1 Supplemental Figures

- 2 **Supplemental Figure 1.** Phenotypic and molecular characterization of *tws1-1* and *tws1-2* mutant alleles
- 3 (A) Wild-type (left), tws1-2 (center) and tws1-1 (right) 3-week-old bolting plants. Scale bar = 2cm.
- 4 (B) to (D) A wild-type (B), a *tws1-2* (C) and a *tws1-1* (D) 7-day-old seedling grown *in vitro*.
- 5 (E) and (F) SEM images of a wild-type (E) and a *tws1-1* (F) mature dry seed. Scale bars = 100μm.
- 6 (G) and (H) autofluorescence images of wild-type (G) and *tws1-1* (H) roots. Stars indicate root hairs base.
- 7 bars = 40μm.
- 8 (I) RT-PCR run with mRNA extracted from seeds. TWS1 amplification: 30 cycles, ACT2 amplification: 25
- 9 cycles. (J) Seed weight measurements. * indicates values significantly different from wild-type (n = 6,
- 10 Student's t test, P < 0.05)
- 11

12

15 10 10

0

Ws

tws1-1

tws1-2

- 13
- 14 Supplemental Figure 2. tws1-1 shoot and root apical meristem morphology
- 15 (A) Wild-type and (B) *tws1-1* confocal microscopy images of propidium iodide stained shoot apical
- 16 meristems. (C) Wild-type and (D) confocal microscopy images of propidium iodide stained root apical
- 17 meristems. Scale bars = $40\mu m$.

19

20

21 Supplemental Figure 3. TWS1 homologs in plants and their evolutionary relationships

- 22 The evolutionary history was inferred using the Neighbor-Joining method. The bootstrap consensus tree
- 23 inferred from 500 replicates is taken to represent the evolutionary history of the taxa analyzed. Branches
- 24 corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The
- evolutionary distances were computed using the Poisson correction method and are in the units of the 25
- 26 number of amino acid substitutions per site. The analysis involved 96 amino acid sequences. All positions
- 27 containing gaps and missing data were eliminated. There were a total of 40 positions in the final dataset.
- 28 Evolutionary analyses were conducted in MEGA7 (Kumar et al., 2016).

29

3

30 Supplemental Figure 4. TWS1 expression

- 31 (A) Expression profiling of At5g01075 during Arabidopsis development (http://bar.utoronto.ca/efp/cgi-
- 32 bin/efpWeb.cgi).(B) RT-PCR analysis performed on RNA extracts from different tissues fully expanded
- 33 vegetative leaves (L), flower buds (FB), open flowers (F), and siliques containing embryos at different
- 34 stages of development; early globular (S1), globular (S2), heart (S3) torpedo (S4) walking stick (S5) and
- 35 mature (S6). **(C)** to **(F)** confocal microscopy images of transgenic plants expressing the *uidA-GFP* chimeric
- 36 gene under the control of *TWS1* promoter. **(C)** GFP signal in the shoot apical meristem region of 7-day-
- 37 old seedlings and (D) the corresponding bright field image. (E) GFP signal in the root tip of 7-day-old
- 38 seedlings and **(F)** the corresponding bright field image. Scale bars = $40\mu m$.

- 41 Supplemental Figure 5. Stem cuticle deposition defects and L1 markers analysis in tws1-1
- 42 SEM images of a wild-type (A) and a *tws1-1* (B) inflorescence stems. Scale bars = 100μm.
- 43 (C) TWS1 mRNA accumulation in siliques of wild-type (WS) and tws1-1 plants determined by real-time
- 44 quantitative RT-PCR. Graph values are means of three biological replicates ± SE. The experimental values
- 45 do not show statistically significant difference (Student's t test) between wild-type and mutant.
- 46 (D) and (E) confocal images showing *proATML1::NLS:3xGFP* signal in wild-type (D) and *tws1-1* (E) walking
- 47 stick embryos. Green: GFP; red: autofluorescence. Scale bars = $100\mu m$.
- 48

(A) and (B) Confocal images of Red Nile stained wild-type (A) and *tws1-1* (B) embryo oleosomes. Scale
bars = 10μm. (C) Oleosomes area of the largest cross section in Ws and *tws1-1* (n=60, The p-value is
0.387998. The result is not significant at p < .05). Measurements were taken on cotyledons of embryos at
the torpedo stage.
(D) and (E) Lugols' stained longitudinal sections of wild-type (C) and *tws1-1* (D) hypocotyls. Due to their

58 bending defect, *tws1-1* longitudinal sections are not perfectly oriented. Scale bars = 50μm.

