Novel High-throughput Approach for Purification of Infectious Virions

Kevin T. James¹, Brad Cooney², Kate Agopsowicz^{3#}, Mary Ann Trevors^{4#}, Adil Mohamed¹, Don Stoltz⁴, Mary Hitt³, Maya Shmulevitz^{1*},

¹Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.
²GE Healthcare Canada, <u>brad.cooney@ge.com</u>.
³Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
⁴Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada

[#]Authors contributed equally to this work

Running Head: High-throughput Virus Purification

*Address correspondence to Maya Shmulevitz, shmulevi@ualberta.ca.

Supplementary Materials and Methods:

Virus purification by CsCl, Reovirus purification on Capto Core 700 chromatography columns, and Capto Core 700 slurry

(A) Purification by CsCl Gradient Ultracentrifugation

- This protocol is according to 1L cultures. For 500ml cultures, use ¹/₂ vol.
- Proceed on ice.
- During sonication, do not let suspension froth.
- Store virus at 4°C, or aliquot and store at -20°C for long-term usage. Avoid freeze-thaw cycles.
- 1. Resuspend cell pellet in 18ml of HO Buffer.
- 2. (Optional) Add Sodium Deoxycholate (10% solution in water) to a final concentration of 0.2%.
- 3. Vortex 5 minutes.
- 4. Incubate on ice for 20 minutes.
- 5. Add 18ml of Vertrel[™] XF.
- 6. Sonicate on amplitude 70% for two pulses of 5 seconds each.
- 7. Subject sample to centrifugation at 4000 RPM for 10 minutes.
- 8. Transfer the top aqueous phase to a new tube.
- 9. Repeat steps 5-8.
- 10. Layer aqueous phase onto CsCl Gradient as follows:
 - 1/4th final volume of CsCl 1.4 g/cc
 - 1/4th final volume of CsCl 1.2 g/cc
 - 1/2 final volume of CsCl of aqueous phase from extraction above
- 11. Subject sample to high speed centrifugation at 112,500 x g for 5-18 hours.
- 12. To collect virus band, either (1) puncture tube with a 5 ml syringe and a needle below the band of interest, and slowly draw the virus into the syringe, or (2) slowly remove liquid using a p1000 pipettor from the top of the tube until the band of interest is reached, and collect.
- 13. Load virus into dialysis tubing (10 kD MWCO).
- 14. Dialyze against 3 sets of virus dilution buffer (VDB), first for >1 hour, then >3 hours, then >6 hours.
- 15. Collect virus from dialysis membrane.

(B) Purification by Capto700 Chromatography

- This protocol is according to 1L cultures. For 500ml cultures, use ¹/₂ vol.
- Proceed on ice.
- During sonication, do not let suspension froth.
- Store virus at 4°C, or aliquot and store at -20°C for long-term usage. Avoid freeze-thaw cycles.

- 1. Resuspend infected cell pellet in 6.5ml of Virus Dilution Buffer.
- 2. Vortex 2 minutes.
- 3. Let lysate sit on ice for 2 minutes.
- 4. Add 6.5ml of Vertrel[™] XF.
- 5. Vortex 2 minutes.
- 6. Sonicate on amplitude 70% for two pulses of 5 seconds each.
- 7. Subject sample to centrifugation at 4000 RPM for 10 minutes.
- 8. Transfer the top aqueous phase to a new tube.
- 9. Filter through $0.45 \mu m$ GD/x filter.
- 10. Pass sample through a Capto700 Column (e.g. AKTA Start chromatography system or a comparable Chromatography system) as follows:
 - a) Attach Capto Core 700 1ml column via "drop to drop" connection to avoid introduction of air on to the column.
 - b) Flush column at ~1ml/min with ddH₂0 until stable UV and Conductivity.
 - c) Add sample via Sample Loop or add larger samples via Sample Inlet.
 - d) Add the A buffer line into Virus Dilution Buffer.
 - e) Equilibrate the column using Virus Dilution Buffer until Conductivity and UV are stable.
 - f) Set fraction collector to collect 0.5ml fractions.
 - g) Load sample onto the column.
 - h) Virus should appear in the first 5-10 fractionation tubes, as indicated by a rise in UV and should be validated by other methods (e.g. western blot analysis, plaque titration, etc.).
 - i) Clean the column to permit reuse with 3-5 column volumes of 30% Isopropanol and 1.0M NaOH.

11. (Optional) Concentrate virus using VivaSpin (100 kD MWCO) sample concentrators.

