How DNA barcoding can be more effective in microalgae identification: a case of cryptic diversity revelation in *Scenedesmus* (Chlorophyceae)

Shanmei Zou, Cong Fei, Chun Wang, Zhan Gao, Yachao Bao, Meilin He, and Changhai Wang*

College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China

* Corresponding author. E-mail address: chwang@njau.edu.cn (Changhai Wang)

			GenBank accession number						
Strain designation	Collection locality	Species	rbcL	ITS	16S	tufA			
		Scenedesmus							
SM20-1	Lake Hulunbeier, Neimeng, China	S. deserticola	KT777944	KT778079	KT778036	KT778003			
SM20-3	Lake Hulunbeier, Neimeng, China	S. deserticola	KT777945	KT778078	KT778037				
SM20-4	Soil from Shihezi, Xinjiang, China	S. deserticola	KT777950		KT778038				
SM20_2	Lake Hulunbeier, Neimeng, China	S. deserticola			KT778039	KT778004			
SM2_4	Lake Hulunbeier, Neimeng, China	S. deserticola	KT777960	KT778060					
SM1_3	Lake Hulunbeier, Neimeng, China	S. deserticola	KT777959	KT778076	KT778040	KT777998			
SM16_2	Lianyungang, China	S. deserticola	KT777955	KT778067					
SM3_3	Lake Hulunbeier, Neimeng, China	S. deserticola	KT777946	KT778068	KT778045	KT778001			
SM5_3	Lake Hulunbeier, Neimeng, China	S. deserticola		KT778077					
SM3_2	Soil from Shihezi, Xinjiang, China	S. deserticola		KT778063	KT778049	KT778000			
SM3_4	Lake Taihu, Jiangsu, China	S. deserticola	KT777949	KT778073	KT778054				
SM4_3	Lake Taihu, Jiangsu, China	S. deserticola	KT777965	KT778059	KT778046				
SM5_4	Lake Taihu, Jiangsu, China	S. deserticola	KT777966	KT778057	KT778057				
SM3_1	Lake Taihu, Jiangsu, China	S. deserticola	KT777967	KT778062	KT778053				
SM2_1	Lake Zixia, Jiangsu, China	S. deserticola	KT777968	KT778072	KT778050				
SM5_2	Lake Taihu, Jiangsu, China	S. deserticola	KT777969	KT778121	KT778056				
SM5_1	Lake Taihu, Jiangsu, China	S. deserticola	KT777970	KT778058	KT778055				
SM4_1	Lake Donghu, Wuhan, China	S. deserticola	KT777971	KT778061	KT778047	KT777999			
SM1_2	Lake Donghu, Wuhan, China	S. deserticola	KT777972	KT778074	KT778042	KT777997			
SM4_2	Lake Donghu, Wuhan, China	S. deserticola	KT777973	KT778069	KT778051	KT778002			

Supplementary Table 1. List of specimens with the classification, collection locality, and voucher numbers. GenBank accession numbers are also given, some of which in bold were previously published.

SM2_3	Lake Donghu, Wuhan, China	S. deserticola	KT777974	KT778064	KT778048	
SM1_4	Lake Donghu, Wuhan, China	S. deserticola	KT777975	KT778075	KT778052	KT777996
6JQ_2	Lake Mochou, Nanjing, China	S. deserticola	KT777976	KT778066	KT778044	
SM6_2	Lake Mochou, Nanjing, China	S. deserticola	KT777963			
SM4_4	Lake Mochou, Nanjing, China	S. deserticola	KT777964	KT778065	KT818711	
SM2_2	Lake Mochou, Nanjing, China	S. deserticola	KT777985	KT778071	KT778043	
SM1_1	Lake Zixia, Jiangsu, China	S. deserticola	KT777986	KT778070	KT778041	KT777995
BCP-YPG		S. deserticola	HQ246361			HQ246381.1
BCPEM2VF30		S. deserticola	HQ246358			HQ246380.1
		S. deserticola				HQ246379.1
		S. deserticola				HQ246378.1
		S. deserticola				HQ246377.1
1283_1	Xiamen, Fujian, China	S. spinosus	KT777977	KT778087		KT778006
1268_1	Lake Taihu, Jiangsu, China	S. spinosus		KT778091		KT778007
1268_2	Lake Hulunbeier, Neimeng, China	S. spinosus		KT778090		KT778009
1268_3	Lake Boyang, China	S. spinosus		KT778092		KT778008
1268_4	Lake Taihu, China	S. spinosus		KT778089		KT778010
1268_5	Nanjing, China	S. spinosus		KT778088		
44_1	Lake Hulunbeier, Neimeng, China	S. quadricauda	KT777982	KT778084	KT818697	
44_2	Soil from Shihezi, Xinjiang, China	S. quadricauda	KT777980	KT778085		
44_4	Lake Hulunbeier, Neimeng, China	S. quadricauda	KT777983	KT778086	KT818699	KT778012
4_2	Lake Hulunbeier, Neimeng, China	S. quadricauda	KT777981			
4_3	Lake Mochou, Nanjing, China	S. quadricauda	KT777961			
40_3	Lake Mochou, Nanjing, China	S. quadricauda	KT777979		KT818698	

		S. quadricauda	AB084332			
76_1	Donghu, Wuhan, China	S. bijuga	KT777978	KT778082		KT778034
76_2	Lake Taihu, Jiangsu, China	S. bijuga		K1778080		KT778005
76_4	Lake Zixia, Jiangsu, China	S. bijuga		KT778081		
		S. rotundus	HQ246351			HQ246371
		S. rotundus	HQ246350			HQ246372
959_1	Lake Yueya, Nanjing, China	S. dimorphus	KT777956			KT778033
959_2	Lake Yueya, Nanjing, China	S. dimorphus	KT777958	KT778101	KT818705	KT778013
959_3	Lake Mochou, Nanjing, China	S. dimorphus	KT777984	KT778102		KT778014
959_4	Ningbo, Zhejiang, China	S. dimorphus	KT777957	KT778103	KT818706	KT778024
959_5						KT778027
12_1	Lake Donghu, Wuhan, China	S. obliquus	KT777952		KT818707	KT778016
12_2	River, Nanjing, China	S. obliquus	KT777954	KT818720	KT818703	KT778026
12_3	Lake Xuanwu, Nanjing, China	S. obliquus	KT777951	KT778109		KT778015
12_4	Lake Xuanwu, Nanjing, China	S. obliquus	KT777953	KT778105	KT818704	KT778018
12_5	Lake Hulunbeier, Neimeng, China	S. obliquus				KT778017
SM17_1	Soil from Shihezi, Xinjiang, China	S. obliquus	KT777962	KT778104	KT818719	
SM17_4	Ningde, China	S. obliquus	KT777948	KT778106	KT818718	
SM14_3	Lake Hulunbeier, Neimeng, China	S. obliquus		KT778117		
		S. obliquus			EU073192.1	
		S. obliquus		FR865721.1		
		S. obliquus		FR865719.1		

