## **Supplemental Data**



**Supplemental Figure S1.** Growth curve of WT and  $\triangle cpcG2$  cells under different intensities. Cell density (A) and Chl *a* content (B) were monitored under normal light (40 µmol photons m<sup>-2</sup>s<sup>-1</sup>). Cell density (C) and Chl *a* content (D) were monitored under high light (300 µmol photons m<sup>-2</sup>s<sup>-1</sup>). Values are means ± SD (*n* = 5).



Supplemental Figure S2. Construction and characterization of WT-CpcG2-YH strain. A, Construction of plasmid to generate WT-CpcG2-YH mutant. DNA fragment containing cpcG2 and its upstream region amplified by PCR was ligated between SalI and KpnI sites of the pEYFP-His6-Sp<sup>R</sup> plasmid and a fragment downstream of cpcG2was ligated between *Eco*RI and *Spe*I sites. The plasmid thus constructed was used to transform WT cells to generate the tagged mutant. B, PCR segregation analysis of the WT-CpcG2-YH mutant using the cpcG2-yfp-his6-E and -F primer sequences (Supplemental Table S1). C, Western analysis of proteins from the WT and WT-CpcG2-YH strains using GFP and His antibodies. Total protein corresponding to 1 µg Chl a was loaded onto each lane. PsaD was detected as a loading control. D, Confocal microscopy analysis of WT and WT-CpcG2-YH cells. The scale bar indicates 5 µm. E, Monitoring of NDH-CET activity by Chl fluorescence. F, Redox kinetics of P700 after termination of actinic light (AL) illumination (800 µmol photons m<sup>-2</sup>s<sup>-1</sup> for 30 s) under a background of far-red light (FR). G, Kinetics of P700<sup>+</sup> re-reduction in darkness after turning off FR with a maximum at 720 nm in the presence of 10 µM DCMU. The Chl a concentration was adjusted to 20 µg/mL and curves are normalized to the maximal signal. See Experimental Procedures for details.



**Supplemental Figure S3.** Construction and analysis of *cpcG1* deletion mutant. A, Plasmid constructed to generate the *cpcG1* deletion mutant ( $\Delta cpcG1$ ). B, PCR segregation analysis of the  $\Delta cpcG1$  mutant using the *cpcG1*-G and *cpcG1*-H primer sequences (Supplemental Table S1). C, Transcript levels of *cpcG1* in the WT and  $\Delta cpcG1$  strains. The transcript level of *16 S rRNA* in each sample is shown as a control. The absence of contamination of DNA was confirmed by PCR without reverse transcriptase.



**Supplemental Figure S4.** Construction and analysis of *apcD* deletion mutant. A, Plasmid constructed to generate the *apcD* deletion mutant ( $\Delta apcD$ ). B, PCR segregation analysis of the  $\Delta apcD$  mutant using the *apcD*-G and *apcD*-H primer sequences (Supplemental Table S1). C, Transcript levels of *apcD* in the WT and  $\Delta apcD$  strains. The transcript level of *16 S rRNA* in each sample is shown as a control. The absence of contamination of DNA was confirmed by PCR without reverse transcriptase.



**Supplemental Figure S5.** Analysis of band I in the WT,  $\triangle cpcG1$  and  $\triangle apcD$  strains. Thylakoid membrane complexes isolated from the WT,  $\triangle cpcG1$  and  $\triangle apcD$  mutants were solubilized and separated by BN-PAGE (left side) and stained with CBB (right side). Band I is shown by pink arrows.



**Supplemental Figure S6.** Sucrose density gradient analysis of NDH-1 complexes isolated from the WT-CpcG2-YH strain. Thylakoid membranes were solubilized and separated in a linear 5-40% sucrose gradient. After centrifugation, 36 equal fractions were divided and alternate fractions were immunoblotted with antibodies against NdhH and NdhK.



Supplemental Figure S7. Sucrose density gradient analysis of thylakoid membrane protein complexes isolated from the WT-CpcG2-YH and  $\Delta cpcG2$  strains. Thylakoid membranes were solubilized and separated in a linear 5-40% sucrose gradient. After centrifugation, 36 equal fractions were divided and fractions 23 to 27 were immunoblotted with antibodies against the subunits of the major photosynthetic complexes.



