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A. Supplementary Discussion 

1-41
 

Quality Assessment of the Samples: Due to the heterogeneous nature of breast 

tumors
11-13

, and because proteomic analyses were performed on tumor fragments that 

were different from those used in the genomic analyses, rigorous pre-specified 

sample/data QC metrics were implemented (Extended Data Figs. 2 and 3). Protein 

abundance ratios to the common reference sample were plotted for all samples 

analyzed.  Of the 105 tumor samples and 3 normal breast tissues analyzed, 77 tumors, 

as well as replicates of 3 of the tumor samples and the 3 normal samples, exhibited the 

expected Gaussian distribution.  However, 28 of the tumor samples exhibited highly 

skewed protein distributions caused by very low abundance or complete absence of 

thousands of proteins (Extended Data Fig. 2c). On average 28% of the protein iTRAQ 

ratios in these samples were more than two standard deviations below the main mode of 

ratios observed for the normally distributed samples (Extended Data Fig. 2d). Gene set 

enrichment analysis of the full set of 28 tumors exhibiting highly skewed protein 

distributions also showed an enrichment of degradation-related gene sets (Extended 

Data Fig. 2e).  

To further validate the quality of the CPTAC sample fragments used for proteomic 

experiments and to allay concerns that the use of different fragments might impede 

comparative analyses with TCGA genomics data, exome sequencing was performed on 

DNAs isolated from the insoluble fraction (residual after protein extraction for MS 

analysis) of 8 breast cancer samples randomly selected from the 77 cases included in 

the main analyses of the study. A total of 440 of 465 mutations reported by TCGA for 

these samples were identified in the CPTAC resequenced tumors (Extended Data Fig. 

3a), suggesting similar cellular/molecular compositions between TCGA and CPTAC 

analyzed portions1. To more fully characterize the distinction between samples passing 

and failing QC metrics, exome sequencing was carried out on DNA isolated from the 

insoluble fraction of a further 7 samples that exhibited highly skewed protein distributions 

and compared with variants of the corresponding TCGA samples obtained from the 

TCGA breast cancer marker paper1. The tumor samples exhibiting highly skewed protein 

distributions tended towards low variant allele frequencies when compared with samples 

that passed QC (Extended Data Fig. 2f) and had markedly reduced mRNA - protein 

correlation values. 

Detection of Single Amino Acid Variants and Splice Isoforms by Mass 

Spectrometry: Observed SAAVs included 89 somatic mutations that were each 

detected as SNVs in no more than three tumors and encompassed cancer-relevant 

genes such as ERBB2_D769H, TP53_R273C, TP53_R342P, TP53_I195T, 

KRAS_G12V, and MAP2K4_S257F.  Protein level detection of mRNA transcript 

alterations required confident identification of peptides that span a splice junction, 

contain altered coding sequence due to a frameshift, or contain a new protein C-

terminus resulting from introduction of a novel stop codon.  The depth of proteomic 



   

coverage enabled peptide-level observation of splice isoforms that had been detected as 

only single transcript reads by RNA-seq. (Fig. 1b, Supplementary Table 5). Most of the 

novel splice isoforms were found in less than 25% of all tumor samples and no 

significant direct association to breast cancer subtypes was observed.   

To mitigate concerns about false positive peptide spectrum matches (PSMs), more 

stringent FDR thresholding was performed for the patient-specific sequence database 

searches (section 2.3). Furthermore, high scoring PSMs were frequently amongst both 

the subset of SAAVs observed in a single tumor and the subset of splice isoforms 

detected with single transcript reads. Since the RNA-seq datasets with a read length of 

50 and a sequencing depth of 50-130 million reads were generated for the primary 

purpose of gene expression rather than isoform detection, it is perhaps unsurprising that 

single transcript read splice forms were often detected with high scoring PSMs across 

multiple iTRAQ experiments. Limitations of sequencing coverage and depth and in RNA-

Seq and LC-MS/MS are further described below (Limitations of Mass Spectrometry). 

 

mRNA vs. protein abundance 

The deep proteome coverage obtained in this study allowed detailed analysis of the 

relationship of RNA to protein levels within the context of different biochemical 

functionalities (Extended Data Fig. 4c and Supplementary Table 9.) A median Pearson 

value of r=0.39 was found for the correlation of mRNA to protein abundance, with 6,135 

out of 9,302 protein/mRNA pairs (66.0%) correlating significantly at an FDR<0.05 in a 

positive direction compared with 24 pairs (<0.3%) in a negative direction. The low 

number of significant negative correlation events indicates an overall low level of 

technical noise, as negative mRNA-to-protein correlation is not expected to be prevalent 

biologically. This indicates that although different tissue sections of the same tumors 

were used for RNAseq and protein analysis, very similar features can be observed in 

both data types. 

Gene set enrichment analysis18 was conducted to test whether gene sets in KEGG, 

REACTOME and BIOCARTA were enriched within the positive or negative tails of the 

mRNA-to-protein Pearson correlation data. In agreement with the previous CPTAC 

proteomics study of TCGA colon tumors6, basic cellular metabolic functions such as 

amino acid, sugar and fatty acid metabolism were found to be enriched among genes 

with concordant mRNA and protein variation, whereas basic cellular machineries such 

as the ribosome, RNA polymerases and mRNA splicing were enriched among negatively 

correlating genes (Extended Data Fig. 4c). The broad proteome coverage allowed the 

identification of signal transduction-related gene sets that were enriched with positively 

correlating mRNA/protein pairs, such as interferon, interleukin-10, EGF and integrin 

pathways, or with negatively correlating pairs, such as the complement system, 

proteasome pathway, ion channel transport, and presenilin-1- signaling events. Several 

cancer-relevant genes including WNT pathway members APC, BTRC, AXIN and 

CTNNB1 that were identified by GSEA within the presenilin-1 pathway were found to 



   

poorly or even negatively correlate on the mRNA/protein level, in keeping with the strong 

post-translational regulation of proteins that are regulated by proteolysis.  

 

Limitations of Mass Spectrometry 

This analysis displays many of the strengths of mass spectrometry-based proteomics for 

cancer discovery, but also some of the limitations inherent in proteolytic peptide 

sequencing. To achieve the very deep coverage of both the proteome and 

phosphoproteome obtained in this study (over 11,000 proteins and 26,000 

phosphosites/sample), as well as to maintain a reasonable sample analysis throughput, 

iTRAQ 4-plex isobaric mass tagging reagents were employed.  The required minimum of 

0.7 mg of protein/sample was available for a minority of TCGA breast samples.  While 

<5% of each sample was required for proteome analysis, the remaining 95% was 

needed for deep analysis of the phosphoproteome owing to the lower overall abundance 

of these modifications and the relative inefficiency of methods to enrich 

phosphopeptides. Sample fractionation at the peptide level prior to LC-MS/MS analysis 

further increased depth of coverage at the cost of greatly expanding MS runs, so that 

approximately 10 months of instrument time was required to analyze just over 100 

patient samples. Sample consumption and throughput alike made it technically infeasible 

to analyze the full 1000-sample TCGA breast cancer collection, or to analyze small 

subsegments of tumor to evaluate subtle intratumoral proteomic heterogeneity. Future 

studies of this kind will be done at higher throughput and greater efficiency as reagents 

for increased multiplexing are introduced. 

Coverage of the Proteome: The boxplots in Extended Data Figure 1c were generated to 

illustrate the range of sequence coverage of the proteins in each iTRAQ 4-plex 

experiment, and show that extent of coverage is linked to the dynamic range of protein 

abundance. To put this in the context of the depth of coverage typically described for 

DNA/RNA sequencing experiments it is helpful to contrast some of the key attributes of 

sample preparation and data acquisition. RNA library preparation for RNA-seq typically 

incorporates an RNA fragmentation step employing heat, sonication, metal ion 

chemistry, or non-specific enzymatic cleavage, to produce a distribution of overlapping 

RNA fragments with random starting points and similar lengths, ~200 bp on average. 

Individual sequencing reads are then done by random selection of cDNA fragments from 

the pool. The overall coverage depth or redundancy is measured by the 

Lander/Waterman equation C = LN/G (C: coverage, L: read length, N: number of reads, 

G: haploid genome or assembly length)42. While sequence reads in whole exome 

sequencing tend to sample all genes uniformly, reads in RNA-Seq tend to sample a 

gene in proportion to its level of expression. In RNA-Seq, transcript abundance is 

typically normalized for gene length and sequencing depth by expressing it as fragments 

per kilobase of exon per million reads mapped (FPKM)42. By contrast, a typical 

proteomics strategy employs a single enzyme, trypsin, to digest proteins into peptides by 

specific cleavage after lysine (K) and arginine (R) amino acids. Any sequence overlap in 

the resulting pool of peptides will be an artifact of cleavage sites missed by trypsin. 



   

Regions of a protein with spacing of K, R residues that are 6 AA’s or >30 AA’s will tend 

not to be observed by the mass spectrometer. Selection of a peptide precursor ion from 

the pool for sequencing in the mass spectrometer is done on the basis of abundance at 

the time of elution from a reversed phase liquid chromatography column (separation on 

basis of hydrophobicity). Furthermore, in order to maximize instrument duty cycle, data 

acquisition typically employs a process called dynamic exclusion, whereby an observed 

precursor ion mass is sequenced no more than once during its elution period. 

Consequently, peptide-level quantitation is usually derived from precursor (MS) or 

product (MS/MS) ion signal in the mass spectrometer, and protein-level quantitation as 

the median/mean of the constituent peptides observed43.    

Detection of somatic mutations: MS successfully detected some somatic mutations at 

the peptide level, as well as novel splicing events; however the mutant/splice form 

peptide repertoire was only a small fraction of the number detected at the DNA and RNA 

level.  It is likely that some gene products with SAAVs, frameshifts, and splice isoforms 

were unstable, targeted for degradation, or otherwise untranslated.  This may be 

particularly the case for splice isoforms, and may also include previously undetected 

cases in which missense mutations induce loss of function. In these cases proteomics 

may provide a powerful annotation tool for genomic perturbations.  However technical 

factors also contribute to the low detection rate.  Approximately 30% of all possible 

SAAVs and splice junctions are present in tryptic peptides outside the length range of 6-

30 amino acids that is well-suited to LC-MS/MS identification16. In addition, small 

proteins that produce few tryptic peptides as well as very low abundance proteins remain 

difficult to reliably detect. Even for large and relatively abundant proteins, not all peptides 

that are theoretically observable are detected by MS, due to factors including digestion 

efficiency and the size and hydrophobicity of the peptides.  Repeatable detection of 

modified peptides is also challenging. While different subsets of peptides may be used to 

quantify a given protein across samples, phosphopeptides (and other modified peptides) 

require the specific peptide to be observed across samples.  Furthermore, modification 

sites in small peptides or very long peptides may go undetected, which can result in lack 

of observation of, for example, functionally relevant phosphosites that can be detected 

using antibody-based methods.  Observation of such sites by MS may require digestion 

of samples with enzymes other than trypsin, an approach also commonly used to 

increase sequence coverage of proteins. Current-generation instruments can 

accomplish repeated detection of peptides when used in a targeted mode
41,44

, or by 

using so-called data-independent methods, albeit at the expense of sensitivity45. 