		S. obliquus S. obliquus S. obliquus S. obliquus S. obliquus S. obliquus S. obliquus		FR865722.1 FR865726.1 FR865731.1 FR865738.1 FR865737.1 KJ676128.1		DQ396875.1
		S. pectinatus		FR865723.1		
		S. pectinatus		FR865730.1		
		S. regularis		FR865732.1		
SM9_1	Lake Hulunbeier, Neimeng, China	S. bajacalifornicus		KT778119	KT818700	KT778021
SM14_1	Zhoushan, Zhejiang, China	S. bajacalifornicus				KT778030
SM14_4	Soil from Shihezi, Xinjiang, China	S. bajacalifornicus		KT778118		KT778029
SM14_2	Lake Hulunbeier, Neimeng, China	S. bajacalifornicus		KT778116		
SM9_5	Lake Hulunbeier, Neimeng, China	S. bajacalifornicus		KT778115	KT818702	KT778028
SM9_4	Lake Hulunbeier, Neimeng, China	S. bajacalifornicus		KT778114		KT778031
SM9_2	Lianyungang, China	S. bajacalifornicus		KT778113		KT778019
SM9_3	Lake Hulunbeier, Neimeng, China	S. bajacalifornicus			KT818701	KT778035
SM13_4	Lake Hulunbeier, Neimeng, China	S. bajacalifornicus		KT778112	KT818717	KT778020
SM13_3	Soil from Shihezi, Xinjiang, China	S. bajacalifornicus		KT778111		KT778023
SM13_1	Lake Taihu, Jiangsu, China	S. bajacalifornicus				KT778025
SM13_2	Lake Xuanwu, Jiangsu, China	S. bajacalifornicus		KT778110	KT818716	KT778032
		S. bajacalifornicus	KF975592		EU073189.1	HQ246375.1

		S. bajacalifornicus S. bajacalifornicus S. bajacalifornicus S. bajacalifornicus S. bajacalifornicus	KF975602 HQ246355 HQ246354 HQ246357 HQ246353			HQ246374.1 HQ246376.1
1221_1	River, Lianyungang, China	S. acuminatus		KT778100	KT818709	KT778022
1221_4	River, Nanjing, China	S. acuminatus		KT778099	KT818708	
1271_3	Lake Mochou, Nanjing, China	S. acuminatus			KT818710	
SM8 2	Lake Hulunbeier, Neimeng, China	S. sp	KT777947	KT778097		
SM8_1	Lake Taihu, Jiangsu, China	S. sp		KT778095		
SM8_3	Lake Taihu, Jiangsu, China	S. sp		KT778096		
SM8_4	Lake Xuanwu, Jiangsu, China	S. sp		KT778098		
SM15_1	Lake Taihu, Jiangsu, China	S. sp		KT778093		
SM15_4	Lake Donghu, Wuhan, China	S. sp		KT778094		KT778011
		S. sp	KF975604			
		S. sp			EU073191.1	
		S. sp			EU073193.1	
		S. sp			EU073194.1	
		S. sp			EU073195.1	
		S. sp			AJ548893.1	
		S. sp			AJ548894.1	
		S. sp			KC994749.1	
		S. sp			GQ920625.1	
		S. sp			AF394206.1	

		S. sp			KC994774.1	
		S. sp			KC994812.1	
		S. sp			KC994840.1	
		S. sp			KC994867.1	
AKS-19		S. sp	KF975603.1			
					AJ548895.1	
Outgroup						
		Chlorella				
275_4	Lake Xuanwu, Nanjing, China	C. sorokiniana	KT777992	KT778083	KT818713	KR154271
275_1	Qingdao, China	C. sorokiniana	KT777993	KT778120	KT818712	KR154269
275_2	Xiamen, Fujian, China	C. sorokiniana	KT777994	KT778107		KR154270
5_4	Lake Donghu, Wuhan, China	C. ellipsoidea	KT777991	KT778122		
5_3	Soil from Shihezi, Xinjiang, China	C. ellipsoidea	KT777990		KT818715	
5_2	Lake Mochou, Jiangsu, China	C. ellipsoidea	KT777989	KM514842	KT818714	
1_1	River, Wuhan, China	C. ellipsoidea	KT777987			
2_2	Lake Yueya, Nanjing, China	C. ellipsoidea	KT777988			
CCAP 211/11M		C. emersonii		FR865657		
CCAP 211/15		C. emersonii		FR865661		
IAM C-101		C.pyrenoidosa			AJ242752.1	
		C.pyrenoidosa			JN887917.1	
		Desmodesmus				
Mary 8/18 T-1w		D.multivariabilis	GU192431			

AKS-11	D. sp	KF975598
AKS-7	D. sp	KF975595.1

Supplementary Table S2. The mean interspecific divergences of *rbcL* sequences for *Scenedesmus* taxa (lower left: nucleotide divergences, upper

right: standard error). The taxa name corresponds to the assignments in Figure 2.