(C) Purification Capto700 Slurry

- This protocol is per 6 x 10⁶ cells infected with reovirus as in (A) or 1 x 10⁷ infected cells with adenovirus.
- This protocol is scalable to larger or smaller cell lysates. Adjust volumes according to relative number of cells.
- Proceed on ice.
- Do NOT add protease inhibitors, as they can sometimes interfere with reovirus infectivity.
- To prepare 50% Capto700 Slurry, spin Capto700 resin at 800 x g for 5 minutes and wash 2 times with equal-to-resin volume of Virus Dilution Buffer. Store as 50% slurry in VDB.
- Store virus at 4°C, or aliquot and store at -20°C for long-term usage. Avoid freeze-thaw cycles.
- 1. Resuspend cell pellet in 350µl of Virus Dilution Buffer.
- 2. Freeze-thaw 2 times.
- 3. (Optional) Add 350µl of Vertrel[™] XF, vortex for 2 minutes, spin at 1000 x g for 10 minutes, and transfer top aqueous phase. If choosing this option, proceed to step 12.
- 4. Remove nuclei and debris by centrifugation at 800 x g for 10 minutes.

- 5. Add 50-100µl of 50% Capto700 Slurry.
- 6. Mix sample end-over-end for 45 minutes at room temperature.
- 7. Subject sample to centrifugation at 800 x g for 10 minutes.
- 8. Transfer the top phase to a new tube.
- 9. Repeat steps 5-8, 1-2 times for increasing purity
- 10. (Optional) To clear all Capto700 resin, pass sample through an Illustra MicroSpin column at 800 x g for 5 minutes.

RECIPES

1. JMEM L929 Suspension Culture Media

REAGENT	Per L
JMEM (Sigma-Aldrich, M0518) Powder	11g
Sodium bicarbonate (NaHCO ₃)	2.2g
HEPES (4-(2-hydroxyethyl)-1- piperazineethanesulfonic acid)	1.2g (or 1.3g if Sodium salt)
Glucose (or dextrose)	1g
ddH ₂ O	900ml

Mix Components. Adjust to pH 7.2 with 10N NaOH (~375µl of 10N NaOH per L). Add ddH₂0 to 1 L with water. Filter sterilize and store at 4°C.

2. Supplemented JMEM (JMEM⁺⁺⁺)

REAGENT	Per 500ml
FBS	25ml (5% final)
Non-Essential Amino Acids Solution 100X (NEAA)	5ml
Sodium Pyruvate	5ml
Antibiotic/Antimycotic	5ml

Supplement JMEM when ready for use.

3. HO Buffer

REAGENT	Per 100ml	[Final]
1M Tris pH 7.4	1ml	10mM

5M NaCl	5ml	250mM
β-mercaptoethanol	67µ1	
ddH ₂ O	To 100ml	

Filter sterilize through standard 0.45µm syringe filter.

4. Virus Dilution Buffer (VDB) for reovirus

REAGENT	Per 1 L	[Final]
5M NaCl	30ml	150mM
1M MgCl ₂	15ml	15mM
1M Tris pH 7.4	10ml	10mM
ddH2O	To 1L	

Filter sterilize through standard 0.45µm bottle filter.

5. Virus Dilution Buffer (VDB) for adenovirus

REAGENT	Per 1 L	[Final]
1M Tris pH 8.0	10ml	10mM
ddH2O	To 1L	

6. CsCl Solutions

For 1.2g/cc, mix 33.3g CsCl with 100ml of 10mM Tris pH7.4

For 1.4g/cc, mix 67g CsCl with 100ml of 10mM Tris pH7.4

Stir solutions and allow them to reach room temperature. Using a calibrated scale, bring solutions to correct density by adding either CsCl or 10mM Tris pH7.4. Filter sterilize through standard $0.45\mu m$ bottle filter.

ADDITIONAL REAGENTS and EQUIPMENT

REAGENTS and EQUIPMENT	Catalogue Number	Source
Vertrel [™] XF fluorinated solvent	Vertrel [™] XF	Dymar Chemicals Ltd., Mississauga, ON, Canada

AKTA Start	29-0220-94 + 29-0230-51	GE Healthcare
Capto Core 700 1ml column	17-5481-51 (5 pieces)	GE Healthcare
0.45µm Whatman filter (regenerated Cellulose GD/X filters)	6882-2504	GE Healthcare
Capto Core 700 slurry (25ml)	17-5481-01	GE Healthcare
Illustra MicroSpin columns	27-3565-01 (50 pieces)	GE Healthcare
(Optional) VivaSpin 6 (100,000 MWCO) 2-6mls sample concentrator	28-9323-19 (25 pieces)	GE Healthcare
(Optional) VivaSpin 2 (100,000 MWCO) 400µ1 – 2ml sample concentrator	28-9322-58 (25 pieces)	GE Healthcare

REFERENCES

- 1. Bett, A.J., Haddara, W., Prevec, L. & Graham, F.L. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. *Proc Natl Acad Sci U S A* **91**, 8802-8806 (1994).
- 2. Ng, P., Parks, R.J., Cummings, D.T., Evelegh, C.M. & Graham, F.L. An enhanced system for construction of adenoviral vectors by the two-plasmid rescue method. *Hum Gene Ther* **11**, 693-699 (2000).
- 3. Chaurasiya, O.S., Kumar, L. & Sethi, R.S. An infant with milky blood : an unusual but treatable case of familial hyperlipidemia. *Indian J Clin Biochem* **28**, 206-209 (2013).