
 

 

Supplementary Notes 
 
Supplementary Note 1. Development of a stable and reproducible respiration culture condition. 
To profile diverse yeast strains during respiratory growth, when mitochondrial OxPhos is highly active, we first needed 
to develop a distinct respiration condition suitable for large-scale investigation. Early log phase fermentation cultures 
repress mitochondrial respiration, cultures containing solely non-fermentable sugars preclude growth of respiration 
deficient yeast, and high glucose cultures grown past the diauxic shift are too biologically dynamic to allow 
reproducible sampling across a large scale study43, 44. To overcome these problems, we developed a culture system 
that includes low glucose (1 g/L) and high glycerol (30 g/L), enabling a short fermentation phase followed by a longer 
respiration phase. This respiration condition affords steady growth and a stable biological state—as reflected by a 
proteome that is constant over multiple hours (Supplementary Fig. 1c–e)—and, thus, an essential window for 
reproducible sample harvesting. 
 
Supplementary Note 2. ΔGene-specific phenotype detection. 
To identify Δgene-specific phenotypes, we broadly surveyed our data for characteristic outlier abundance 
measurements. For each profiled molecule (in both respiration and fermentation growth conditions) we separated 
potential Δgene-specific measurements into two groups: positive log2 fold change (log2[Δgene/WT]) and negative log2 
fold change. These two sets were then plotted individually with log2 fold change and –log10(p-value [two-sided 
Student’s t-test]) along the x- and y- axes, respectively. Data were normalized such that the largest log2 fold change 
and largest –log10(p-value) were set equal to 1. Considering the three largest fold changes where P < 0.05, we 
calculated the Euclidean distance to all neighboring data points and stored the smallest result. A requirement was 
imposed that all considered ‘neighbors’ have a smaller fold change than the data point being considered. It is 
anticipated that data points corresponding to Δgene-specific phenotypes will be outliers in the described plots and 
have large associated nearest-neighbor Euclidean distances. The described routine yielded three separate distances, 
the largest of which was stored for further analysis. The results of this analysis and representative examples are 
highlighted (Fig. 2, Supplementary Figs. 5 and 6). We observed maximal Euclidean distances across a range of 0.006 
to 1.25. We set a cutoff for classification as a ‘Δgene-specific phenotype’ at 0.70 and report 714 molecules (4.6% of 
considered cases across both culture conditions) which exceed this threshold (Supplementary Table 4). This 
procedure provided a useful ‘first pass’ analysis and afforded a truncated set of leads, which were used to develop 
biological hypotheses. 
 
Supplementary Note 3. Lack of effect of Dpl1p disruption on the Tyr-to-4-HB-to-CoQ pathway. 
To test the idea that the CoQ biosynthesis and sphingolipid catabolism pathways are independent, we examined Δdpl1 
yeast, which lack a known dihydrosphingosine phosphate lyase. Δdpl1 yeast show neither a pABA– respiratory growth 
phenotype nor CoQ deficiency (Supplementary Fig. 7j,k). These results demonstrate that disruption of the Tyr-to-4-
HB pathway in Δhfd1 yeast is not downstream of a defect in sphingolipid metabolism. Furthermore, proteome analyses 
showed that Δhfd1 cultured without 4-HB and pABA are similar to Δcoq8 yeast—but not Δdpl1 yeast—and adding 
4-HB to Δhfd1 cultures returns their proteomes to WT-like profiles (Supplementary Fig. 7l,m). 
 
Supplementary Note 4. Quantitative definition of the respiration deficiency response (RDR). 
To quantitatively define the RDR, we categorized strains as respiration deficient (RD) or competent (RC) and 
examined differences between these two groups. Principal component analysis of the Y3K respiration dataset revealed 
marked separation of RD and RC strains (Fig. 3c and Supplementary Fig. 8a). The underlying phenotype changes 
that distinguish RD and RC strains include proteins, lipids, and metabolites (Fig. 3d and Supplementary Table 5). 
RDR perturbations include significant decreases in ATP synthase, TCA cycle, and MICOS proteins (Fig. 3e,f and 
Supplementary Fig. 8b), likely to decrease allocation of useless proteome mass to dysfunctional mitochondria45. 
Importantly, the RDR also includes a positive response, and numerous proteins—including protein folding, NADH 
metabolism, and proteasome assembly proteins—are significantly upregulated in RD strains (Fig. 3e,f). Numerous 
individual molecules—including lactate, alanine, 2-hydroxyglutarate, tyrosol, 4-HB, Gpx2p, and Ahp1p, among many 
others—are significantly perturbed in RD strains and strongly predictive of respiration deficiency (Supplementary 
Fig. 8c,d). Our quantitative assessment of the RDR highlights biochemical features of the cellular response to defects 
in mitochondrial respiration, and suggests that a multi-omic assessment of proteins, lipids, and metabolites could 
afford a highly specific biomarker panel for diseases affected by OxPhos deficiency. 
 