However speed and sensitivity improve with every new generation of mass 

spectrometer, so it is likely that many of these limitations will eventually be overcome. 

Capabilities and limitations of using isobaric mass tagging reagents: Isobaric mass 

tagging reagents enable multiplexing of samples for greater analysis throughput and 

better reproducibility for detection of peptides, phosphopeptides and proteins across 

samples.  The principal drawback of using isobaric mass tag labeling is ratio 

compression caused by inadvertent and often unavoidable co-isolation and 

fragmentation of isobaric-labeled (iTRAQ, TMT) target and non-target peptide 



   

precursors46-51. The most deleterious effect of compression is to reduce the accuracy 

and precision of the differential changes observed50-53. Fortunately, while quantitative 

ratio compression is a concern, in most discovery efforts the accurate fold-change of a 

differential is not as important as the ability to establish, with high confidence and 

statistical rigor, that a protein or modified peptide has changed at all. In studies 

conducted in human plasma depleted of abundant proteins (a matrix at least as complex 

as tissue), isobaric mass tagging with iTRAQ enabled confident and reproducible 

quantification of differential abundance as small as 2-fold based on ca. 100 labeled 

peptides spiked in at known and varying concentrations
54

.  As noted, accuracy was 

reduced, with median iTRAQ ratios compressed up to 50% relative to theoretical values.   

Absence calls, in general, are difficult to make by MS-based proteomics. If peptides from 

a protein are not detected in a given sample, it does not mean that the protein is absent 

as it may be present but below the limit of detection. Conversely in the situation of 

isobaric mass tag labeling as used in the present study, observation of a low abundance 

mass tag signal in a given sample does not necessarily mean that that peptide is present 

in that sample, as very low intensity signals are frequently present at every mass in the 

MS/MS spectra. This can be addressed by setting the minimally acceptable signal 

threshold to be above this biological noise55.  

Reducing sample complexity by fractionation at the peptide level prior to MS/MS reduces 

interference while simultaneously enabling greater depth of detection with improved 

quantification accuracy, although at the cost of throughput. We employed extensive 

fractionation of peptides by basic reversed-phase chromatography prior to LC-MS/MS in 

the present study. In addition, use of narrower isolation widths53 and post-acquisition 

assessment of precursor purity50  also help to improve accuracy.  However, none of 

these approaches eliminates the interference problem entirely, especially in highly 

complex samples.  Currently, the most effective way to significantly reduce inaccuracy 

caused by interference-related compression is the MS3 experiment as first 

demonstrated by Ting et al.55.  Unfortunately, the higher duty cycle of these experiments 

decreases the number of peptides, phosphopeptides and proteins identified and 

quantified, often substantially, even on latest generation instruments55. Furthermore, the 

MS3 approach relies on low-resolution ion trap MS2 data for use in identification, with 

high resolution used only for measuring precursor ions and quantification of TMT 

reporter ions. For PTM-oriented experiments like the phosphoproteome that are 

dependent on single peptides for protein identifications, high-resolution MS/MS is 

substantially more reliable for confident identification. 

 

Correlation of Proteomics to RPPA: Unsupervised clustering analysis revealed the 

expected luminal-enriched and basal-enriched classes, and also a stromal-enriched 

class. A strong representation of RPPA “reactive type I” tumors in the stromal-enriched 

class suggests a similar conclusion to that drawn from RPPA-based TCGA studies: at 

the proteomic level the stromal signal can dominate over the tumor cell-derived intrinsic 



   

subtype signal, even in cases where the tumor cellularity has been documented to be 

relatively high.  

Proteins and phosphosites quantified in breast tumors by RPPA and mass spectrometry 

were generally in good agreement (Fig. 1c, Supplementary Table 6 and 7), yet for some 

proteins and phosphosites differences were observed. Factors that could account for 

these differences include higher sensitivity of the phosphoantibodies for these sites 

relative to the MS analyses or unexpected cross reactivity of the antibodies leading to 

false positive identification by RPPA, among other possibilities. Lack of correlation at the 

protein level is unlikely to be due to detection issues in the MS as only 8 of the 126 

proteins measured by RPPA were not detected in more than 50% of the patient samples 

(Supplementary Table 7).  In contrast, the success rate for MS detection of the 46 

phosphosites measured by RPPA was only 46% (22/46). The majority of the tryptic 

peptides containing these sites are too large and / or too heavily modified by 

phosphorylation elsewhere in the peptide (3-5 potential sites) for detection by MS.  Only 

3/24 phosphosites that were not detected by LC-MS/MS were in tryptic peptides that 

might be expected to be observed if they were of sufficient abundance and were 

captured in the enrichment step (marked with * in Supplemental Table 7).  In these 

cases the reason for lack of detection is likely insufficient sensitivity in the MS analyses. 

 

  



   

B. Supplementary Methods  

 

1. Sample Selection and Processing; MS Data Collection and Analysis  

 

1.1 Selection of TCGA breast cancer samples for proteome analysis 

The landmark TCGA breast cancer genomics paper1 included 348 primary breast tumors 

for which there was comprehensive genomic characterization. All biospecimens were 

collected from newly diagnosed patients with invasive breast adenocarcinoma who were 

undergoing surgical resection and had received no prior treatment for their disease 

(chemotherapy or radiotherapy). Institutional review boards at each tissue source site 

reviewed protocols and confirmed informed consent documentation prior to approving 

submission of cases to TCGA. After internal IRB approval, we selected samples for 

proteomic analysis from the subset annotated as having at least 130 mg wet weight 

residual material, the target amount for proteomics processing between collaborating 

research teams. 131 such samples were requisitioned from TCGA, including 28 basal, 

20 HER2-enriched, 39 luminal A, and 39 Luminal B intrinsic subtypes.  126 samples 

were received, of which 105 yielded at least the pre-specified minimum of 0.7 mg of total 

protein after extraction of proteins with 8M urea buffer.  These comprised the sample set 

that was analyzed by LC-MS/MS (see Extended Data Fig. 2a for sample disposition). 

To avoid systematic bias, samples underwent stratified randomization before 

processing, with each intrinsic subtype proportionally represented in each processing 

tranche.  Study personnel responsible for the primary sample processing and data 

generation were blinded to the intrinsic subtype and known molecular characteristics of 

the samples.   

1.2 Histopathology QC of TCGA breast cancer samples for proteome analysis 

Breast tumors (n=126) were received from the TCGA collection in cryovials and 

subsequently embedded in OCT for histological review.  Sections (5 m) were stained 

with hematoxylin and eosin and neoplastic cellularity assessed by a board-certified 

pathologist with expertise in breast cancer at Washington University in St. Louis.  

Samples were subsequently removed from the OCT and cryofractured using a CP02 

Cryoprep Pulverizer (Covaris, Woburn, MA) as previously described15. Estimates of 

neoplastic cellularity from both TCGA and the actual sample fragments analyzed in this 

study are provided in Extended Data Fig. 2b and Supplementary Table 2 for all samples 

that proceeded to LC-MS/MS analysis.   

1.3 Protein extraction, digestion and iTRAQ labeling of peptides from breast 

cancer tumors  

Cryopulverized breast cancer tumor samples were homogenized in 1000 µL lysis buffer 

containing 8M urea, 75mM NaCl, 1mM EDTA in 50mM Tris HCl (pH 8), 10 mM NaF, 

phosphatase inhibitor cocktail 2 (1:100; Sigma, P5726) and cocktail 3 (1:100; Sigma, 

P0044), 2 µg/mL aprotinin (Sigma, A6103), 10 µg/mL Leupeptin (Roche, 



   

#11017101001), and 1 mM PMSF (Sigma, 78830). Lysates were centrifuged at 20,000 g 

for 10 minutes and protein concentrations of the clarified lysates were measured by BCA 

assay (Pierce). Protein lysates were subsequently reduced with 5 mM dithiothreitol 

(Thermo Scientific, 20291) for 45 minutes at room temperature and alkylated with 10 mM 

iodoacetamide (Sigma, A3221) for 45 minutes. Samples were diluted 4-fold with 50mM 

Tris HCl (pH 8) prior to their digestion with LysC (Wako, 100369-826) for 2 hours and 

with trypsin (Promega, V511X) overnight, both at a 1:50 enzyme-to-protein ratio and at 

room temperature. 

Digested samples were acidified with formic acid (FA; Fluka, 56302) to a final volumetric 

concentration of 1 % (final pH of ~3), and centrifuged at 2,000 g for 5 minutes to clear 

precipitated urea from peptide lysates. Samples were desalted on C18 SepPak columns 

(Waters, 100mg, WAT036820) and 1 mg peptide aliquots were dried down using a 

SpeedVac apparatus.  

Desalted peptides were labeled with 4-plex iTRAQ reagents according to the 

manufacturer’s instructions (AB Sciex, Foster City, CA). For each 1 mg peptide from 

each breast tumor sample, 10 units of labeling reagent were used. Peptides were 

dissolved in 300 μL of 0.5 M triethylammonium bicarbonate (TEAB) (pH 8.5) solution and 

labeling reagent was added in 700 μL of ethanol. After 1 h incubation, 150 uL of 1 M Tris 

HCl at a pH of 8.0 was added to quench the unreacted iTRAQ reagents. Differentially 

labeled peptides were mixed (4 x 1 mg) and subsequently desalted on 500 mg C18 

SepPak columns. 

 

1.4 Offline fractionation of peptides and preparation of proteome and 

phosphoproteome samples  

To reduce sample complexity, peptide samples were separated by high pH reversed-

phase (RP) separation as described15. Desalted 4-plex iTRAQ-labeled peptides were 

reconstituted in 900 µL 20mM ammonium formate (pH 10) and 2% acetonitrile, loaded 

on a 4.6mm x 250mm column RP Zorbax 300 A Extend-C18 column (Agilent, 3.5 µm 

bead size), and separated on an Agilent 1100 Series HPLC instrument using basic 

reversed-phase chromatography. Solvent A (2% acetonitrile, 5 mM ammonium formate, 

pH 10) and a nonlinear increasing concentration of solvent B (90% acetonitrile, 5 mM 

ammonium formate, pH 10) were used to separate peptides. The 90 minute separation 

LC gradient started with 100% solvent A for 9 minutes; then increased linearly in 

percentage of solvent B to 6% in 4 min; from 6% to 28.5% in 50 min; 28.5% to 34% in 

5.5 min; and 34% to 60% in 13 min; with an 8.5 min hold at 60% solvent B. The flow rate 

was 1 mL/min. 84 fractions were collected into 96 x 2mL well plates (Whatman, #7701-

5200), with fractions combined in a step-wise concatenation strategy as reported 

previously56. 5% of the volume of each proteome fraction was allocated for proteome 

analysis, dried down, and re-suspended in 3% MeCN/0.1% FA (MeCN; acetonitrile) to a 

peptide concentration of 1 µg/uL for LC-MS/MS analysis. The remaining 95% of 

concatenated fractions were further combined into 12 fractions that were enriched for 



   

phosphopeptides using immobilized metal affinity chromatography (IMAC) as previously 

described56. Ni-NTA agarose beads were used to prepare Fe3+-NTA agarose beads. In 

each phosphoproteome fraction, ~333 µg peptides were reconstituted in 667 µL 80% 

MeCN/0.1% TFA (trifluoroacetic acid) solvent and incubated with 10 µL of the IMAC 

beads for 30 minutes. After incubation, samples were briefly spun down on a tabletop 

centrifuge; clarified peptide flow-throughs were separated from the beads; and the beads 

were reconstituted in 150 µL IMAC binding/wash buffer (80 MeCN/0.1% TFA) and 

loaded onto equilibrated Empore C18 silica-packed stage tips (3M, 2315) as described56. 