Taxa		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Clade_10	1		0.010	0.011	0.009	0.009	0.010	0.009	0.010	0.011	0.011	0.013	0.013	0.013	0.013	0.013	0.012	0.012	0.019
Clade_5	2	0.082		0.005	0.008	0.010	0.010	0.009	0.009	0.010	0.010	0.012	0.011	0.012	0.012	0.012	0.012	0.011	0.019
Clade_4	3	0.086	0.023		0.009	0.010	0.010	0.009	0.008	0.009	0.009	0.012	0.012	0.011	0.011	0.012	0.011	0.010	0.019
Clade_6	4	0.072	0.060	0.068		0.010	0.011	0.010	0.011	0.011	0.011	0.013	0.012	0.012	0.012	0.013	0.011	0.011	0.019
Clade_8	5	0.065	0.073	0.077	0.073		0.002	0.004	0.008	0.010	0.010	0.011	0.011	0.012	0.012	0.012	0.012	0.011	0.019
Clade_9	6	0.067	0.078	0.082	0.074	0.004		0.005	0.008	0.010	0.010	0.011	0.011	0.012	0.012	0.012	0.012	0.011	0.019
Clade_7	7	0.062	0.069	0.071	0.068	0.016	0.017		0.007	0.009	0.009	0.012	0.010	0.012	0.011	0.011	0.011	0.010	0.018
Clade_3	8	0.083	0.076	0.056	0.093	0.065	0.063	0.051		0.006	0.005	0.012	0.011	0.011	0.012	0.012	0.011	0.010	0.018
Clade_2	9	0.093	0.082	0.067	0.095	0.075	0.074	0.058	0.037		0.007	0.013	0.009	0.011	0.010	0.010	0.010	0.010	0.017
Clade_1	10	0.088	0.081	0.060	0.089	0.077	0.076	0.064	0.032	0.036		0.013	0.011	0.011	0.011	0.011	0.011	0.010	0.018
Clade_11	11	0.108	0.094	0.093	0.115	0.093	0.093	0.096	0.106	0.104	0.106		0.010	0.010	0.009	0.010	0.012	0.011	0.019
Clade_18	12	0.105	0.089	0.089	0.107	0.089	0.092	0.079	0.089	0.071	0.089	0.067		0.008	0.006	0.006	0.009	0.009	0.016
Clade_12	13	0.101	0.098	0.087	0.108	0.096	0.099	0.095	0.092	0.090	0.091	0.068	0.046		0.007	0.007	0.009	0.009	0.017
Clade_17	14	0.105	0.095	0.087	0.105	0.095	0.098	0.086	0.094	0.077	0.086	0.067	0.030	0.034		0.004	0.009	0.009	0.017
Clade_16	15	0.104	0.098	0.093	0.108	0.096	0.099	0.087	0.092	0.078	0.092	0.068	0.028	0.037	0.012		0.009	0.009	0.016
Clade_15	16	0.098	0.094	0.087	0.095	0.099	0.099	0.087	0.088	0.081	0.089	0.090	0.055	0.058	0.058	0.057		0.007	0.015
Clade_14	17	0.102	0.089	0.078	0.090	0.090	0.092	0.078	0.076	0.069	0.070	0.083	0.055	0.059	0.055	0.054	0.035		0.014
Clade_13	18	0.228	0.226	0.216	0.223	0.228	0.230	0.214	0.213	0.203	0.216	0.205	0.168	0.178	0.173	0.166	0.156	0.136	

Supplementary Table S3. The mean interspecific divergences of ITS sequences for *Scenedesmus* taxa (lower left: nucleotide divergences, upper right: standard error). The taxa name corresponds to the assignments in Supplementary Figure 6.

Таха		1	2	3	4	5	6	7	8	9	10	11	12	13
Clade_1	1		0.003	0.007	0.009	0.009	0.016	0.015	0.015	0.015	0.015	0.014	0.015	0.015
Clade_2	2	0.011		0.008	0.009	0.009	0.017	0.015	0.015	0.015	0.015	0.015	0.015	0.015
Clade_3	3	0.046	0.053		0.008	0.008	0.017	0.015	0.016	0.015	0.016	0.015	0.015	0.015
Clade_4	4	0.073	0.083	0.070		0.009	0.017	0.016	0.016	0.015	0.016	0.015	0.016	0.015
Clade_5	5	0.066	0.071	0.058	0.084		0.017	0.016	0.016	0.016	0.017	0.016	0.016	0.016
Clade_8	6	0.189	0.192	0.208	0.217	0.201		0.010	0.012	0.011	0.010	0.010	0.010	0.009
Clade_6	7	0.162	0.165	0.165	0.193	0.179	0.093		0.011	0.009	0.009	0.009	0.008	0.008
Clade_12	8	0.171	0.171	0.179	0.199	0.190	0.118	0.096		0.009	0.008	0.007	0.007	0.008
Clade_13	9	0.166	0.169	0.170	0.189	0.182	0.099	0.070	0.059		0.007	0.006	0.006	0.006
Clade_11	10	0.159	0.163	0.169	0.184	0.179	0.088	0.068	0.049	0.038		0.004	0.005	0.004
Clade_10	11	0.156	0.160	0.161	0.185	0.174	0.089	0.067	0.045	0.032	0.016		0.004	0.003
Clade_14	12	0.157	0.160	0.161	0.188	0.175	0.087	0.064	0.044	0.031	0.018	0.013		0.003
Clade_9	13	0.160	0.164	0.166	0.186	0.180	0.083	0.064	0.050	0.033	0.019	0.011	0.012	

Supplementary Table S4. The mean interspecific divergences of 16S sequences for *Scenedesmus* taxa (lower left: nucleotide divergences, upper right: standard error). The taxa name corresponds to the assignments in Supplementary Figure 9.

Таха		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Clade_1	1		0.030	0.032	0.031	0.031	0.037	0.038	0.040	0.039	0.039	0.040	0.041	0.039	0.039	0.039
Clade_2	2	0.237		0.011	0.011	0.010	0.018	0.017	0.018	0.018	0.018	0.021	0.020	0.019	0.018	0.018
Calde_3	3	0.269	0.048		0.010	0.012	0.018	0.017	0.020	0.020	0.019	0.022	0.022	0.020	0.019	0.019
Clade_4	4	0.258	0.046	0.036		0.014	0.017	0.017	0.018	0.018	0.018	0.021	0.021	0.020	0.018	0.018
Clade_5	5	0.262	0.037	0.051	0.064		0.018	0.016	0.016	0.017	0.016	0.019	0.019	0.018	0.016	0.017
Clade_6	6	0.318	0.106	0.108	0.103	0.103		0.016	0.016	0.017	0.016	0.019	0.019	0.019	0.016	0.016
Clade_14	7	0.325	0.095	0.101	0.102	0.083	0.086		0.007	0.009	0.008	0.011	0.011	0.009	0.008	800.0
Calde_13	8	0.344	0.102	0.117	0.111	0.080	0.083	0.020		0.007	0.006	0.010	0.008	0.011	0.006	0.006
Clade_12	9	0.338	0.100	0.120	0.115	0.088	0.097	0.034	0.022		0.007	0.011	0.011	0.012	0.007	0.007
Clade_11	10	0.338	0.102	0.107	0.102	0.086	0.080	0.023	0.014	0.017		0.008	0.010	0.011	0.000	0.001
Calde_10	11	0.351	0.133	0.138	0.133	0.116	0.110	0.050	0.042	0.045	0.027		0.008	0.009	0.008	0.008
Clade_9	12	0.350	0.128	0.143	0.138	0.105	0.108	0.043	0.023	0.045	0.037	0.031		0.010	0.010	0.010
Clade_15	13	0.334	0.118	0.123	0.125	0.105	0.109	0.026	0.040	0.055	0.043	0.039	0.036		0.011	0.011
Clade_8	14	0.338	0.102	0.107	0.102	0.086	0.080	0.023	0.014	0.017	0.000	0.027	0.037	0.043		0.001
Clade_7	15	0.339	0.103	0.108	0.103	0.087	0.081	0.024	0.016	0.019	0.002	0.029	0.039	0.045	0.002	

Supplementary Table S5. The mean interspecific divergences of *tufA* sequences for *Scenedesmus* taxa (lower left: nucleotide divergences, upper right: standard error). The taxa name corresponds to the assignments in Supplementary Figure 3.