61 Supplemental tables

- **Supplemental Table 1**. Fatty acids composition of *tws1*-1 and *tws1*-2 mutant seeds. Table values are
- 63 means of three biological replicates ± SE. Percentage variations are calculated referring to wild-type Ws
- 64 measurements.

	Ws	tws1-1	tws1-1	tws1-2	tws1-2
	(µg/mg dry mass)	(µg/mg dry mass)	var	(µg/mg dry mass)	var
C16:0	23.1 ± 0.4	18.5 ± 0.2	-19.6%	20.5 ± 0.8	-11.2%
C18:0	10.3 ± 0.2	8.5 ± 0.2	-17.5%	9.3 ± 0.5	- 9.7%
C18:1	37.0 ± 1.3	32.1 ± 0.9	-13.5%	33.2 ± 2	-10.3%
C18:2	93.8 ± 1.1	80.9 ± 1.1	-13.8%	84.1 ± 3.5	-10.34%
C18:3	67.6 ± 1	54.8 ± 0.8	-18.9%	61.1 ± 2.7	-9.6%
C20:0	8.3 ± 0.1	7.1 ± 0.1	-14.5%	7.7 ± 0.3	-7.2%
C20:1	76.7 ± 1.3	59.7 ± 0.7	-22.2%	68.4 ± 3.2	-10.8%
C22:1	9.2 ± 0.1	7.8 ± 0.1	-15.2%	7.3 ± 1.5	-20.7%

Supplemental Table 2. Primers used in the experimental procedures.

Purpose	Name	Sequence
Cloning		
Promoter region	TWS1prom_attbfw	5'- GGGGACAAGTTTGTACAAAAAAGCAGGCTTGAATGAAAGTTGT GTTTTGAC-3'
	TWS1prom_attbrv	5'-

		GGGGACCACTTTGTACAAGAAAGCTGGGTCTTCTTCTCTAGAGA	
		TTGAG-3'	
Coding sequence	TWS1atg _attbfw	5'-	
		GGGGACAAGTTTGTACAAAAAAGCAGGCTATGAAGACGTCAAG	
		CTTTGTC-3'	
	TWS1no_stop_attbrv	5'-	
		GGGGACCACTTTGTACAAGAAAGCTGGGTTCCACCGTCTTGGGA	
		TTGCT-3'	
	TWS1stop_attbrv	5'-	
		GGGGACCACTTTGTACAAGAAAGCTGGGTTTATCCACCGTCTTG	
		GGATT-3'	
<i>In situ</i> probe	TWS1insituF	5'-CTCTTCCTCAATCTCTAGAGAAGA-3'	
	TWS1insituR	5'-TTCACGGGGCAAATAAATCAGA-3'	
PCR			
RT-PCR	TWS1_RT_fw	5'-GACGTCAAGCTTTGTCTTCCT-3'	
	TWS1_RT_rv	5'-CGTCTTGGGATTGCTGTGG-3'	
	Act2_fw	5'-GTTAGCAACTGGGATGATATGG-3'	
	Act2_rv	5'-CAGCACCAATCGTGATGACTTGCCC-3'	
qPCR	qPDF2_fw	5'-GATCAGTGCCTTGAAGGAAA-3'	
	qPDF2_rv	5'-ATCCTATCAATCTCTTCGCG-3'	
	qATML1_fw	5'-TGGGATATACAGGCAGAAGA-3'	
	qATML1_rv	5'-CTCTCATGTTGTGCCTTCAT-3'	
	qTub4Fw	5'-GGTCAATACGTCCGGGATTC-3'	
	qTub4Rv	5'-TCTGACCGAACGGACCAGAT-3'	