Samples were then washed twice with 50 µL of IMAC binding/wash buffer and once with 

100uL 1% FA, and were eluted from the IMAC beads to the stage tips with 3 x 70uL 

washes of 500mM dibasic sodium phosphate (pH 7.0, Sigma S9763). Stage tips were 

washed once with 100 µL 1% FA and phosphopeptides were eluted from the stage tips 

with 60uL 50% MeCN/0.1% FA. Phosphopeptides were dried down and re-suspended in 

9 µL 50% MeCN/0.1%FA for LC-MS/MS analysis. 

 

1.5 Construction of the Common Reference Pool  

The proteomic and phosphoproteomic analyses of breast cancer samples were 

structured as iTRAQ 4-plex experiments.  Quantitative comparison between all samples 

analyzed was enabled by the use of iTRAQ reporter ion ratios between each individual 

sample and a common reference sample present in each 4-plex.  A common physical, 

rather than in silico reference was used for this purpose to improve quantitative precision 

between 4-plex iTRAQ experiments, albeit at the cost of occupying one channel of every 

4-plex, and so decreasing throughput by 25%.  The reference sample needed to be 

available at the onset of discovery work; of sufficient quantity to cover all planned 

experiments; and broadly representative of the population of breast cancer samples in 

our population, since by definition only analytes represented in the reference sample 

would be included in the final ratio-based data analyses.  To avoid biasing results 

towards the subtypes with higher sample numbers, equal, rather than proportional, 

representation of the major intrinsic subtypes was employed.  Furthermore, to 

reasonably represent within-subtype inter-tumoral heterogeneity in the reference 

sample, it was mandated that at least 10 samples be included per subtype. The 105 

tumor samples required 35 4-plex experiments, with 3 individual samples occupying the 

first 3 channels of each experiment and the 4th channel being reserved for the reference 

sample.  To ensure capacity for additional samples or experiments given a target input 

of 1 mg protein per channel per experiment, 50 mg total was targeted for reference 

material.   To meet these collective requirements, 40 samples were selected for which 

there was at least 2.25 mg total protein yield, including 10 from each of 4 dominant 

intrinsic breast cancer subtypes: basal, HER2-enriched, luminal A, and luminal B.  After 

reserving 1 mg protein / sample for individual sample analysis, the remaining 1.25 mg 

amounts were pooled.  The 50 mg pooled reference material was divided into 1 mg 

aliquots and frozen at -80°C until use. 



   

1.6 Construction and utilization of the Comparative Reference Sample  

As a quality control measure, two “comparative reference” (“CompRef”) samples were 

generated as previously described10,57 and used to monitor the longitudinal performance 

of the proteomic and phosphoproteomic workflow throughout the course of the project. 

Briefly, patient-derived xenograft tumors from established basal (WHIM2) and luminal-B 

(WHIM16) breast cancer intrinsic subtypes7,9 were raised subcutaneously in 8 week old 

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (Jackson Laboratories, Bar Harbor, ME) 

using procedures reviewed and approved by the institutional animal care and use 

committee at Washington University in St. Louis.   All PDX models are available through 

the application to the Human and Mouse-Linked Evaluation of Tumors core 

at http://digitalcommons.wustl.edu/hamlet/.   Xenografts were grown in multiple mice, 

pooled, and cryofractured to provide a sufficient amount of material for the duration of 

the project.  Full proteome and phosphoproteome process replicates of each of the two 

xenografts were prepared as described in Sections 1.3 and 1.4 above and run as 4-plex 

experiments at the beginning and end of the project and interposed after every 10 4-plex 

experiments using the same analysis protocol as the patient samples.   Interstitial 

samples were evaluated for depth of proteome and phosphoproteome coverage and for 

consistency in quantitative comparison between the basal and luminal models. 

 

1.7 Analysis of tumor samples by high performance liquid chromatography 

tandem mass spectrometry (LC-MS/MS) 

All peptides were separated with an online nanoflow Proxeon EASY-nLC 1000 UHPLC 

system (Thermo Fisher Scientific) and analyzed on a benchtop Orbitrap Q Exactive 

mass spectrometer (Thermo Fisher Scientific) equipped with a nanoflow ionization 

source (James A. Hill Instrument Services,  Arlington, MA). The LC system, column, and 

platinum wire to deliver electrospray source voltage were connected via a stainless-steel 

cross (360μm, IDEX Health & Science, UH-906x). The column was heated to 50oC using 

a column heater sleeve (Phoenix-ST) to prevent over-pressuring of columns during 

UHPLC separation.  10% of each global proteome sample in a 2 ul injection volume, or 

50% of each phosphoproteome sample in a 4 ul injection volume, was injected onto an 

in-house packed 20cm x 75um diameter C18 silica picofrit capillary column (1.9 μm 

ReproSil-Pur C18-AQ beads, Dr. Maisch GmbH, r119.aq; Picofrit 10um tip opening, New 

Objective, PF360-75-10-N-5). Mobile phase flow rate was 200 nL/min, comprised of 3% 

acetonitrile/0.1% formic acid (Solvent A) and 90% acetonitrile /0.1% formic acid (Solvent 

B).  The 110-minute LC-MS/MS method consisted of a 10-min column-equilibration 

procedure; a 20-min sample-loading procedure; and the following gradient profile: 

(min:%B) 0:2; 1:6; 85:30; 94:60; 95;90; 100:90; 101:50; 110:50 (the last two steps at 500 

nL/min flow rate). Data-dependent acquisition was performed using Xcalibur QExactive 

v2.1 software in positive ion mode at a spray voltage of 2.00 kV. MS1 Spectra were 

measured with a resolution of 70,000, an AGC target of 3e6 and a mass range from 300 

to 1800 m/z. Up to 12 MS/MS spectra per duty cycle were triggered at a resolution of 

17,500, an AGC target of 5e4, an isolation window of 2.5 m/z, a maximum ion time of 

120 msec, and a normalized collision energy of 28. Peptides that triggered MS/MS 

http://digitalcommons.wustl.edu/hamlet/


   

scans were dynamically excluded from further MS/MS scans for 20 sec. Charge state 

screening was enabled to reject precursor charge states that were unassigned, 1, or >6. 

Peptide match was enabled for monoisotopic precursor mass assignment.  

All mass spectra, contributing to this study can be downloaded in the original instrument 

vendor format from: 

https://cptac-data-portal.georgetown.edu/cptac/s/S029 for the study name: TCGA Breast 

Cancer. 

 

1.8 Resequencing of tumor DNA  

To validate the quality and concordance of the tumor portions used for proteomic 

experiments, CPTAC exome sequencing was performed on DNAs isolated from the 

insoluble fraction (after protein extraction for MS analysis) of 8 breast cancer samples as 

part of the 77 cases included in the study. We aligned the exome sequencing data from 

these 15 tumors to GRCh37-lite version of the human reference using BWA58. Somatic 

variants were identified using VarScan59,60, GATK61, and Pindel62. Variant annotation 

was based on Ensembl release 70. Common germline variants having MAF < 0.1% were 

filtered using variants from the 1000 Genomes and NHLBI projects. We obtained high 

quality somatic variants using a stringent downstream filter comprised of the following 

rules: minimum 8X coverage; Variant Allele Fraction (VAF) ≥10% and at least 2 variant 

supporting reads in the tumor sample; and VAF<1% and a maximum of 1 variant 

supporting read in the normal sample. In parallel, somatic variants of the corresponding 

15 TCGA samples were obtained from the TCGA breast cancer marker paper1.  

For concordance analysis, all point mutations reported by TCGA and CPTAC 

resequenced tumors were used. Pileups for the combined variant list were generated 

using TCGA and CPTAC tumor BAMs, respectively. A mutation was deemed concordant 

if there were at least 2 variant supporting reads and at least 2% VAF in each of the 

TCGA and CPTAC BAMs. Overall, for the 8 unimodal samples resequenced, a total of 

465 mutations were reported by TCGA. Out of these, 440 (94.6%) could be identified in 

the CPTAC resequenced tumor portions (Extended Data Fig. 3a) 

For correlation analysis, all concordant variants in autosomes having at least 30x 

coverage in both BAMs were included. Readcounts for each variant were generated. 

Sample-wise Pearson correlations were calculated using R 3.1.0. We observed high 

correlations in VAF between the TCGA and the CPTAC resequenced tumor portions 

with values ranging from r=0.62-0.9 (mean=0.77) (Extended Data Fig. 3b).  

The high concordance of mutations and correlations of VAFs in the tumors sequenced 

by the two cohorts suggest a high degree of similarity in the genomic content of the 

tumors sequenced by TCGA and CPTAC. This analysis supports the notion that TCGA 

genomics data can be a reliable and useful resource for interpreting protein and 

phosphoprotein data generated by CPTAC. 



   

 

1.9 PIK3CA- and TP53-mutation isogenic cell line analysis   

X-MAN™ isogenic mutant and normal cell lines cell culture and lysis: X-MAN™ cell lines 

were procured from Horizon Discovery (Cambridge, UK). Human mammary epithelium 

MCF10A cells
28

 with the following mutations: PIK3CA-E545K/+ (catalogue number HD 

101-002), PIK3CA-H1047R/+ (HD 101-011), dual TP53 -/- (exon-2 knock-out) and 

PIK3CA-H1047R/+ (HD 101-043), and parental clone (HD PAR-024); human mammary 

epithelium hTERT-HME1 cells63 with the following mutations: PIK3CAE545K/+ (HD 100-

003), PIK3CAH1047R/+ (HD 100-002) and parental clone (HD PAR-001); human colon 

cancer SW48 cells64 with the following mutations: PIK3CA-E545K/+ (HD 103-001), 

PIK3CAH1047R/+ (HD 103-005), TP53 -/- (exon-2 knock-out; HD 103-004), TP53-

R273H/+ (HD 103-008) and parental clone 248 (HD PAR-006); human colon cancer 

HCT116 cells64 with the following mutations: TP53 -/- (exon-2 knock-out; HD 104-001), 

TP53-R248W/+ (HD 104-002) and parental clone (HD PAR-00711); human pre-B 

NALM-6 cells65 with the following mutation: TP53 -/- (exon-2 knock-out; HD 115-049) 

and corresponding parental clone (HD PAR-102). After receipt of the X-MAN™ cells, 

global proteome analysis was used to verify isogenic cell line pairs. Cells passed 

mycoplasma testing either immediately before or shortly after initiation of cultures. Cells 

were grown in 37°C and 5% CO2 following manufacturer’s guidelines. Briefly, MCF10A 

and hTERT-HME1 cells were cultivated in DMEM/F12 medium (1:1; Invitrogen) 

supplemented with 5% horse serum (Invitrogen), 20 ng mL-1 hEGF (Sigma), 10 µg/ mL 

insulin (Sigma), 0.5 µg/ mL hydrocortisone (Sigma). MCF10A cells’ growth medium was 

additionally supplemented with 0.1 µg/ mL cholera toxin (Sigma). HCT116, SW48 and 

NALM-6 cells were cultivated in RPMI1640 medium including 2mM L-glutamine and 

25mM sodium bicarbonate (Invitrogen) with 10% fetal bovine serum (Sigma). Cells were 

cultivated for 36 to 48 hours to reach 80% confluence before being harvested on ice. 