Таха		1	2	3	4	5	6	7	8	9	10	11	12	13	14
Clade_1	1		0.009	0.015	0.042	0.035	0.036	0.023	0.023	0.015	0.023	0.024	0.023	0.023	0.026
Clade_2	2	0.024		0.014	0.042	0.033	0.034	0.022	0.022	0.017	0.021	0.022	0.022	0.022	0.025
Clade_3	3	0.068	0.057		0.041	0.033	0.034	0.019	0.021	0.016	0.019	0.020	0.019	0.019	0.022
Clade_4	4	0.363	0.368	0.357		0.039	0.037	0.043	0.040	0.041	0.041	0.042	0.042	0.043	0.043
Clade_5	5	0.270	0.255	0.250	0.325		0.021	0.038	0.038	0.035	0.033	0.034	0.034	0.034	0.037
Clade_6	6	0.300	0.278	0.291	0.320	0.139		0.037	0.035	0.034	0.033	0.032	0.033	0.033	0.034
Clade_7	7	0.147	0.139	0.111	0.380	0.295	0.312		0.017	0.021	0.020	0.020	0.019	0.019	0.020
Clade_8	8	0.139	0.127	0.131	0.368	0.300	0.295	0.083		0.021	0.019	0.019	0.021	0.020	0.021
Clade_9	9	0.064	0.083	0.076	0.374	0.280	0.296	0.119	0.127		0.019	0.019	0.019	0.019	0.021
Clade_10	10	0.139	0.119	0.107	0.352	0.259	0.279	0.110	0.107	0.095		0.008	0.010	0.009	0.012
Clade_11	11	0.148	0.127	0.115	0.364	0.265	0.271	0.115	0.107	0.103	0.021		0.010	0.009	0.012
Clade_13	12	0.135	0.131	0.103	0.357	0.265	0.287	0.107	0.123	0.099	0.031	0.032		0.007	0.012
Clade_14	13	0.147	0.127	0.107	0.371	0.269	0.282	0.108	0.118	0.109	0.030	0.029	0.019		0.010
Clade_12	14	0.168	0.147	0.127	0.368	0.290	0.290	0.111	0.119	0.115	0.043	0.039	0.042	0.039	

Species	Closest Species	Monophyletic?	Intra Dist	Inter Dist - Closest	Intra/Inter	P ID(Strict)	P ID(Liberal)	Av(MRCA-ti	P(Randomly Distinct)	Clade Support	Rosenberg's P(AB)
1	2	yes	2.667	3.667	0.73	0.30 (0.12, 0.49)	0.60 (0.45, 0.74)	1.6667	0.09	NA	0.17
2	3	yes	0.00E+00	3.304	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	0.17
3	2	no	2.569	3.304	0.78	0.73 (0.68, 0.79)	0.92 (0.89, 0.95)	1.3043	NA	NA	NA
4	5	yes	0.00E+00	4	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	2.65E-03
5	4	yes	2	4	0.5	0.60 (0.47, 0.72)	0.87 (0.76, 0.97)	1	1	NA	4.50E-08
6	4	yes	0.00E+00	4	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	1.68E-03
7	8	yes	0.00E+00	3	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	0.33
8	9	yes	0.00E+00	2	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	1
9	8	yes	0.00E+00	2	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	1
10	6	yes	0.00E+00	4	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	1.35E-03
11	10	yes	2	5	0.4	0.39 (0.23, 0.54)	0.74 (0.58, 0.89)	1	1	NA	4.10E-04
12	11	yes	2	5	0.4	0.60 (0.45, 0.74)	0.86 (0.75, 0.97)	1	NA	2.10E-05	
13	14	yes	2.5	3.75	0.67	0.42 (0.27, 0.56)	0.73 (0.62, 0.84)	1.75	NA	0.1	
14	13	yes	0.00E+00	3.75	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	0.1
15	14	yes	2	4	0.5	0.34 (0.18, 0.49)	0.67 (0.52, 0.83)	1	1	NA	0.02
16	17	yes	2	3	0.67	0.25 (0.09, 0.41)	0.57 (0.41, 0.73)	1	NA	0.33	
17	16	yes	0.00E+00	3	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	0.33
18	17	yes	2	4	0.5	0.60 (0.47, 0.72)	0.87 (0.76, 0.97)	1	1	NA	2.98E-03

Supplementary Table S6. Species Delimitation Results of PID for *rbcL*. The species number corresponds to the P ID clades in Fig. 2.

Supplementary Table S7. Species Delimitation Results of PID for ITS. The species number corresponds to the P ID clades in Supplementary Fig. 6.

Species	Closest Species	Monophyletic?	Intra Dist	Inter Dist - Closest	Intra/Inter	P ID(Strict)	P ID(Liberal)	Av(MRCA-tips)	P(Randomly Distinct)	Clade Support	Rosenberg's P(AB)
1	2	no	2	3	0.67	0.79 (0.73, 0.84)	0.94 (0.92, 0.97)	1	NA	NA	NA
2	1	yes	2	3	0.67	0.25 (0.09, 0.41)	0.57 (0.41, 0.73)	1	NA	3.10E-04	
3	1	yes	2	5	0.4	0.52 (0.35, 0.70)	0.78 (0.63, 0.93)	1	NA	8.20E-04	
4	5	yes	2	4	0.5	0.46 (0.28, 0.64)	0.72 (0.58, 0.87)	1	NA	2.98E-03	
5	4	yes	2	4	0.5	0.60 (0.47, 0.72)	0.87 (0.76, 0.97)	1	NA	2.98E-03	
6	7	yes	2	3	0.67	0.25 (0.09, 0.41)	0.57 (0.41, 0.73)	1	NA	0.33	
7	6	yes	0.00E+00	3	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	0.33
8	7	yes	2	4	0.5	0.34 (0.18, 0.49)	0.67 (0.52, 0.83)	1	NA	0.05	
9	10	yes	3.278	5.778	0.57	0.70 (0.62, 0.79)	0.91 (0.85, 0.96)	1.7778	NA	1.60E-09	
10	11	yes	2	5	0.4	0.67 (0.54, 0.79)	0.90 (0.80, 1.0)	1	NA	2.70E-06	
11	10	yes	2	5	0.4	0.52 (0.35, 0.70)	0.78 (0.63, 0.93)	1	NA	1.40E-04	
12	13	yes	2	4	0.5	0.53 (0.38, 0.68)	0.82 (0.71, 0.93)	1	NA	0.03	
13	12	yes	2	4	0.5	0.34 (0.18, 0.49)	0.67 (0.52, 0.83)	1	NA	0.03	
14	11	yes	2	5	0.4	0.78 (0.69, 0.86)	0.93 (0.88, 0.98)	1	0.97	NA	2.80E-05

Supplementary Table S8. Species Delimitation Results of PID for *tufA*. The species number corresponds to the P ID clades in Supplementary Fig. 3.