 

 

Supplementary Note 5. RDR normalization procedure. 
Dgene strains were classified as RD (51) or respiration competent (RC) (123) based on observation of a common 
perturbation profile signature in the respiration culture condition. For each molecule we calculated an RDR score. 
This metric represents the proportion of RD Dgene strains over which the molecule was consistently perturbed, relative 
to all RD Dgene strains where the molecule was quantified. Across all RD Dgene strains, 776 molecules were identified 
as having an RDR score > 0.95 (consistently perturbed across more than 95% of RD Dgene strains where quantified) 
and classified as RDR-associated. (Supplementary Table 6). The individual measurements of these RDR-associated 
molecules were then mean normalized (‘RDR-adjusted’) using abundance values from RD Dgene strains. This 
normalization procedure revealed characteristic deviations from the general RDR (Supplementary Fig. 9). 
Importantly, this procedure enables visualization of Δgene-specific changes. For example, prior to RDR 
normalization, the expected decrease in Coq8p in Δcoq8 yeast is obscured by RDR-associated proteins with large 
abundance changes (Supplementary Fig. 9d). RDR normalization not only uncovers the decrease in Coq8p, but a 
significant decrease in Coq5p, a functionally-related CoQ biosynthesis protein, also becomes readily apparent 
(Supplementary Fig. 9d). 
 
Supplementary Note 6. Molecular defects of Δyjr120w yeast. 
To examine the molecular basis for the CoQ deficiency of Δyjr120w yeast, we inspected our proteomics dataset, which 
revealed significant decreases in ATP synthase proteins, especially Atp2p (Supplementary Fig. 10a). Compared to 
other strains, the large decrease in Atp2p is unique to Δyjr120w and Δatp2 (Supplementary Fig. 10b). A relationship 
between yjr120w and atp2 is also suggested by their genetic proximity (Supplementary Fig. 10c). Plasmid 
overexpression of atp2 rescues the Δyjr120w respiratory growth defect (Supplementary Fig. 10d), indicating a 
functional relationship between atp2 and yjr120w in vivo. A decrease in atp2 mRNA in the Δyjr120w strain is a 
component of the underlying mechanism (Supplementary Fig. 10e). Interestingly, CoQ deficiency was also observed 
in Δatp2 yeast (Fig. 3h). 
 
Supplementary Note 7. Predicted enzymatic functions of Aim18p, Aro9p, and Aro10p. 
Since 1907, yeast have been known to catabolize amino acids into fusel (German for ‘bad liquor’) alcohols through 
the Ehrlich pathway46, 47, but the physiological roles for the enzymes involved—such as Aro9p and Aro10p—are not 
fully understood. Aro9p and Aro10p were previously thought to provide a simple catabolic route for extracting 
nitrogen from aromatic amino acids48 (Supplementary Fig. 14a), but our MCNA unexpectedly indicated strong 
correlations between Aro9p, Aro10p, and proteins involved in mitochondrial respiration (Fig. 4d,e), suggesting a more 
complicated biological function that supports OxPhos. We hypothesized that this function might be in the Tyr-to-4-
HB-to-CoQ pathway (Supplementary Fig. 14b), given the putative enzymatic activities of Aro9p and Aro10p in 
tyrosine and phenylalanine metabolism. Consistently, when cultured in pABA– media, Δaro9 and Δaro10 yeast are 
deficient in CoQ and PPHB (Fig. 4f). 

Aim18p is a protein of undefined molecular function that has been detected in mitochondria49 and potentially 
linked to mitochondrial inheritance (Altered Inheritance of Mitochondria, ‘AIM’) by large-scale studies in yeast50. 
Protein sequence alignments show that Aim18p contains a chalcone-flavone isomerase (CHI)-like domain 
(Supplementary Fig. 14c), whose homologs in plants typically function on aromatic small molecules (chalcones) 
(Supplementary Fig. 14d)51-53. Given the potential for this protein domain to catalyze modifications of aromatic small 
molecules, we hypothesized that Aim18p might function in the Tyr-to-4-HB pathway to produce the CoQ headgroup 
(Supplementary Fig. 14d). Consistently, when cultured in pABA– media, we observed deficiency of PPHB in Δaim18 
yeast (Fig. 4f). 