Two to three 15 cm culture dishes per cell type were washed twice with ice cold PBS. 

Cells were detached by scraping and pelleted at 1,000 rcf for 5 minutes. Cell pellets 

were snap-frozen in liquid nitrogen and kept at -80°C. Protein extraction and digestion 

were performed following the same protocol as for the breast cancer tumor tissues. In 

summary, cell pellets were homogenized in 1000 µL 8M urea lysis buffer with phospho- 

and protease inhibitors. Proteins were reduced and alkylated using dithiothreitol and 

iodoacetamide, respectively, for 45 minutes each. Digestion with Lys-C and trypsin (both 

at a 1:50 enzyme-to-protein ratio) was performed at room temperature overnight. The 

resulting peptides were acidified and desalted on C18 SepPak columns (Waters, 100mg, 

WAT036820) prior to freeze-drying. 

Isobaric labeling, fractionation, enrichment of phosphopeptides and LC-MS/MS analysis 

of the X-MAN™ cells: TMT 10-plex reagent (Thermo Scientific, 90110B) was used for 

isobaric peptide labeling. 400 µg of peptides from each cell type were labeled with an 

individual TMT mass tag following the manufacturer’s protocol – with the single 

exception of exchanging 100mM TEAB for 50mM HEPES, pH 8.5. PIK3CA mutated cell 

lines with respective parental clones were analyzed in one TMT 10-plex setting while the 

TP53 mutated cell lines with respective parental clones were analyzed in a separate 



   

TMT 10-plex. PIK3CA TMT 10-plex randomized design (reporter ion/catalog number): 

126/HD PAR-024, 127N/HD 103-001, 127C/HD 101-011, 128N/HD PAR-006, 128C/HD 

100-003, 129N/HD 101-043, 129C/HD 100-002, 130N/HD 103-005, 130C/HD PAR-001 

and 131/HD 101-002. TP53 TMT 10-plex randomized design: 126/HD 101-005, 

127N/HD 104-002, 127C/HD PAR-024, 128N/HD 103-008, 128C/HD 115-049, 129N/HD 

104-001, 129C/HD PAR-006, 130N/HD PAR-102, 130C/HD 103-004 and 131/HD PAR-

007. High pH fractionation and IMAC enrichment of phosphopeptides were done 

following the same protocol as for the breast cancer tissue samples. High performance 

liquid chromatography tandem mass spectrometry was performed on the same online 

nanoflow Proxeon EASY-nLC 1000 UHPLC system (Thermo Fisher Scientific) and 

benchtop Orbitrap Q Exactive mass spectrometer (Thermo Fisher Scientific) as 

described for the breast cancer tissue samples. MS/MS data was acquired at a 

resolution of 35,000 with the collision energy set to 28. Acquired spectra were searched 

using the Spectrum Mill software and the RefSeq database (version 20130727), and 

phosphosite tables were generated using Spectrum Mill. Mutant/wt isogenic phosphosite 

TMT ratios at a z-score >3 for each pair were used as phosphosignature sets for single 

sample Gene Set Enrichment Analysis (ssGSEA). 

 

 

  



   

2. MS Data interpretation 

 

2.1 Protein-peptide identification, phosphosite localization, and quantification 

All MS data were interpreted using the Spectrum Mill software package v5.0 pre-release 

(Agilent Technologies, Santa Clara, CA) co-developed by Karl Clauser of the Carr lab. 

Similar MS/MS spectra acquired on the same precursor m/z within +/- 45 sec were 

merged. MS/MS spectra were excluded from searching if they failed the quality filter by 

not having a sequence tag length > 0 (i.e., minimum of two masses separated by the in-

chain mass of an amino acid) or did not have a precursor MH+ in the range of 750-6000. 

MS/MS spectra were searched against a database consisting of RefSeq release 60, 

containing 31,767 human proteins, with the addition of a set of 85 common laboratory 

contaminant proteins. Scoring parameters were ESI-QEXACTIVE-HCD-v2, for whole 

proteome datasets, and ESI-QEXACTIVE-HCD-v3, for phosphoproteome datasets. All 

spectra were allowed +/- 20 ppm mass tolerance for precursor and product ions, 40% 

minimum matched peak intensity, and “trypsin allow P” enzyme specificity with up to 4 

missed cleavages. The fixed modification was carbamidomethylation at cysteine. iTRAQ 

labeling was required at lysine, but peptide N-termini were allowed to be either labeled 

or unlabeled. Allowed variable modifications for whole proteome datasets were 

acetylation of protein N-termini, oxidized methionine, deamidation of asparagine, pyro-

glutamic acid at peptide N-terminal glutamine, and pyro-carbamidomethylation at peptide 

N-terminal cysteine with a precursor MH+ shift range of -18 to 64 Da. Allowed variable 

modifications for the phosphoproteome dataset were revised to disallow deamidation 

and allow phosphorylation of serine, threonine, and tyrosine with a precursor MH+ shift 

range of 0 to 272 Da.  

Identities interpreted for individual spectra were automatically designated as confidently 

assigned using the Spectrum Mill autovalidation module to use target-decoy based false 

discovery rate (FDR) estimates to apply score threshold criteria via two-step strategies. 

For the whole proteome datasets thresholding was done at the spectral and protein 

levels. For the phosphoproteome datasets thresholding was done at the spectral and 

phosphosite levels. In step 1, peptide autovalidation was done first and separately for 

each iTRAQ 4-plex experiment consisting of either 25 LC-MS/MS runs (whole proteome) 

or 13 LC-MS/MS runs (phosphoproteome) using an auto-thresholds strategy with a 

minimum sequence length of 6 (whole proteome) or 7 (phosphoproteome); automatic 

variable range precursor mass filtering; and score and delta Rank1 – Rank2 score 

thresholds optimized to yield a spectral level FDR estimate for precursor charges 2 

through 4 of <0.6% for each precursor charge state in each LC-MS/MS run. To achieve 

reasonable statistics for precursor charges 5-6, thresholds were optimized to yield a 

spectral level FDR estimate of <0.3 % across all runs per iTRAQ 4-plex experiment 

(instead of per each run), since many fewer spectra are generated for the higher charge 

states. 

In step 2 for the whole proteome datasets, protein-polishing autovalidation was applied 

separately to each iTRAQ 4-plex experiment to further filter the peptide spectrum 



   

matches (PSMs) using a target protein-level FDR threshold of zero. The primary goal of 

this step was to eliminate peptides identified with low scoring PSMs that represent 

proteins identified by a single peptide, so-called “one-hit wonders”. After assembling 

protein groups from the autovalidated PSMs, protein polishing determined the maximum 

protein level score of a protein group that consisted entirely of distinct peptides 

estimated to be false-positive identifications (PSMs with negative delta forward-reverse 

scores). PSMs were removed from the set obtained in the initial peptide-level 

autovalidation step if they contributed to protein groups that had protein scores below 

the maximum false-positive protein score. In the filtered results, each identified protein 

detected in an iTRAQ 4-plex experiment was comprised of multiple peptides unless a 

single excellent scoring peptide was the sole match. In calculating scores at the protein 

level and reporting the identified proteins, redundancy was addressed in the following 

manner: the protein score was the sum of the scores of distinct peptides. A distinct 

peptide was the single highest scoring instance of a peptide detected through an MS/MS 

spectrum. MS/MS spectra for a particular peptide may have been recorded multiple 

times (e.g. as different precursor charge states, in adjacent bRP fractions, modified by 

deamidation at Asn or oxidation of Met, or with different phosphosite localization), but 

were still counted as a single distinct peptide. When a peptide sequence of >8 residues 

was contained in multiple protein entries in the sequence database, the proteins were 

grouped together and the highest scoring one and its accession number were reported. 

In some cases when the protein sequences were grouped in this manner there were 

distinct peptides that uniquely represented a lower scoring member of the group 

(isoforms, family members, and different species). Each of these instances spawned a 

subgroup. Multiple subgroups were reported and counted towards the total number of 

proteins, and were given related protein subgroup numbers (e.g. 3.1 and 3.2 for group 3, 

subgroups 1 and 2). For the whole proteome datasets the above criteria yielded false 

discovery rates (FDR) of <0.5% at the peptide-spectrum match level and <0.8% at the 

distinct peptide level for each iTRAQ 4-plex experiment. After assembling proteins with 

all the PSMs from all the iTRAQ 4-plex experiments together the aggregate FDR 

estimates were 0.43% at the at the peptide-spectrum match level, 2.8% at the distinct 

peptide level, and <0.01% (1/11,772) at the protein group level. Since the protein level 

FDR estimate neither explicitly required a minimum number of distinct peptides per 

protein nor adjusted for the number of possible tryptic peptides per protein, it may 

underestimate false positive protein identifications for large proteins observed only on 

the basis of multiple low scoring PSMs. 

In step 2 for the phosphoproteome datasets a phosphosite table was assembled with 

columns for individual iTRAQ 4-plex experiments and rows for individual phosphosites. 

PSMs were combined into a single row for all non-conflicting observations of a particular 

phosphosite (e.g. different missed cleavage forms, different precursor charges, confident 

and ambiguous localizations, and different sample-handling modifications). For related 

peptides neither observations with a different number of phosphosites nor different 

confident localizations were allowed to be combined. Selecting the representative 

peptide from the combined observations was done such that once confident phosphosite 



   

localization was established, higher identification scores and longer peptide lengths were 

preferred. After assembling the phosphosite table a polishing step was applied to further 

filter the phosphosites with the primary goal of eliminating phosphosites with 

representative peptides identified through low scoring peptide spectrum matches (PSMs) 

that were observed in only a few experiments. The initial table of representative peptides 

for 83,882 phosphosites had an aggregate FDR of 5.3% at phosphosite-level. The table 

was sorted by identification score and then by number of iTRAQ 4-plex experiments in 

which the phosphosite was observed. The cumulative FDR trend showed inflection 

points at an identification score of ~8.  Phosphosites with an identification score < 8.0 

observed in <6/37 experiments were therefore removed, yielding 62,694 phosphosites 

with an aggregate FDR of 0.45% at the phosphosite level. While the Spectrum Mill 

identification score was based on the number of matching peaks, their ion type 

assignment, and the relative height of unmatched peaks, the phosphosite localization 

score was the difference in identification score between the top two localizations. The 

score threshold for confident localization ( >1.1), essentially corresponded to at least 1 b 

or y ion located between two candidate sites that had a peak height that was 10% of the 

tallest fragment ion (neutral losses of phosphate from the precursor and related ions as 

well as immonium and iTRAQ reporter ions were excluded from the relative height 

calculation). The ion type scores for b-H3PO4, y-H3PO4, b-H2O, and y-H2O ion types 

were all set to 0.5. This prevented inappropriate confident localization assignment when 

a spectrum lacked primary b or y ions between two possible sites but contained ions that 

could be assigned as either phosphate-loss ions for one localization or water loss ions 

for another localization. In aggregate, 70.5% of the reported phosphosites were fully 

localized to a particular serine, threonine, or tyrosine residue.  