**Supplemental Figure S8.** Identification of phycobilisome components in the NDH-1L-PSI supercomplex. A, Immunodetection showed the presence of peripheral rods of PBS but not its core in NDH-1L-PSI supercomplex. The supercomplex separated by BN-PAGE was cut out and was analyzed by western blot with specific antibodies, as indicated on the left. B, Measurement of the absorption spectrum indicated the presence of peak of PBS (see pink arrow) in NDH-1L-PSI supercomplex. The supercomplex strips cut out from BN-PAGE (A) were positioned into a cuvette and were analyzed by a spectrophotometer (UV3000; Shimadzu).



**Supplemental Figure S9.** Analysis of NDH-1L-PSI, NDH-1L and NDH-1M in WT and M9 strains. A, Analysis of NDH-1L-PSI (band I) in the WT and M9 strains. B and D, Profiles of BN-PAGE on the thylakoid membranes isolated from the WT and M9 strains. Thylakoid membrane extract corresponding to 9  $\mu$ g Chl *a* was loaded onto each lane. Red and blue arrows indicate the positions of NDH-1L and NDH-1M complexes, respectively. C and E, Protein complexes were electroblotted to a polyvinylidene difluoride membrane and were cross-reacted with anti-NdhH, NdhI, NdhK, and NdhM.



**Supplemental Figure S10.** Growth curve of WT,  $\Delta cpcG2$  and  $\Delta D3/D4$  cells under different CO<sub>2</sub> concentrations at pH 6.5. Cell density (A) and Chl *a* content (B) were monitored under 2% CO<sub>2</sub> at pH 6.5. Cell density (C) and Chl *a* content (D) were monitored under air level of CO<sub>2</sub> at pH 6.5. Values are means ± SD (*n* = 5).

Supplemental Table S1. Primers used in this study.

| Name           | Primer sequence (5'–3')   | Purpose                       |
|----------------|---------------------------|-------------------------------|
| Transprimer-FP | ACCTACAACAAAGCTCTCATCAACC | Identifying the               |
| Transprimer-RP |                           | transposon<br>insertion sites |
|                | UCAAIUTAACAICAUAUAITITUAU |                               |

Primers used for identifying the sites of transposon insertion.

Primers used to construct the pUC- $\Delta cpcG2$  vector.

| Name            | Primer sequence (5'-3')       | Purpose           |
|-----------------|-------------------------------|-------------------|
| cpcG2-A         | CGGAATTCTTCATCGGAAAAGGTCC     | Amplification of  |
| срсG2-В         | GGGGTACCTTTTTTTGACGGTAAAGC    | upstream region   |
| cpcG2-C         | GGGGTACCGGGGGGGGGGGGGAAAG     | Amplification of  |
| <i>cpcG2</i> -D | GCTCTAGAGGGGGGGGGGGGGGGG      | kanamycin gene    |
| <i>срсG2</i> -Е | GCTCTAGAAGATAAAGTTAGTAATTAAAC | Amplification of  |
| cpcG2-F         | GCTGCAGAAGGGGGCGTGAACGAGTG    | downstream region |
| cpcG2-G         | TTAAACCGCCTAAGTCCCCCAGG       | Segregation       |
| <i>срсG2-</i> Н | GTTATTGGCTGGACATTAAACAAC      | analysis          |

Primers used to construct pUC- $\Delta cpcG1$  vector.

| Name            | Primer sequence (5'–3')    | Purpose           |
|-----------------|----------------------------|-------------------|
| cpcG1-A         | GGGGTACCCGAAGCTGTTTGGGTTT  | Amplification of  |
| cpcG1-B         | CGGGATCCGTGTAAACCTCCGTGATC | upstream region   |
| cpcG1-C         | CGGGATCCGGGGGGGGGGGGGAAAG  | Amplification of  |
| cpcG1-D         | GCTCTAGAGGGGGGGGGGGGGGGGG  | kanamycin gene    |
| <i>cpcG1-</i> E | CTCTAGAGCACTAAGGTCAGAGG    | Amplification of  |
| <i>cpcG1-</i> F | GCGTCGACGATTCCGTGGTGTTCTG  | downstream region |
| cpcG1-G         | CTTCTTTAAGATCACGGAGGTTTAC  | Segregation       |
| <i>срсG1-</i> Н | CAGTAACTATCCACGCTAGGAATGC  | analysis          |

