote this distribution P (ff, ) . The likelihood is

then given by:

w
pUnty 3 Anly } AH Y UL APYAA Q) = [ [PGONH, 1w, .04)
wel (S6.10)
where  is the vector of constant model parameters Q =[a,,,q,,b,,b,1, W is the

total number of weeks and
E A’C—TH W AC—TH W

cEw

fu =
C Y At g A, . (56.11)

ceEw

The posterior distribution is proportional to the product of the likelihood (eqn
S6.10) and the prior p(2). We use uniform prior distributions: U(0,%) for a,,
and qa; ; U(28,40) for b, and b,; U(10,300) for o, .

We use a Metropolis-Hastings MCMC algorithm to sample from the posterior,
with a fat-tailed student t distribution as the proposal distribution. For each
parameter the jth proposal is given by:

() _ 4D o4 G
ay’ =ay  +cE; ay =ai” +c,E,

() _ pUD . )~ D
by =by " +cey; b =bj +ce,

0 =0 + e (S6.12)

where &,,....,& are random variables drawn from a student t distribution with

0.8 degrees of freedom. For Population A, c2=0.4; ¢4=0.05; cs=25.0 and for
Population B ¢;=0.1; ¢2=0.1; ¢3=1.0; ¢4=1.0 ; ¢c5=75.

S$7. MCMC convergence results

(i) Estimating larval development time distributions

We ran the Metropolis-Hastings algorithm for 3 different chains each with
different initial values for the 12 parameters. The initial value for each
parameter was a random draw from its prior distribution. The Gelman-Rubin
plots for all parameters showed that the three chains converged after 150000
updates for Population A (Additional file 11: Fig. S7.1) and after 250000 updates
for Population B (Additional file 11: Fig. S7.1). These updates were treated as
burn in and discarded from posterior analysis. For Population A the average
acceptance rate for each parameter was between 0.16-0.57 with the exception of
one parameter (Vy ) for which the average acceptance rate was 0.67. For

Population B the average acceptance rate for each parameter was between 0.1-
0.43 with the exception of one parameter (77, ) for which the average acceptance

rate was 0.07.

(ii) Estimating per-capita female fecundity

We ran the Metropolis-Hastings algorithm for 3 different chains each with
different initial values for the 3 parameters. The initial value for each parameter
was a random draw from its prior distribution. The Gelman-Rubin plots for all
parameters showed that the three chains converged after 50000 updates for
both Population A (Additional file 12: Fig. S7.2) and Population B (Additional file
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12: Fig. S7.2). These updates were treated as burn in and discarded from
posterior analysis. The average acceptance rate for each parameter was
between 0.2-0.44.
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