Relative abundances of proteins and phosphosites were determined in Spectrum Mill 

using iTRAQ reporter ion intensity ratios from each PSM. A protein-level or phosphosite-

level iTRAQ ratio was calculated as the median of all PSM level ratios contributing to a 

protein subgroup or phosphosite remaining after excluding those PSMs lacking an 

iTRAQ label (2.7% of proteome and 2.4% of phosphoproteome PSMs), having a 

negative delta forward-reverse score (half of all false-positive identifications), or having a 

precursor ion purity < 50% (MS/MS has significant precursor isolation contamination 

from co-eluting peptides; 7.7% of proteome and 4.2% of phosphoproteome PSMs). 

 

2.2 Creation of a patient-specific protein sequence database   

For each of the 105 patients’ tumors analyzed here, whole exome DNA sequencing and 

Illumina RNA-seq data generated from portions of the tumors and accompanying 

germline DNA samples were obtained from the TCGA network under controlled access.  

Previously identified tumor-specific somatic DNA-variants were obtained1 and combined 

with germline DNA-variants from the same individual. Germline and somatic variant 

calling at the RNA level was completed as previously described66 using RNA expression 

data and a p-value cutoff of 0.001 to reduce false positives.   



   

Germline DNA variants and RNA-seq based intron/exon boundaries were identif ied as 

follows:  Exome sequencing data for germline DNA variant identification and RNA-seq 

data for RNA junction analysis in BAM file format were downloaded from CGHub for the 

105 human breast invasive carcinoma (BRCA) samples. Exome sequencing BAM files 

were first converted to FASTQ files using Picard version 1.79 

(http://picard.sourceforge.net) while RNA-seq BAM files were converted to FASTQ files 

using in-house software and SAMtools version 0.1.1967. Quality control analysis was 

completed on both sequencing types using FastQC version 

0.10.1(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Exome sequence 

data were tail-trimmed to 75 bps in length to increase read quality. These trimmed reads, 

in FASTQ format, were then aligned to the human reference genome version hg19 using 

the Burrows-Wheeler Alignment tool (BWA) version 0.7.3a-r36758. SAMtools version 

0.1.1967 was used to convert the resulting SAM files into BAM files followed by sorting 

and indexing using Picard version 1.79. Mapped reads in the raw BAM files were then 

marked for duplicates and re-aligned locally, and base pair scores were re-calibrated 

using GATK version 2.661,68 and Picard version 1.79. Finally, software GATK version 2.6 

was used to call variants (SNPs and indels) for each individual germline DNA sample.   

RNA-seq reads were trimmed by the last two base pairs to increase read quality. BWA 

alignment software version 0.7.3a-r36758 was used alongside in-house developed 

software to remove contaminated sequences from sequencing adapters, mitochondrial 

and ribosomal DNA, enterobacteria phage phiX174, polyA and polyC.  All cleaned and 

trimmed reads in FASTQ format were aligned to the human reference genome version 

hg19 using TopHat version 2.0.8
69-71

 with –g 1, --bowtie2 (version 2.1.0.0), -M, -x 1, and 

--fusion-search settings to generate BAM files and junction files. 

The proteogenomic database tool QUILTS version 2.0 (quilts.fenyolab.org) was used to 

incorporate the germline and somatic single nucleotide variants (SNVs), RNA-seq 

predicted junctions and fusion genes into a searchable protein database16. The human 

RefSeq release 60-protein database (version 20130727) was used as a reference for the 

hg19 proteome and genome.  In brief, QUILTS stored information on variant location and 

nucleotide change from a variant VCF file that was then incorporated into the hg19 

genomic sequence. This variant nucleotide sequence was then translated into protein 

using annotated intron/exon boundaries to create associated protein sequences allowing 

for non-synonymous single amino acid variant identification.  RNA-seq predicted 

intron/exon boundaries were filtered for annotated splice junction boundaries leaving 

only novel junctions that were then split into 1) unannotated alternative splicing, with two 

known exons; 2) completely novel junctions, with both boundaries matching no known 

exons; and 3) partially novel junctions, where only one intron/exon boundary was 

annotated. Subsequent in silico protein synthesis was completed with a 1-frame 

translation for scenarios in which the upstream junction was annotated and 6-frame 

translations for scenarios in which the upstream junction was unannotated.  Lastly, gene 

fusions were translated by a 6-frame translation and protein coding regions with greater 

than 6 consecutive amino acids were included in the protein database. QUILTS 

generated 4 FASTA file types for each patient: 1) Variants – containing all proteins from 

http://picard.sourceforge.net/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


   

the reference database substituted with at least 1 missense SAAV; 2) Alternates - 

containing all RNA-seq derived splice isoforms involving in-frame splicing of 2 known 

exons that were not already present in the reference database; 3) Frameshifts – 

containing RNA-seq derived splice isoforms involving a frameshift, indels, stop codon 

introduction/removal via nonsense mutations, and partially novel junctions (1 known 

intron/exon boundary) requiring 1-frame translation (AN1+, known exon upstream on + 

strand, or AN2-, known exon downstream on - strand);  4) Other – partially novel 

junctions (1 known intron/exon boundary) requiring 3-frame translation (AN1-, known 

exon upstream on - strand, or AN2+, known exon downstream on + strand), completely 

novel splice junctions combining two novel intron/exon boundary regions requiring 6-

frame translation (NO_GENE-N), RNA-seq derived immunoglobulin variable region VDJ 

re-arrangements (NO_GENE-N), and gene fusions. 

The personalized databases for each patient were merged for searching the MS/MS 

spectra to accommodate the multiplexed samples used in LC-MS/MS data generation.  

Since each of the 36 groups of iTRAQ 4-plex samples was prepared by combining 3 

individual tumor samples plus an aliquot of internal reference (a mixture of portions of 40 

tumors), each MS/MS spectrum could be derived from a peptide sequence shared by up 

to 43 individual tumors. Four combined sequence databases were made by 

concatenating the QUILTS-generated 105 individual FASTA files of each type: DNA-

derived variants, RNA-derived variants, alternates, and frameshifts. When concatenating, 

summary files were generated to enable subsequent matching of individual tumors to 

sequence identifiers and positions of genomic variants. Each concatenated file was then 

made non-redundant by removing repeats with identical full-length sequence to yield ~5-

fold reduction in protein sequences. DNA-derived and RNA-derived variants were 

concatenated with subsequent redundancy removal yielding 1.4-fold reduction in 

sequences. The non-redundant DNA/RNA variant (164,792 sequences), alternate 

splicing (68,565 sequences), and frameshift (187,094 sequences) peptide FASTA files 

were concatenated together with the human reference database, RefSeq release 60 

version 20130727 (31,852 sequences), to yield a database containing 452,303 (549MB) 

protein sequences that was used to search MS/MS spectra. 

 

2.3 Protein-peptide identification and quantification with patient-specific 

sequence database   

MS/MS spectra from the global proteome datasets were searched in two stages: 1) all 

spectra against the RefSeq reference database, as described above; then 2) remaining 

unidentified spectra against the patient-specific sequence database as described here. 

This was done to control the false-discovery rate since there were several orders of 

magnitude fewer high-confidence PSMs expected to the patient-specific sequences not 

present in the reference database. Because of the much larger database size and much 

lower number of matches expected in this second stage search, the pool of searched 

spectra examined was further restricted to higher quality spectra, and fewer sample 

handling-related variable modifications were allowed during the search. Precursor 



   

charges were limited to +2, +3, or +4 (+5 and +6 were omitted), and a maximum 

sequence tag length > 1 was required (1 omitted); i.e. the spectrum was required to have 

at least 3 peaks separated by the in-chain masses of two consecutive amino acids. 

Fixed modifications were limited to carbamidomethylation at cysteine and iTRAQ 

labeling was required at lysine and peptide N-termini (N-termini were not allowed to be 

unlabeled). Allowed variable modifications were limited to oxidized methionine (omitting 

acetylation of protein N-termini, deamidation of asparagine, pyro-glutamic acid at peptide 

N-terminal glutamine, and pyro-carbamidomethylation at peptide N-terminal cysteine) 

with a precursor MH+ shift range of 0 to 33 Da. Other parameters were the same as the 

stage 1 searches. Scoring parameters were ESI-QEXACTIVE-HCD-v2, +/- 20 ppm mass 

tolerance for precursor and product ions, 40% minimum matched peak intensity, and 

“trypsin allow P” enzyme specificity with up to 4 missed cleavages. 

Peptide sequence identities interpreted for individual spectra were automatically 

designated as confidently assigned via the Spectrum Mill autovalidation module which 

used target-decoy based false-discovery rate (FDR) estimates to apply score threshold 

criteria via a two-step strategy with thresholding at both the PSM and proteogenomic 

(PG) event levels. First, PSM autovalidation was done separately for each iTRAQ 4-plex 

experiment using an auto-thresholds strategy with a minimum sequence length of 7, and 

automatic variable range score and delta Rank1 – Rank2 score thresholds optimized to 

yield a PSM-level FDR estimate of <0.6% for each precursor charge state across all 24 

runs of an iTRAQ 4-plex experiment (instead of each run), to achieve reasonable 

statistics with the relatively small number of high-quality PSMs expected per run. 

Second, three PG event tables for each PG event type (variants, alternates, and 

frameshifts) were assembled with columns for individual iTRAQ 4-plex experiments and 

rows for individual PG events. PSMs were combined into a single row for all non-

conflicting observations of a particular PG event (i.e. multiple peptides containing altered 

coding sequence due to a frameshift, different trypsin missed-cleavage forms of peptides 

that spanned a splice junction or contained an SAAV or new protein C-terminus resulting 

from introduction of a novel stop codon, different precursor charges, different sample 

handling modifications of the same peptide, and repeat observations in adjacent bRP 

fractions). The representative peptide reported from the combined observations was the 

one with the highest identification score. After assembling the PG event tables and 

combining the alternate and frameshift events into a splice isoforms table a polishing 

step was manually applied to each table to further filter the PG events with the primary 

goal of reaching a suitable PG-event identification-level FDR. Each table was sorted by 

identification score of the representative peptide and filtered to retain PG events with 

scores better than the desired cumulative FDR threshold (variants score > 8.0, splice 

isoforms score > 9.0). Consequently, the final PG event level identification FDR 

estimates were <0.11% for variants and <0.91% for splice isoforms included in 

Supplementary table 5. 