Primers used to construct pUC- $\Delta apcD$  vector.

| Name           | Primer sequence (5'–3')      | Purpose           |
|----------------|------------------------------|-------------------|
| apcD-A         | GCGTCGACCTGAAGCAATGATGAAG    | Amplification of  |
| apcD-B         | GGGGTACCCCCTATTTTGATTACAT    | upstream region   |
| apcD-C         | GGGGTACCAAAATAAAAAGGGGGACCTC | Amplification of  |
| apcD-D         | CGAGCTCAAAATAAAAAGGGGACCTCTA | Spectinomycin     |
|                | GGGTC                        | gene              |
| <i>арсД</i> -Е | CGAGCTCGGCTTGCAAAATAACTTG    | Amplification of  |
| apcD-F         | CGGAATTCTCGGAAGTACGTAAATC    | downstream region |
| apcD-G         | GCGTCGACCTGAAGCAATGATGAAG    | Segregation       |
| <b>D 1</b>     |                              | 1 .               |

Primers used for the pEYFP-CpcG2-YFP-His6 plasmid construction.

| Name                     | Primer sequence (5'–3')   | Purpose                 |
|--------------------------|---------------------------|-------------------------|
| cpcG2-yfp-his6-A         | GCGTCGACTTCTCTATCAACCTCAG | Amplification           |
| ang C2 with high P       |                           | of <i>cpcG2</i> and its |
| срсG2-ујр-niso-В         | GOODIACCITCAACCCAATAATOCC | upstream region         |
| <i>cpcG2-yfp-his6-</i> C | CCGGAATTCTTTTTTTGACGGTAAA | Amplification           |
|                          | GCC                       | of downstream           |
| cpcG2-yfp-his6-D         | GGACTAGTTAGGCTTGATGGTATTC | region                  |
| <i>cpcG2-yfp-his6-</i> E | GGTTACCTGGCTTCATCAACGAACT | Segregation             |
| <i>cpcG2-yfp-his6-</i> F | GGACTAGTTAGGCTTGATGGTATTC | analysis                |

Primers used for RT-PCR.

| Name         | Primer sequence (5'–3')   | Purpose                 |
|--------------|---------------------------|-------------------------|
| cpcG2-FP     | GGTTACCTGGCTTCATCAACGAACT | ang C2 transprint       |
| cpcG2-RP     | ACTAAGGGCAACGGCAATTATCCCT | <i>cpcG2</i> transcript |
| cpcG1-FP     | CTTCCCCTATTGAACTACG       | ang C1 transprint       |
| cpcG1-RP     | TTGAGGTACTCGTCGCTGTT      | <i>cpcG1</i> transcript |
| apcD-FP      | CAAGTTATTTTGCAAGCCGACGATC | an oD transcript        |
| apcD-RP      | AATAGGGAGCTGTCTCATTGGCATC | <i>aped</i> transcript  |
| 16 S rRNA-FP | CGACTGCTAATACCCAATGTGC    | 16 S rRNA               |
| 16 S rRNA-RP | GTCCCTCAGTGTCAGTTTCAGC    | transcript              |

Primers used to construct vectors to express proteins to raise antibodies.

| Name    | Primer sequence (5'–3')     | Purpose       |
|---------|-----------------------------|---------------|
| ndhA-FP | CGGAATTCATGAAGATTTCCGCCGCCG | NdhA antibody |
| ndhA-RP | CCCTCGAGCTTGGCGGGTACTACATC  |               |
| ndhN-FP | CGGGATCCATGTTGCCATTGCCA     | NdhN ontihody |
| ndhN-RP | CGGAATTCCTAGGCCGCCTGCAAG    |               |