Species	Closest Species	Monophyletic?	Intra Dist	Inter Dist - Closest	Intra/Inter	P ID(Strict)	P ID(Liberal)	Av(MRCA-tips)	P(Randomly Distinct)	Clade Support	Rosenberg's P(AB)
1	2	yes	4.75	7.375	0.64	0.60 (0.49, 0.70)	0.86 (0.80, 0.92)	4.375	NA	4.94E-03	
2	3	yes	2	5	0.4	0.39 (0.23, 0.54)	0.74 (0.58, 0.89)	1	NA	4.94E-03	
3	2	yes	2	5	0.4	0.39 (0.23, 0.54)	0.74 (0.58, 0.89)	1	NA	2.75E-03	
4	5	yes	0.00E+00	3	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	0.1
5	4	yes	0.00E+00	3	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	0.17
6	5	yes	2.667	3.667	0.73	0.30 (0.12, 0.49)	0.60 (0.45, 0.74)	1.6667	NA	0.17	
7	8	yes	0.00E+00	3	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	0.33
8	7	yes	2	3	0.67	0.25 (0.09, 0.41)	0.57 (0.41, 0.73)	1	NA	0.33	
9	7	yes	2	5	0.4	0.39 (0.23, 0.54)	0.74 (0.58, 0.89)	1	0.64	NA	4.10E-04
10	9	yes	3.167	7.25	0.44	0.57 (0.43, 0.72)	0.85 (0.74, 0.96)	2.25	0.97	NA	0.1
11	12	yes	4	6.333	0.63	0.51 (0.38, 0.64)	0.81 (0.71, 0.91)	3.3333	0.94	NA	5.60E-08
12	13	yes	0.00E+00	5.8	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	1.78E-03
13	12	yes	3.6	5.8	0.62	0.52 (0.39, 0.64)	0.81 (0.71, 0.91)	2.8	1	NA	1.10E-08
14	12	yes	6.514	9.133	0.71	0.71 (0.65, 0.78)	0.91 (0.87, 0.96)	6.1333	1	NA	4.30E-15

Supplementary Table S9. Species Delimitation Results of PID for 16S. The species number corresponds to the P ID clades in Supplementary Fig. 9.

Species	Closest Species	Monophyletic?	Intra Dist	Inter Dist - Closest	Intra/Inter	P ID(Strict)	P ID(Liberal)	Av(MRCA-tips)	P(Randomly Distinct)	Clade Support	Rosenberg's P(A	B)
1	2	yes	2.5	3.917	0.64	0.44 (0.29, 0.58)	0.75 (0.64, 0.86)	1.75	1	NA	5.80E-08	
2	1	no	2.294	3.917	0.59	0.82 (0.76, 0.87)	0.95 (0.93, 0.98)	1.1667	NA	NA	NA	
3	4	yes	2.667	4.667	0.57	0.41 (0.23, 0.59)	0.68 (0.54, 0.83)	1.6667	0.87	NA	0.01	
4	2	yes	2	4.167	0.48	0.54 (0.40, 0.69)	0.83 (0.72, 0.94)	1	0.54	NA	0.01	
5	6	yes	2	4	0.5	0.34 (0.18, 0.49)	0.67 (0.52, 0.83)	1	0.54	NA	1.70E-04	
6	7	yes	0.00E+00	3	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	2.85E-03	
7	6	no	2	3	0.67	0.58 (0.47, 0.69)	0.85 (0.79, 0.92)	1	NA	NA	NA	
8	11	no	2	2	1	0.08 (0.00E+00, 0.24)	0.37 (0.21, 0.53)	1	NA	NA	NA	
9	10	yes	0.00E+00	2.5	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	1	
10	9	no	3	2.5	1.2	0.00E+00 (0.00E+00, 0.14)	0.24 (0.08, 0.40)	1.5	NA	NA	NA	
11	8	yes	0.00E+00	2	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	0.01	
12	8	yes	2.333	3.833	0.61	0.52 (0.40, 0.65)	0.82 (0.72, 0.92)	1.8333	NA	6.30E-06		
13	8	yes	2	4	0.5	0.46 (0.28, 0.64)	0.72 (0.58, 0.87)	1	0.97	NA	0.02	
14	15	yes	0.00E+00	3	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	0.33	
15	14	yes	2	3	0.67	0.25 (0.09, 0.41)	0.57 (0.41, 0.73)	1	NA	0.33		

Supplementary Table 10. Combinations of diagnostic nucleotides for each of the 14 *Scenedesmus* taxa recovered in Supplementary Fig. 6 by CAOS. Nucleotide numbers refer to 28 selected positions on the ITS sequences.

Species (Cryptic lineage number,	Positi	ions																										
Genbank number)	246	349	358	360	368	396	418	422	423	431	444	445	449	452	473	500	512	538	555	738	740	758	764	812	966	973	974	1208
Scenedesmus deserticola I	С	А	С	С	-	-	Т	С	Т	С	G	Α	С	Т	-	G	С	Т	-	С	т	G	С	С	G	Т	С	Т
Scenedesmus deserticola II	Т	А	С	С	-	-	Т	Т	С	С	Α	Α	С	Т	С	G	С	Т	-	С	т	G	С	А	A	Т	С	С
Scenedesmus bijuga	С	А	С	С	-	-	С	С	Т	Т	Α	Α	Т	G	-	Т	С	С	G	Т	Α	G	С	-	A	-	С	С
Scenedesmus quadricauda	С	А	С	С	-	-	С	С	Т	С	Α	С	С	G	-	G	С	Т	G	Т	Т	G	С	А	G	Т	А	С
Scenedesmus spinosus	С	А	С	С	-	-	С	Т	Т	С	Α	Α	С	G	-	А	С	Т	G	Т	А	G	Т	-	A	-	С	С
Scenedesmus sp 2	А	А	С	Т	Т	Т	G	С	С	Т	Α	Т	Т	С	А	G	Т	Т	A	-	Т	G	-	С	G	G	Т	С
Scenedesmus pectinatus	А	А	С	Т	С	А	G	С	Т	Т	-	-	Т	С	А	G	А	С	A	Т	G	G	-	G/T	A	Т	С	С
Scenedesmus regularis	А	А	С	Т	С	А	G	С	Т	Т	-	-	Т	С	А	G	С	С	A	Т	G	G	-	G	A	Т	С	С
Scenedesmus sp 1	А	Т	Α	С	Т	С	Т	С	С	Т	-	Т	Т	Т	А	G	С	С	A	С	С	Α	A	С	A	Т	С	G
Scenedesmus acuminatus	А	А	Т	Т	Т	А	Т	С	Т	Т	Α	-	Т	Т	А	G	A	С	A	A	G	G	Т	С	A	Т	А	С
Scenedesmus dimorphus	А	А	Т	Т	Α	А	Т	С	Т	Т	-	-	-	Т	А	G	С	Т	A	Т	Т	Α	Т	Т	A	Т	С	G
Scenedesmus obliquus I,II,III	А	А	Т	С	Т	А	Т	С	Т	Т	Α	Т	Т	Т	А	G	С	С	A	Т	Т	Α	Т	С	A	Т	С	G
Scenedesmus obliquus IV	А	Α	С	Т	С	А	Т	С	Т	Т	Α	Т	Т	Т	А	G	С	С	Α	Т	Т	Α	-	С	Α	С	Т	Т
Scenedesmus sp 3	Α	Α	С	Т	Т	G	Т	С	Т	Т	Α	G	Т	Т	Α	G	С	С	Α	Т	Т	Α	Т	С	Α	Т	С	G