Relative abundances of each PG event in a tumor sample were determined in Spectrum 

Mill using iTRAQ reporter ion intensity ratios from each PSM. A PG event-level iTRAQ 

ratio was calculated as the median of all  PSM level ratios contributing to each event 



   

remaining after excluding those PSMs lacking an iTRAQ label, having a negative delta 

forward-reverse score (half of all false-positive identifications), or having a precursor ion 

purity < 50% (MS/MS has significant precursor isolation contamination from co-eluting 

peptides). The ratios for all PG events in an individual tumor were then standardized by 

subtracting the mean and dividing by the standard deviation of the protein-level iTRAQ 

ratios for that tumor derived from the results of the stage 1 search (reference database 

only). Since each MS/MS spectrum had 4 iTRAQ reporter ions for 3 tumors and the 

common control, a rare PG event could typically be attributed to a specific tumor when 1 

ratio was significantly higher than the other two. In supplemental table 5 a column is 

included for calculating a simple overall PG event detection rate. Across the 105 

samples analyzed, the number of samples with an iTRAQ ratio >= 3 was tallied and 

divided by the number of tumors with evidence for the PG event in the corresponding 

DNA exome sequence data or RNA-seq data. iTRAQ experiment 1 was excluded from 

the tally to simplify the exclusion of 1 replicate of the 3 tumors that were analyzed in 

duplicate by proteomics. By this measure 11/89 (12%) of somatic SAAVs were observed 

at the protein-level in more tumors than the corresponding SNV was called in the DNA 

exome sequence data. For splice isoforms 81/672 (12%) were observed at the protein-

level in more tumors than the corresponding isoform was observed in the RNA-seq data. 

Only 10 of these 81 (12%) were observed in the RNA-seq data from any tumor by more 

than 2 reads, while overall 359/672 (53%) of the splice isoforms observed at the protein-

level were observed in the RNA-seq data from any tumor by more than 2 reads. 

 

3. Statistical and computational analysis of proteogenomic data  

 

3.1 Sample QC  

A density plot of log2-transformed iTRAQ ratios for the proteins and phosphosites 

observed in a sample (Extended Data Fig. 2d) showed that, while a majority of samples 

conformed to an expected unimodal (Gaussian or normal) distribution, there were many 

that displayed a clearly bimodal distribution or exhibited significant skew (tailing). The 

bimodality coefficient72 and dip statistic73 were used to characterize these distributions. 

While the bimodality coefficient resulted in a conservative classification of unimodal 

samples as compared to the conservative classification of bimodal samples by dip 

statistic, the sample standard deviation proved to be a natural QC (quality control) 

metric. The standard deviation was used to derive a QC filter that retained 77 samples, 

avoiding contamination of the sample set by inclusion of excessively tailing or bimodal 

samples.  Study personnel responsible for the sample QC analyses were blinded to the 

intrinsic subtype and known molecular characteristics of the samples. 

To implement the sample QC filter, the average standard deviation of all observed 

protein and phosphosite log2-transformed iTRAQ ratios (with no filtering or 

normalization) was calculated for each sample. These average standard deviation 

values were then subject to model-based clustering using a two-component mixture 



   

model74 using the MCLUST package75 in the R statistical programming language76. The 

resulting clusters were used to group samples into those that passed QC (Gaussian 

component with smaller mean) and those that failed QC (component with larger mean). 

77 of the 105 samples (along with 3 tumor replicates and 3 normal tissue samples) 

passed the QC filter, while the remaining 28 samples failed the QC filter and were 

excluded from further analysis. All analyses described here used only the 77 samples 

that successfully passed the QC filter.  

 

3.2 Normalization  

It was assumed that for every sample there would be a set of unregulated proteins or 

phosphosites that have abundance comparable to the reference sample. In the 

normalized sample, these proteins or phosphosites should have a log iTRAQ ratio 

centered at zero. In addition, there were proteins and phosphosites that were either up- 

or down-regulated compared to the reference, and proteins/phosphosites that had 

unusually low abundance due to contamination or other effects (giving rise to either 

bimodality or significant tailing). 

A normalization scheme was employed that attempted to identify the unregulated 

proteins and phosphosites, and centered the distribution of these log-ratios around zero 

in order to nullify the effect of differential protein loading and/or systematic MS variation. 

A 2-component Gaussian mixture model-based normalization algorithm was used to 

achieve this effect. The two Gaussians 𝑁(𝜇𝑖1,𝜎𝑖1) and 𝑁(𝜇𝑖2,𝜎𝑖2) for a sample 𝑖 were 

fitted and used in the normalization process as follows: 

 For samples that passed QC (primarily samples with unimodal distribution of log 

iTRAQ ratios), the mode 𝑚𝑖 of the log-ratio distribution was determined for each 

sample using kernel density estimation with a Gaussian kernel and Shafer-Jones 

bandwidth. A two-component Gaussian mixture model was then fit with the mean 

of both Gaussians constrained to be 𝑚𝑖, i.e., 𝜇𝑖1= 𝜇𝑖2 = 𝑚𝑖. The Gaussian with 

the smaller estimated standard deviation 𝜎𝑖 = min(�̂�1𝑖 , �̂�2𝑖)  was assumed to 

represent the unregulated component of proteins/phosphosites, and was used to 

normalize the sample. The sample was standardized using 𝑁(𝑚𝑖 ,𝜎𝑖)  by 

subtracting the mean 𝑚𝑖  from each protein/phosphosite and dividing by the 

standard deviation 𝜎𝑖. 

 For samples that failed QC (with bimodal or tailing log iTRAQ ratio distributions), 

the major (dominant) mode 𝑚𝑖1 was determined using kernel density estimation 

with a Gaussian kernel and Shafer-Jones bandwidth. A two-component Gaussian 

mixture model was then fit with the mean of one Gaussian constrained to be 𝑚𝑖1, 

i.e., 𝜇𝑖1 = 𝑚𝑖1. The estimated standard deviation of the constrained Gaussian �̂�𝑖1 

was assumed to represent the standard deviation of the unregulated component 

of proteins/phosphosites, and was used to normalize the sample. The sample 



   

was standardized using 𝑁(𝑚𝑖1, �̂�𝑖1)  by subtracting the mean 𝑚𝑖1  from each 

protein/phosphosite and dividing by the standard deviation �̂�𝑖1. 

 

Constrained fitting of mixture models was implemented using the mixtools R package
77

. 

 

3.3 Filtering  

The following filters were applied to the proteome and phosphoproteome datasets: 

a) Proteins were required to have at least two observed iTRAQ ratios in at least 30 

samples in order to be included in the proteome dataset. Phosphosites were 

required to have at least one observed iTRAQ ratio in 30 or more samples. 

b) Proteins and phosphosites were required to have an overall standard deviation 

larger than 0.5 (across all samples where they were observed). 

c) Proteins and phosphosites were required to have observed (non-missing) iTRAQ 

ratios in at least 30 samples. 

The 30-sample threshold was chosen to enable detection of marker proteins or 

phosphosites present in 10 samples, which was slightly over half of the 18 Her2 samples 

(the smallest PAM50 group in the study). Since 3 samples and a common reference 

were run in every iTRAQ experiment, a protein or phosphosite present in any of the 3 

samples would prompt detection in all 3 samples. Thus, non-missing values were 

required in at least 10× 3 = 30 samples. 

The resulting proteome and phosphosite counts after application of the filtering steps are 

shown in Extended Data Fig. 1b.  

Some of the filtering steps were either excluded or modified for specific analyses in the 

study. For example, the standard deviation filter (b) was not applied when calculating 

correlation with mRNA in order to maximize the number of proteins/phosphoproteins that 

were included in the analysis. For many of the marker selection and gene set enrichment 

analyses, at least 50% of samples were required to have non-missing values for 

proteins/phosphosites, since missing values are imputed, and excessive missing values 

can result in poor imputation.  Alternate filtering has been noted in descriptions of the 

relevant methods. 

 

3.4 RNA-seq data analysis  

RNA sequencing data generated at the University of North Carolina at Chapel Hill on the 

Illumina HiSeq were processed using methods previously described78. To summarize, 

resulting sequencing reads were aligned to the human hg19 genome assembly using 

MapSlice79. Gene expression was quantified for the transcript models corresponding to 



   

the TCGA GAF 2.13 using RSEM4 and normalized within samples to a fixed upper 

quartile.  Upper quartile normalized RSEM data were log2 transformed and the data 

were median centered by gene.  Genes with a value of zero following log2 

transformation were set to the missing value and genes with missing values in greater 

than 20% of samples were excluded from analyses. Gene expression data is available at 

the TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/). 

 

3.5 Application of the ESTIMATE algorithm to assess tumor purity 
 

The ESTIMATE algorithm14 was applied to: 

1. Global proteome data; 
2. Affymetrix microarray (mRNA) data derived from tumor sections used in the TCGA 
breast cancer study

1
; and 

3. RNA-seq data derived from sequencing tumor sections different from those used for 
1) and 2), performed subsequent to the publication of the TCGA Nature paper. 
 
Since the ESTIMATE algorithm was developed for mRNA expression data, and has not 

been previously used or validated with proteome data, only proteins (in proteome data) 

and genes (in mRNA and RNA-seq data) with moderate to high correlation (protein-

mRNA and protein-RNA-seq correlation > 0.4) were used for this analysis. Differences in 

the distribution of scores among mRNA, RNA-seq and proteome data are described in 

Extended Data Fig. 3e. 

 

 

3.6 mRNA – protein correlation  

Correlations between mRNA expression (obtained from TCGA RNA-seq data) and 

protein/phosphoprotein abundance for each gene-protein pair were measured using 

Pearson correlation. In addition, a p-value (adjusted for multiple testing using FDR) for 

assessing the statistical significance of the correlation value was also calculated. To 

maximize the number of gene-protein pairs included in the analysis, datasets in which 

the standard deviation filter (b) was not applied were used (see Filtering above).  

Furthermore, the gene-protein correlations were separately calculated in the sets of 

samples that passed and failed QC. 

 RefSeq protein IDs in the proteome data were mapped to gene names using DAVID80 

(March 2014). These gene names were then converted to HUGO gene symbols using 

Genenames.org (Aug 2014). Phosphosites were aggregated to their corresponding 

RefSeq protein IDs by calculating the median log-ratio for all sites arising from the 

protein. 

A median Pearson correlation of r=0.39 was found, with 6,133 out of 9,195 protein/gene 

pairs (66.7%) correlating significantly in the 77 tumor samples that passed QC. In 

https://tcga-data.nci.nih.gov/tcga/


   

contrast, correlation within the set of 28 tumor samples that failed QC attained a median 

r of 0.25, with only 33.0% significantly correlating genes in a positive direction, further 

supporting the interpretation that the quality of these samples was compromised and 

that they were appropriately excluded (see Sample QC, above). 

 

3.7 Defining proteome clusters  

Robust proteome clusters were derived by consensus clustering81, implemented using 

the ConsensusClusterPlus R package. The proteome data was filtered to remove all 

proteins with i) any missing values; and ii) standard deviation of ≤1.5. The resulting data 

set with 1,521 proteins was transformed into 1,000 bootstrap sample data sets with a 

probability of 0.8 for selecting any sample and any protein. The bootstrap data sets were 

clustered using k-means clustering with up to 6 clusters. The consensus matrix for 

𝑘 = 3,4,5,6 clusters is shown in Extended Data Figure 6.  

Visually, the consensus matrix for 𝑘 = 3  appeared to have the cleanest separation 

between clusters, with 𝑘 = 4 a close second. The consensus CDF and delta area plot81 

in Extended Data Figure 6d showed that there was a significant increase in the area 

under the consensus CDF when going from two to three clusters, with a much smaller 

increase in area for 𝑘 = 4  compared to 𝑘 = 3 . Furthermore, the average silhouette 

distance for 𝑘 = 3  (0.09) was larger than for 𝑘 = 4 (0.07), and there were no silhouette 

widths with significant negative values for 𝑘 = 3. For 𝑘 = 4, not only did clusters 1 and 2 

have negative silhouette widths, but cluster 3 seemed questionable, with almost 30% of 

samples having negative silhouette widths.  

