




Supplementary Figure 1 Effect of RA on the expression of surface betaglycan (T β RIII). Normal spleen B cells were cultured with LPS (12.5 μ g ml⁻¹) and RA (100, 400 nM). After 4 days of culture, surface betaglycan expression was analyzed by FACS. RA, retinoic acid.

Supplementary Figure 2 Effect of anti-T β RIII Ab treatment on IgG2b production by LF and RA. Normal spleen B cells were cultured with LPS (12.5 μ g ml⁻¹), LF (120 μ g ml⁻¹), and RA (100 nM). Anti-T β RIII Ab (5 μ g ml⁻¹) was added for the periods as indicated in panels **a** and **b**. After 7 days of culture, level of IgG2b was determined by ELISA. LF, lactoferrin; RA, retinoic acid.

Supplementary Figure 3 LF and RA synergize to induce expression of CCR9. Normal spleen B cells were cultured with LPS ($12.5 \,\mu g \,ml^{-1}$), LF ($60 \,\mu g \,ml^{-1}$), and RA ($25 \,nM$). After 3 days of culture, total RNA was isolated, and levels of CCR9 were measured by q-PCR. LF, lactoferrin; RA, retinoic acid.

Supplementary Figure 4 Possible mechanisms by which LF and RA synergize to enhance overall gut IgA immunity. LF increases expression of IgA, CCR9, and $\alpha 4\beta 7$ through T β RIII binding and activating canonical TGF- β signaling. Meanwhile, it is highly plausible that RA increases not only the expression of these target genes through RAR directly but also enhances LF-mediated IgA/CCR9/ $\alpha 4\beta 7$ expression through the induction of T β RIII indirectly. LF, lactoferrin; RA, retinoic acid.