Supplementary Table S11. Combinations of diagnostic nucleotides for each of the 15 *Scenedesmus* taxa recovered by 16S in Supplementary Fig. 9 by CAOS analysis. Nucleotide numbers refer to 25 selected positions on the 16S sequences.

Species (Cryptic lineage number and	Posi	itions	5																						
Genbank number)	49	87	88	169	181	182	219	326	336	337	338	345	359	366	376	378	381	382	384	394	401	403	404	405	406
Scenedesmus deserticola II	С	С	Т	Α	А	Т	Α	Α	Т	Т	Т	Т	Α	Т	Т	Α	G	С	Т	С	Α	Α	Т	С	Т
Scenedesmus deserticola I	С	С	Т	С	С	Т	А	G	G	А	А	С	G	G	С	G	Α	Т	С	Т	С	Α	Т	С	A
Scenedesmus quadricauda	С	Т	Т	Α	Т	Т	Α	С	А	А	С	G	С	G	С	Т	Α	Т	А	Т	С	Α	Т	С	A
Sceneaesmus sp (EU073191.EU073193.EU073194.EU073195.)	С	т	т	A	A	т	G	С	A	A	С	G	G	A	С	т	A	т	С	т	с	A	т	С	A
Scenedesmus sp (AJ548893.AJ548894.)	С	Т	Т	G	Т	Т	А	G	Т	Т	A	С	G	G	С	Т	A	Т	С	т	С	А	Т	С	А
Scenedesmus sp (FJ608099.)	С	Α	С	G	Т	G	А	G	Т	G	Т	С	G	G	С	Т	Т	Т	С	Т	С	Α	Т	С	Α
Scenedesmus acuminatus II	Т	Α	С	Α	G	А	G	G	Т	Т	А	С	G	С	G	Т	Α	Т	С	Т	С	Α	Т	С	Α
Scenedesmus acuminatus I	С	Α	С	Α	G	А	G	G	Т	Т	А	С	G	С	G	Т	Α	-	С	Т	С	Т	С	Т	Т
Scenedesmus dimorphus	С	Α	С	G	G	А	G	G	Т	Т	А	С	G	С	G	G	А	Т	С	Т	С	Α	Т	С	A
Scenedesmus obliquus I- a	С	Α	С	Α	G	G	G	G	Т	G	А	С	G	С	G	Т	Α	-	С	Т	Т	Т	A	G	С
Scenedesmus obliquus I- b	С	Α	С	Α	G	G	G	G	Т	G	А	С	G	С	G	Т	Α	-	С	Α	А	Т	С	Α	Т
Scenedesmus obliquus II	С	Α	С	Α	G	G	G	G	Т	G	А	С	G	С	G	Т	А	Т	С	Т	С	Α	Т	С	Α
Scenedesmus obliquus III	С	Α	С	G	G	А	G	G	Т	Т	А	С	G	С	G	G	А	-	С	Т	Т	Т	Т	G	С
Scenedesmus bajacalifornicus	G	G	С	Α	G	А	G	G	Т	G	А	С	G	С	G	Т	A	Т	С	Т	С	А	Т	С	Α
Scenedesmus obliquus vs sp.	С	А	С	А	G	G	т	G	Т	G	А	С	G	С	G	Т	A	Т	С	т	С	А	Т	С	A

Supplementary Table 12. Combinations of diagnostic nucleotides for each of the 14 *Scenedesmus* taxa recovered in Supplementary Fig. 3 by CAOS analysis. Nucleotide numbers refer to 39 selected positions on the *tufA* sequences.