Based on these considerations, proteome clusters were defined using k-means 

consensus clustering results with 𝑘 = 3. 

Inclusion of the 28 tumor samples that failed QC metrics in any of the above-mentioned 

clustering analyses yielded an additional subgroup that was distinct from the stroma-

enriched group due to the absence or low abundance of thousands of proteins in these 

samples. 

 

3.8 Clustering of proteins correlated with RNA and RPPA 

The proteome and RNA expression data were filtered to retain 4,291 proteins and genes 

(respectively) with moderate to high protein-RNA correlation (Pearson correlation > 0.4). 

Since proteome data contains iTRAQ ratios and RNA data has log-transformed 

expression values, we used (rank-based) Spearman correlation as a measure of sample 

similarity. The proteome and RNA data were combined into a single data file and 

subjected to agglomerative hierarchical clustering (AGNES82) (Extended Data Fig. 3c). 

The MS proteome-RPPA co-clustering mapped 126 RPPA readouts to gene names. 

These genes were intersected with the genes observed in the MS proteome, filtered to 

48 proteins with moderate or higher RPPA-MS protein correlation (Pearson correlation > 



   

0.4), and analyzed for co-clustering using agglomerative hierarchical clustering as above 

(Extended Data Fig. 3d). 

 

3.9 Clustering of proteome restricted to PAM50 genes/proteins 

The original TCGA PAM-50 sample annotation is based on applying a custom classifier 

to the expression level of 50 genes. This annotation (obtained from the TCGA) is shown 

in the topmost annotation bar in Figure 3A. When RNA data for the 50 PAM-50 genes 

was clustered directly (without using a classifier), the grouping obtained (second 

annotation bar in Figure 3a), while similar to the TCGA annotation, was not perfect. 

Restricting both the RNA and proteome data to the set of 35 PAM-50 genes observed in 

the proteome resulted in very similar clustering (bottom two annotation bars), and all the 

major PAM-50 groups were recapitulated in the proteome almost as well as in the RNA 

data. All clustering was performed using FANNY82 to accommodate the presence of 

missing values in the proteome data. 

 

3.10 Defining phosphoproteome clusters in pathway space 

The phosphoproteome data was filtered to remove all proteins with i) >81 missing 

values; and ii) standard deviation of ≤0.5 across all samples. In the resulting data set 

(identical to the P2 dataset in Extended Data Fig. 1b) the phosphosites derived from the 

same phosphoprotein were combined by using the median ratio. The phosphoproteins 

were then mapped to gene names resulting in a dataset with 5,914 proteins. The 

samples in this dataset were subject to single sample GSEA analysis to obtain 

enrichment scores over 908 curated (MSigDB c2) pathways with at least 10 overlapping 

genes (Supplementary Table 14). 

The pathway-mapped phosphoproteome data was clustered into 4 groups (Fig. 3d) 

based on an approach similar to the definition of proteome clusters (Supplemental 

Method Section 3.7), using k-means consensus clustering followed by evaluation of the 

consensus CDF, delta area plot and silhouette plots. The 4 phosphoproteome clusters 

were characterized (Extended Data Fig. 8a) by performing marker selection using SAM. 

 

 

3.11 Multiple Testing Correction and FDR p-values 

Unless otherwise noted, all p-values reported in the manuscript are FDR p-values that 

have been corrected for multiple testing using the method proposed in Benjamini and 

Hochberg83. When establishing statistical significance, it is required that FDR < 0.05.  

 

When p-values are established using permutation testing, it has been shown84 that the 

resulting FDR values can be very conservative compared to p-values derived from 

parametric methods. In such cases (e.g., Extended Data Fig. 4c), a cutoff of FDR < 0.1 

is used in an effort to avoid excessive stringency. 

 

An FDR cutoff of 0.1 was also used when dealing with data from gene knock-downs in 



   

multiple cell-lines (red bars in Fig. 2c, where data from different hairpins and cell line 

perturbation conditions are combined), and for selecting input genes to the Fisher test 

(Fig. 3c). For the Fisher test, an FDR of < 0.1 ensures that there is a sufficient overlap 

with the pathways being tested for enrichment. The final choice of enriched pathways is 

based on a more stringent FDR < 0.01 (see Supplementary Methods Section 3.13).    

 

3.12 Missing value imputation  

For algorithms that could not handle missing values in the data—e.g., k-means 

clustering, marker selections using SAM85 and GSEA18— missing values were imputed 

using k-nearest neighbor (k-NN) imputation86. The imputation method was implemented 

in the pamr prediction analysis for microarrays87 R library. 

When using k-NN based missing value imputation, proteins and phosphosites with more 

than 50% missing data were excluded in order to ensure that the algorithm had enough 

data to derive sensible imputed values. 

 

3.13 Differential marker selection, gene-set enrichment analysis, and 

identification of mutated tumors with PIK3CA- or TP53-mutation phosphosite 

signatures  

SAM85, implemented using the samr R package, was used to identify differentially 

expressed proteins and phosphosites for PAM-50 subtypes; Proteome clusters; ER+ vs. 

ER- samples; PR+ vs. PR- samples; and samples with mutated genes vs. un-mutated 

genes for PIK3CA, TP53, GATA3 and others (with at least 5 mutated samples). 

For multi-class distinctions like PAM50 subtypes and proteome clusters, one-vs-all 

marker selection was performed in addition to true multi-class marker selection. For all 

binary comparisons — intrinsic (e.g., ER+ vs. ER-) or one-vs-all (e.g., basal vs. other) — 

pathway enrichment analysis was executed using GSEA and the Fisher exact test with 

the MSigDB C2 (curated gene sets) pathway database18 augmented with kinase and 

phosphatase substrates. For the Fisher exact test, markers derived from SAM with FDR 

< 0.1 were used. Enrichment of selected pathways (FDR < 0.01) in RNA, proteome and 

phosphoproteome are shown in Fig. 3c. A more comprehensive heatmap of all pathways 

tested is shown in Extended Data Fig. 7. 

Since both SAM and GSEA required data with no missing values, missing values were 

imputed for the proteome and phosphoproteome input data, starting with 

proteins/phosphosites with not more than 50% missing data (see Missing value 

imputation above). 

To call the activation status of PIK3CA- and TP53-mutated tumors (Extended Data Fig. 

9a and c), the average of all marker phosphosites was calculated for each mutated and 

not mutated tumor. Using this average marker signal, a 95% prediction confidence 



   

interval (CI) was calculated for all not mutated tumors. Tumors with average signals 

above this prediction CI were regarded as having an activated phosphosite marker set.  

For single sample GSEA analysis of phosphorylation signatures derived of PIK3CA and 

TP53 mutant isogenic cell lines (Extended Data Fig. 9b and d), phosphosite signatures 

were generated by selecting all phosphosites with z>3 in standardized Log2 mutant/wt 

ratio datasets. These phosphosignatures were then used in a rank-based single sample 

GSEA test to determine their enrichment in mutated/wt tumor ratio data (Supplementary 

Table 18). 

3.14 Copy number correlation and Connectivity Map analysis  

Correlations between copy number alterations (CNA) and mRNA, proteome, and 

phosphoproteome were determined using Pearson correlation of common genes present 

in CNA-mRNA-proteome (7,776 genes) and CNA-mRNA-phosphoproteome (4,466 

genes). In addition, p-values (corrected for multiple testing using Benjamini-Hochberg 

FDR) for assessing the statistical significance of the correlation values were also 

calculated. CNA trans-effects for a given gene were determined by identifying genes (in 

mRNA) or proteins/phosphoproteins with statistically significant (FDR<0.05) positive or 

negative correlations. 

Candidate genes driving response to copy number alterations were identified using 

large-scale Connectivity Map (CMAP) queries. The CMAP20,22 is a collection of about 

476,000 gene expression profiles from cell lines treated with bioactive small molecules 

(~20,000 drug perturbagens), shRNA gene knockdowns (~3,800) and ectopic 

expression of genes.  

To identify candidate driver genes, proteome profiles of copy number-altered samples 

were correlated with gene knockdown mRNA profiles in the CMAP, and enrichment of 

up/down-regulated genes was evaluated. Normalized log2 copy number values less than 

-0.3 defined deletion (loss), and values greater than +0.3 defined copy number 

amplifications (gains). In the copy number-altered samples (separately for CNA 

amplification and CNA deletion), the trans-genes (identified by significant correlation, 

above) were grouped into UP and DOWN categories by comparing the protein ratios of 

these genes to their ratios in the copy number neutral samples (normalized log2 copy 

number between -0.3 and +0.3). The lists of UP and DOWN trans-genes were then used 

to query the CMAP “gold” signatures to find enriched knockdown expression profiles 

(with mean rank point in the top or bottom 10 percentile for 4 or more cell lines, i.e., 

|mean_rankpt4| > 90).  

For a gene to be considered for inclusion in a CMAP query it needed to i) have a copy 

number change (amplification or deletion) in at least 15 samples; ii) have at least 

significant 20 trans genes; and iii) be on the list of shRNA knockdowns in the CMAP. 539 

genes satisfied these conditions and were tested for enrichment. Genes with CMAP-

enriched cis effects were considered candidate driver genes if both the CNA 

amplification and deletion profiles were enriched, with a positive score for deletion (i.e., 



   

the gene shRNA knockdown profile correlated with the CNA deletion proteome profile) 

and a negative score for amplification. 

FDR Assessment. FDR is expressed as the expectation of the false positive (#𝐹𝑃) to 

total positive (#𝑃) ratio: 

𝐹𝐷𝑅 = 𝐸 (
#𝐹𝑃

#𝑃
) =

𝐸(#𝐹𝑃)

#𝑃
 

The number of enriched genes (#𝑃) was fixed based on the CMAP enrichment results. 

The number of false positives was estimated using a permutation-based approach. The 

set of 502 genes was re-tested for CMAP enrichment using randomly chosen trans 

genes. The trans genes were sampled from the entire set of 7,776 genes, and for each 

of the 502 genes, the number of randomly chosen trans genes was identical to the 

original number of trans genes. The permuted dataset was tested for CMAP enrichment 

in a manner identical to the actual data, and the number of “enrichments” recorded. This 

process was repeated 𝑛 times, and the results used to estimate the expected number of 

false positives.  

Due to the compute-intensive nature of this permutation approach, we used 𝑛 = 6. Each 

permutation run was treated as a Poisson sample with rate 𝜆. Given the small 𝑛 and 𝜆, a 

Score confidence interval was calculated88 and the mid-point of the confidence interval 

used to estimate expected number of false positives. This approach yielded a FDR of 

0.049, with #𝑃 = 10, and a 95% confidence interval of (0.003, 0.094). 