 

 

Supplementary Table Captions 
 
Supplementary Table 1. Knockout yeast strains. 
Table of single-gene deletion (∆gene) yeast strains investigated in this study and their harvest culture densities. For 
each gene deleted in a strain studied, the first tab includes systematic yeast gene name, standard gene name, Entrez 
gene ID, UniProt ID, and human homolog(s). The second tab shows the culture densities upon harvest (growth 
phenotypes), and it includes the systematic yeast gene name, the standard gene name, the average culture densities at 
the harvest time point (mean, n = 3), and the corresponding standard deviations, fold changes (KO/WT), and p-values 
(Student’s t-test) for respiration and fermentation cultures. 
 
Supplementary Table 2. Profiled biomolecules. 
Table of all 4505 molecules profiled in the study. Includes molecule type (protein, lipid, or metabolite), molecule 
name, standard gene name (for proteins) or standard lipid name, systematic gene name (for proteins), and UniProt ID 
(for proteins). For lipids, the numbers in parentheses indicate the number of carbons in the acyl tail(s) and the number 
of carbon-carbon double bonds in the chains (carbons:double_bonds). 
 
Supplementary Table 3. Quantitative dataset. 
Table containing quantitative measurements and descriptive statistics used throughout the Y3K study. Average fold 
changes in molecule abundances (mean log2[∆gene/WT], n = 3) for all strains and all molecules in the respiration and 
fermentation datasets are shown on tabs labeled ‘KO vs WT_Resp (∆LFQ)’ and ‘KO vs WT_Ferm (∆LFQ)’. 
Corresponding standard deviations, and p-values (2-tailed t-test [homostatic]) for all measured fold changes are shown 
on separate tabs labeled accordingly with ‘(Std. Dev.)’ and ‘(P-Value).’ Each tab contains a table with rows 
corresponding to molecules and columns corresponding to the 174 single gene knockout (∆gene) strains profiled in 
the study. 
 
Supplementary Table 4. Δgene-specific phenotypes. 
Table of unique Δgene-phenotype relationships identified in this study. Includes molecule name (standard gene name 
followed by systematic gene name for all proteins), yeast deletion strain (standard gene name), calculated Euclidean 
distance, and associated growth condition (respiration or fermentation). 
 
Supplementary Table 5. Respiration deficient strains vs respiration competent strains. 
Table of average fold change in molecule abundances (mean log2[RD strains/RC strains]). Includes molecule 
identifiers (including UniProt IDs, symbols, and systematic names for proteins), average fold change (mean log2[RD 
strains/RC strains]), –log10(p-value), and select GO terms corresponding to those highlighted in Fig. 3 and 
Supplementary Fig. 8. 
 
Supplementary Table 6. Respiration deficient strains versus wild type. 
Table of average fold change in molecule abundances (mean log2[RD strains/WT]). Includes molecule identifiers 
(including UniProt IDs, symbols, and systematic names for proteins), fraction of RD strains showing consistent 
perturbation of each molecule, RDR score (see Methods), and average fold change (mean log2[RD strains/WT]). 
 
Supplementary Table 7. Δgene–Δgene perturbation profile correlations. 
Table of Δgene–Δgene perturbation profile correlations (Pearson coefficients). Includes the gene knocked out of 
‘strain one’ in the pairwise comparison, the gene knocked out of ‘strain two’ in the pairwise comparison, the Pearson 
coefficient, and the ‘Ome’ (proteome, lipidome, or metabolome) used for the regression analysis. Coefficients are 
only reported for Δgene–Δgene pairs meeting the criteria outlined in the Methods under the heading ‘Regression 
analysis of phenotype changes’. Separate tabs are included for the respiration (resp), fermentation (ferm), and RDR-
adjusted respiration (resp-RDR) datasets. 
 
Supplementary Table 8. Molecule covariance network analysis results. 
Table of 288,794 pairs of covariant molecules (|ρ| ≥ 0.58 and Bonferroni-adjusted P < 0.001) identified in the Y3K 
dataset. Includes molecule names (standard protein name followed by systematic protein name) and types (protein, 
lipid, or metabolite) for ‘molecule one’ and ‘molecule two’, Spearman’s correlation coefficients (ρ), and Bonferroni-
adjusted P-values. Separate tabs are included for the respiration (resp), fermentation (ferm), and RDR-adjusted 
respiration (resp-RDR) datasets. 
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