Species (Cryptic lineage number and	Posi	tions																																						
Genbank number)	137	173	3 195	5 19	7 19	3 200) 212	2 21	5 210	6 22	7 25	1 25	54 2	58	263	272	287	290	317	323	329	335	347	350	353	368	371	375	389	393	402	404	408	423	429	430	434	452	472	473
Scenedesmus deserticola I	Т	А	G	Α	А	С	Т	С	А	С	Т	Т	G	0	0	A	A	С	Т	А	С	А	А	Т	А	Т	Т	Т	А	G	G	А	Т	Т	G	Т	Т	С	С	Т
Scenedesmus deserticola II	С	Α	G	Α	А	С	Т	С	А	С	Т	G	G	٦	Γ,	A	A	С	Т	А	С	А	А	Т	А	Т	Т	Т	Α	G	G	А	Т	Т	G	Т	Т	С	С	Т
Scenedesmus bijuga	А	Α	Т	Т	А	С	Т	Т	А	Т	Α	Т	G	٦	Γ.	Т	A	С	Т	Α	С	А	А	А	А	Т	А	Т	Α	G	G	А	Т	G	G	Т	А	С	С	А
Scenedesmus spinosus I	Т	Т	G	Т	С	Α	С	Т	С	Т	Т	Т	G	٦	Γ.	Т	Т	Α	С	Т	Т	Т	А	С	А	Т	G	G	Т	G	G	Т	Α	А	А	С	Т	Т	G	А
Scenedesmus spinosus II	А	А	С	А	А	С	Т	Т	Α	Т	Α	Т	Т	٦	Г I	Т	А	G	С	Т	Т	Т	А	G	Α	Т	G	G	Т	G	G	Т	Т	Α	Α	С	Т	С	G	Т
Scenedesmus spinosus III	А	А	G	А	Α	А	Т	Т	Α	Т	Α	Т	Т	C	0	Т	А	G	С	Т	Т	С	Т	Т	Α	Т	Α	G	Т	G	Α	Т	Т	Α	Α	С	Т	Т	G	С
Scenedesmus sp2	А	А	Т	А	G	Т	Α	Т	Α	С	Α	Α	Α	C	0	A	A	Α	Т	А	С	Т	G	Α	Α	Α	Α	Т	А	G	G	Т	Т	Т	G	Т	Α	С	С	А
Scenedesmus rotundus	А	С	Α	А	G	Т	Α	С	А	Т	Α	Т	Α	0	0	A	A	С	Т	А	С	Т	А	С	Т	А	А	Т	Α	А	G	Т	Т	Т	G	Т	С	Т	С	A
Scenedesmus quadricauda	А	Α	Т	Α	А	Т	Т	С	А	Т	Α	Т	G	C	0	A	A	Т	Т	А	Т	А	А	Т	А	A	А	Т	Α	G	G	Т	С	G	G	Т	Т	С	С	А
Scenedesmus dimorphus	А	А	А	А	А	Т	Т	С	С	Т	Α	Т	G	٦	Γ.	A	Т	Т	Т	А	Т	Т	А	А	Α	А	Α	Т	А	G	G	Т	Т	G	G	Т	Т	С	С	А
Scenedesmus obliquus	А	А	А	А	А	Т	Т	С	Α	Т	Α	Т	G	٦	Γ.	A	Т	Т	Т	A	Т	Т	Т	Α	А	A	А	Т	А	G	А	Т	Т	G	G	Т	Т	С	С	А
Scenedesmus deserticola III	А	А	А	А	А	Т	Т	С	Α	Т	А	Т	С	٦	Γ.	A	Т	Т	Т	A	Т	Т	Т	А	Α	А	А	Т	А	G	А	Т	Т	G	G	Т	Т	С	С	Α
Scenedesmus bajacalifornicus	Α	Α	Α	Α	А	Т	Т	С	А	Т	Α	Т	G	٦	Γ.	Α	Т	Т	Т	Α	Т	Т	Т	Α	Α	Α	Α	Т	Α	G	Α	Т	Т	Т	G	Т	Т	С	С	Α
Scenedesmus acuminatus	G	G	Α	Α	А	Т	Т	С	А	Т	Α	Т	G	٦	Γ,	Α	Т	Т	Т	Α	Т	Т	G	Α	Α	Α	А	Т	Α	G	Α	Т	Т	G	G	Т	Т	Т	С	Α

Supplementary Table 13. Species Delimitation Results of PID for *rbcL*+ITS+*tufA*+16S. The species number corresponds to the P ID clades in Fig. 3.

Species	Closest Species	Monophyletic?	Intra Dist	Inter Dist - C	Intra/Inter	P ID(Strict)	P ID(Liberal)	Av(MRCA-tips)	P(Randomly	Clade Support	Rosenberg's	P(AB)
1	2	yes	0.005	0.033	0.16	0.87 (0.77, 0.98)	0.96 (0.89, 1.0)	0.0031	NA	4.94E-03		
2	2 1	yes	0.002	0.033	0.07	0.56 (0.41, 0.71)	0.94 (0.79, 1.0)	0.0011	0.06	NA	4.94E-03	
3	3 1	yes	0.00E+00	0.064	0.00E+00	0.00E+00 (0.00E+00,	0.96 (0.83, 1.0)	0.00E+00	NA	NA	0.02	
2	5	yes	7.44E-04	0.071	0.01	0.59 (0.44, 0.73)	0.98 (0.83, 1.0)	3.72E-04	NA	0.11		
5	5 4	yes	0.002	0.071	0.03	0.57 (0.42, 0.72)	0.96 (0.81, 1.0)	0.0011	0.11	NA	0.11	
6	6 4	yes	0.002	0.229	0.01	0.59 (0.44, 0.74)	0.98 (0.83, 1.0)	0.0011	0.41	NA	9.10E-04	

Species	Closest Species	Monophyletic	? Intra Dist	Inter Dist -	Intra/Inter	P ID(Strict)	P ID(Liberal)	Av(MRCA-tips)	P(Randomly Distinct)	Clade Supp	Rosenberg's P	(AB)
1	2	yes	0.019	0.039	0.49	0.69 (0.59, 0.80)	0.89 (0.83, 0.96)	0.0105	0.09	NA	0.04	
2	1	yes	0.00E+00	0.039	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	0.04	
3	4	yes	0.00E+00	0.137	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	1	
4	. 2	yes	0.00E+00	0.077	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	1	
5	2	yes	0.00E+00	0.08	0.00E+00	0.00E+00 (0.00E+00, 0.00E+00)	0.96 (0.83, 1.0)	0.00E+00	NA	NA	0.01	
6	5	yes	0.001	0.2	0.01	0.87 (0.72, 1.0)	0.98 (0.87, 1.0)	0.0012	NA	4.08E-03		

Supplementary Table 14. Species Delimitation Results of PID for *rbcL+ tufA*. The species number corresponds to the P ID clades in Fig. 4.

Species	Closest Species	Monophyletic	? Intra Dist	Inter Dist - Closest	Intra/Inter	P ID(Strict)	P ID(Liberal)	Av(MRCA-tips)	P(Randomly Distinct)	Clade Support	Rosenberg's P(AB)
1	3	yes	8.65E-04	0.06	0.01	0.98 (0.92, 1.0)	1.00 (0.96, 1.0)	4.45E-04	NA	9.10E-04	r
2	1	yes	0.004	0.064	0.07	0.56 (0.41, 0.71)	0.94 (0.79, 1.0)	0.0022	0.93	NA	9.10E-04
3	1	yes	0.023	0.06	0.39	0.53 (0.35, 0.71)	0.78 (0.64, 0.93)	0.0119	1	NA	9.20E-05
4	. 8	yes	0.001	0.027	0.05	0.56 (0.41, 0.71)	0.95 (0.80, 1.0)	7.17E-04	0.99	NA	2.75E-03
5	6	yes	0.00E+00	0.007	0.00E+00	0.59 (0.44, 0.74)	0.98 (0.83, 1.0)	0.00E+00	NA	NA	0.11
6	5	yes	0.004	0.007	0.6	0.29 (0.13, 0.44)	0.61 (0.46, 0.77)	0.0022	NA	0.11	
7	8	yes	0.00E+00	0.012	0.00E+00	0.59 (0.44, 0.74)	0.98 (0.83, 1.0)	0.00E+00	NA	NA	0.03
8	5	yes	0.002	0.011	0.2	0.73 (0.59, 0.88)	0.93 (0.82, 1.0)	0.0012	0.99	NA	0.03

Supplementary Table 15. Species Delimitation Results of PID for ITS+16S. The species number corresponds to the P ID clades in Fig. 5.

Name	Sequence 5'-3'	Annealing temperature (°C)	Source
rbcL			
rbcL-F	ATG KCT CCA CAA ACT GAA ACT A	49-51	Sun et al. 2009
rbcL-R	TTA AAG WGT ATC GAT WGT TTC GA	49-51	Sun et al. 2009
RcbLZ-F	CAA CCA GGT GTT CCA SCT GAA G	49-50	This study
RcbLZ-R	CTA AAG CTG GCA TGT GCC ATA C	49-50	This study
16S			
359F-T	GGG GAA TTT TCC GCA ATG GG	47-50	Burja et al. 2001
781R(b)	GAC TAC AGG GGT ATC TAA TCC CTT T	47-50	Burja et al. 2001
16SZ-R	GGT ATC TWA TCC CTT TYG CT	47-50	This study
16SZ-F	CGC AAT GGG CGA AAG CCT G	47-50	This study
ITS			
NS7m-F	GGC AAT AAC AGG TCT GT	56	Bock et al. 2011
LR1850-R	CCT CAC GGT ACT TGT TC	56	Bock et al. 2011
tufA			
tufA-F	TGA AAC AGA AMA WCG TCA TTA TGC	47-53	Famà et al. 2002
tufA-R	CCT TCN CGA ATM GCR AAW CGC	47-53	Famà et al. 2002
tufA-SF	TGG ATG GTG CWA TTY TWG	47-50	This study
tufA-SR	GGT TTT GCW AAA ACC ATW CCA CG	47-50	This study

Supplementary Table 16. Primer sequences and annealing temperatures used to amplify the different regions. Names of the forward (-F) and reverse (-R) primers pairs are indicated and also their references.

Supplementary Fig. 1. Neighbor joining tree for the *rbcL*

Supplementary Fig. 2. Maximum likelihood tree for the *rbcL* gene.

H 0.02 ➡ Supplementary Fig. 3. Bayesian phylogenetic tree for the *tufA* gene. Vertical brace on the right indicate the clades detected by the tree-based GMYC, PID and the distance-based ABGD approach, the character-based CAOS and the taxa assignment. The clades highlighted in pink were also detected by *rbcL*, 16S and ITS gene loci. For samples colored in red, 16S, *rbcL* and ITS sequences were also available. For samples colored in blue, two of 16S, *rbcL* and ITS sequences were available.

Supplementary Fig. 4. Neighbor joining tree for the *tufA* gene.

Supplementary Fig. 5. Maximum likelihood tree for the *tufA* gene.

0.05

Supplementary Fig. 6. Bayesian phylogenetic tree for the ITS gene. Vertical brace on the right indicate the clades detected by the tree-based GMYC, PID, PTP and the distance-based ABGD approach, the character-based CAOS and the taxal assignment. The clades highlighted in pink were also detected by *rbcL*, 16S and *tufA* gene loci. For samples colored in red, 16S, *rbcL* and *tufA* sequences were also available. For samples colored in blue, two of 16S, *rbcL* and *tufA* sequences were available.

Supplementary Fig. 7. Neighbor joining tree for the ITS gene.

0.02

Supplementary Fig. 8. Maximum likelihood tree for the ITS gene.

Supplementary Fig. 9. Bayesian phylogenetic tree for the16S gene. Vertical brace on the right indicate the clades detected by the tree-based GMYC, PID, the distance-based ABGD approach, the character-based CAOS and the final assignment. The clades highlighted in pink were also detected by *rbcL*, 16S and *tufA* gene loci. For samples colored in red, 16S, *rbcL* and *tufA* sequences were also available. For samples colored in blue, two of 16S, *rbcL* and *tufA* sequences were available.

Supplementary Fig. 10. Neighbor joining tree for the 16S gene.

0.02

Supplemen	tary Fig	g.	11.
Maximum	likelihood	tree	for
the 16S ger	ne.		

Supplementary Fig. 12. Automatic partition of tellinaceans based on *rbcL* gene. The number of groups inside the partition (initial and recursive) of each given prior intraspecific divergence value were reported.

Supplementary Fig. 13. Automatic partition of tellinaceans based on ITS gene. The number of groups inside the partition (initial and recursive) of each given prior intraspecific divergence value were reported.

Supplementary Fig. 14. Automatic partition of tellinaceans based on 16S gene. The number of groups inside the partition (initial and recursive) of each given prior intraspecific divergence value were reported.

Supplementary Fig. 15. Automatic partition of tellinaceans based on *tufA* gene. The number of groups inside the partition (initial and recursive) of each given prior intraspecific divergence value were reported.

Supplementary Fig. 16. Genetic groups recovered by GMYC model for *rbcL*.

Supplementary Fig. 17. Genetic groups recovered by GMYC model for ITS.

Supplementary Fig. 18. Genetic groups recovered by GMYC model for *tufA*.

Supplementary Fig. 19. Genetic groups recovered by GMYC model for 16S.

Supplementary Fig. 20. Genetic groups recovered by dPTP analysis for *rbcL*.

Supplementary Fig. 21. Genetic groups recovered by dPTP analysis for ITS.

0.10

Supplementary Fig. 22. Genetic groups recovered by dPTP analysis for *tufA*.

Supplementary Fig. 23. Genetic groups recovered by dPTP analysis for 16S.

Supplementary Fig. 24. Automatic partition of tellinaceans based on rbcL+ITS+16S+tufA sequences. The number of groups inside the partition (initial and recursive) of each given prior intraspecific divergence value were reported.

Supplementary Fig. 25. Genetic groups recovered by GMYC model for *rbcL*+ITS+16S+*tufA*.

Supplementary Fig. 26. Genetic groups recovered by dPTP analysis for *rbcL*+ITS+16S+*tufA*.

Supplementary Fig. 27. Automatic partition of tellinaceans based on *rbcL+tufA* sequences. The number of groups inside the partition (initial and recursive) of each given prior intraspecific divergence value were report.

Supplementary Fig. 28. Genetic groups recovered by GMYC model for *rbcL+tufA*.

Supplementary Fig. 29. Genetic groups recovered by dPTP analysis for *rbcL+ tufA*.

Supplementary Fig. 30. Genetic groups recovered by dPTP analysis for ITS+16S.

Supplementary Fig. 31. Genetic groups recovered by dPTP analysis for ITS+16S.