To identify how many trans-correlated genes for all candidate regulatory genes could be 

directly explained by gene expression changes measured in the LINCS shRNA 

perturbation experiments, the following procedure was used: Knockdown gene 

expression consensus signature z-scores (knockdown/control) were downloaded from 

the LINCS database and standardized. MCF7 breast cancer cells, and three other cell 

lines that correlated best to the MCF7 data, were selected for further analysis. To 

identify common effects across these four cell lines, all Affy ID measurements were 

filtered out that were outside a 99.9% prediction confidence interval of the average 

signal across 4 cell lines, and significantly changing Affy IDs were identified by using a 

moderated T-test at a FDR<0.189. These knockdown-affected Affy IDs were directly 

compared to trans correlated gene sets identified in the human breast tumors. In cases 

where Affy ID to gene name mapping was redundant, LINCS landmark genes were 

given priority over inferred genes, since landmark genes were directly measured. 

 

3.15 Outlier Kinase Analysis  

Log2 normalized phosphosite data from all samples was first filtered to include only 

phosphosites with less than 81 missing values.  Subsequently, distributions for each 

phosphosite across all samples were calculated and aberrantly activated kinases were 

identified as those with normalized phosphosite expression above 1.5 interquartile 



   

ranges (IQR) from the median.  The outlier phosphopeptides were then correlated to 

their outlier status in DNA, RNA and protein expression within each sample.  Outlier 

status in RNA and protein in each sample were also determined to be normalized 

expression greater than 1.5*IQR above the median for each data type, and the threshold 

for gene amplifications was set at log absolute copy number larger than 1. Outlier 

phosphosites were collapsed at the protein level for each sample, so samples having at 

least one outlier phosphosite for a protein were considered to have aberrant kinase 

activity. These aberrant kinases were then classified as either being associated with an 

amplification event in the associated gene (aberrant kinase expression explained by 

gene amplification in > 30% of samples) or not associated with a gene amplification 

(aberrant kinase expression explained by only kinase activity in > 50% of samples).   

 

3.16 Phosphoproteome-based Ischemia Score 

To assess the extent of ischemia experienced by the TCGA tumor samples that were 

analyzed in this experiment, a phosphoproteome-based ischemia score was developed 

with a scoring strategy adapted from the Estimate tumor purity score14. Single sample 

gene set enrichment analysis (ssGSEA) was used to calculate normalized enrichment 

scores (NES) for phosphosite signatures derived from a previous study on the effects of 

delayed freezing (or cold ischemia) on the stability of the phosphoproteome in xenograft  

and primary tumors15. In this earlier study, 137 phosphosites were found to be up-

regulated after up to 1 hour of cold ischemia and 21 sites were down-regulated following 

1 hour of ischemia in basal-like and luminal breast cancer xenograft tumors. These 

signatures were termed the ischemiaUp and the ischemiaDOWN phosphosite-sets. 

Testing for enrichment of these phosphosite-sets in each individual CPTAC tumor 

phosphoproteome dataset resulted in normalized enrichment scores for each 

phosphosite set and tumor sample. The combination of up- and down-scores is referred 

to as the ischemia score for each individual tumor sample (see Extended Data Fig. 3f).  

In detail, 76 of the 137 up-regulated sites and 16 of the down-regulated sites were found 

in over 90% of the CPTAC tumor samples analyzed in this experiment. All CPTAC 

phosphosite ratios were normalized to a breast cancer xenograft common reference via 

a PDX-to-human reference control experiment that is described in Huang et al. (study in 

preparation). The CPTAC tumors, in general, were found to have lower ischemia scores 

than the PDX samples that were subjected to only 30 min cold ischemia.  The median 

ischemia scores are less than 30 minutes for each subtype and no significant differences 

were observed across subtypes. Therefore, effects due to cold ischemia appear to be 

negligible in this CPTAC sample collection.   

 

3.17 Generation of proteogenomic Circos-like29 plots (“Pircos” plots)  

“Pircos” plots were created by first selecting for samples with copy number amplifications 

in 17q (ERBB2>1, 17 samples) or 11q (PAK1>1, 8 samples).  Median CNA, RNA, 

protein and phosphosite expression across amplified samples were plotted in a Circos 



   

plot29 with red indicating increased expression (≥1), blue decreased expression (≤-1) and 

grey median expression between -1 and 1.  Labeled genes are those with both CNA 

amplification >1 and at least one phosphosite with expression >1.     

 

3.18 Reversed Phase Protein Array analysis  

Reversed Phase Protein Array (RPPA) data was obtained as previously described1 for 

the 77 breast cancer samples. For each RPPA antibody protein target, Pearson 

correlations and associated p-values were calculated for MS/MS-RPPA and mRNA-

RPPA expression pairs across all samples.   For RPPA antibodies targeting specific 

phosphosites, comparisons within the associated phosphopeptide were completed 

through Pearson correlation calculations for the phosphopeptide-RPPA 

phosphoantibody abundance pairs. All comparisons were completed using Log2 

normalized data.   Antibodies were labeled as “Validated” and “Use with Caution” based 

on the degree to which they had been validated, as previously designated1,90.   

 

3.19 Joint Random Forest (JRF) co-expression network analysis  

To investigate interaction patterns among proteins and genes, co-expression network 

analysis was performed based on the global proteomics data and RNA-seq data of the 

77 study samples. Specifically, the top 15% genes and the top 15% proteins expressions 

of which have the largest interquartile range across the 77 samples were selected. 

Focus was then directed to the 680 genes/proteins appearing in both sets. For genes 

with more than one protein expression measurement (e.g. genes with multiple isoforms), 

the measurement with the highest interquartile range was chosen. This resulted in two 

680 x 77 data matrices, one for gene expression and the other for protein expression. 

Since co-expression patterns among genes and proteins share common structures, it 

was more efficient to build the two co-expression networks jointly, enabling information 

to be shared across the two data sets and thereby leading to more accurate estimation. 

Such joint learning was especially helpful in this case due to the limited sample size. For 

this purpose JRF25, a random-forest based algorithm for joint estimation of multiple 

related networks based on data from different classes, was utilized. As previously 

demonstrated25, compared to alternative published methods, JRF can detect common 

edges across classes with better power, and detect differential edges specific to 

individual classes with fewer false positives. 

 
For simplicity, networks based on protein and gene expression data were referred to as 

protein-network and gene-network, respectively. For each target gene/protein k, JRF first 

modeled its expression as a function of the expression of all other genes/proteins via 

random-forest. This estimation process was done simultaneously for gene and protein 

expression data. In particular, the gene and protein tree ensembles used the same set of 

predictors to recursively split observations in a tree fashion. This procedure enabled JRF 

to borrow information across different data types, so that predictors with both gene and 



   

protein expressions associated with the target feature (gene or protein) k would be more 

likely to participate in the tree construction. After random-forest models were 

constructed, for each gene j in the random-forest model for gene k, JRF returned an 

importance score, 𝐼𝑔𝑗→𝑘, which was the sum of node impurities across all nodes utilizing 

gene j for splitting rules divided by the total number of trees. In other words, 𝐼𝑔𝑗→𝑘 

measured the overall contribution of gene j in predicting gene k. Furthermore, 𝐼𝑔𝑗−𝑘, the 

measure of strength for undirected edge 𝑗 − 𝑘 in the gene-network, was derived as the 

average of 𝐼𝑔𝑗→𝑘 and 𝐼𝑔𝑘→𝑗.  In parallel, edge strengths of the protein-network, {𝐼𝑝𝑗−𝑘}, 

were calculated in the same way based on the protein data.  

 
When applying JRF, the total number of trees was set equal to 1,000 and the number of 

variables sampled at each node equal to √𝑝 −1 with p=680. We then calculated the 

FDR of importance scores as described25 based on 400 permutations. Ultimately a 

threshold FDR of 1e-04 was used to derive the final networks. Extended Data Fig. 8e 

and 8f show the network topologies for protein and gene networks. The total number of 

shared edges across the two networks was 792, while the numbers of class-specific 

edges were 693 and 480 for protein and gene network, respectively. Next to each 

module, Extended Figure 8e shows a pie-plot indicating the proportion of shared (green) 

and proteomics-specific (grey) edges. It is apparent that the protein network contains 

many class-specific network modules, such as P1, P2 and P3, which contain more 

protein-specific than shared edges. P1 was the protein-specific module selected for 

further investigation (Extended Data Fig. 8c and d). P3, which is enriched with members 

from Fibroblast growth factor receptors (FGFRs), was identified as another interesting 

protein-specific module, as FGFRs are well known to be involved in oncogenesis and 

can be potential targets for breast cancer therapy91. The fact that P3 is a protein-specific 

module suggests the activities of FGFRs in this module may involve post-translational 

modification. These and other co-expression results help demonstrate the 

complementarity of proteomic to genomic data and their joint utility in revealing important 

biological mechanisms.      

 

3.20 Kinase-phosphosites regulatory network analysis   

To study the regulatory pattern between kinases and substrates, and to identify 

important hub kinases that regulate a large number of phosphoproteins, regularized 

multivariate regression for master predictors (remMap)92 was used to jointly model 

kinase expression and phosphopeptide expression.  The analysis focused on outlier 

kinases (see Supplementary Methods, “Outlier Kinase Analysis”) that were observed in 

more than 80% of the samples. Abundance profiles of these kinases were obtained by 

subsetting the preprocessed global proteomics data.  The top 20% of phosphosites that 

had the largest inter-quantile length and were observed in more than 80% of the 

samples were selected, yielding 2,809 phosphopeptides. remMap was applied to study 

the dependencies of abundance changes of these 2,809 phosphopeptides on activities 

of the 227 outlier kinases. Specifically, abundances of phosphopeptides were treated as 



   

responses and abundances of kinases were treated as predictors. Non-zero coefficients 

in the multivariate regression model estimated by remMap suggested regulatory 

relationships between the corresponding kinase and phosphopeptide. The tuning 

parameters in remMap were set to be (L1, L2) = (20, 6) based on 10-fold cross 

validation.  An interaction between a kinase and a phosphopeptide was declared if the 

corresponding coefficients in the regression models were non-zero in at least 5 out of 

the 10 cross-validation models. The resulting network contained 12,103 interactions 

involving 208 kinase proteins and 2,741 phosphosites. 

 

3.21 Code availability   

Gene Set Enrichment Analysis (www.broadinstitute.org/gsea), GENE-E 

(http://www.broadinstitute.org/cancer/software/GENE-E), and CMAP 

(http://www.lincsproject.org) are publicly available analysis tools.  All other analyses 

including those for CMAP queries used purpose-built shell scripts and code in the R 

programming language.  Code is available upon request.  

 

3.22 Proteogenomic Data Browsers 

Two browsers have been created to assist the interested reader in exploring the results.   

I. The first provides track hubs for viewing the identified peptides in the UCSC genome 

browser, enabling exploration of the results on the peptide level and comparing to 

genomic and transcriptomic data (http://fenyolab.org/cptac_breast_bed). The track hubs 

were constructed by mapping the identified peptides back to the genome with PGx93 

using the RefSeq genome mapping. The corresponding BED and BedGraph files are 

also available for download. The corresponding BED (mapped peptides) and BedGraph 

(iTRAQ quantitation) files are also available for download so that users preferring to view 

the data in another genome viewer or using it for computational analysis. Questions 

regarding this browser should be addressed to info@fenyolab.org.  

Using the tracks: Tracks are provided for each sample and also summarizing the 

information for each subtype. By clicking on the links on 

http://fenyolab.org/cptac_breast_bed to these track hubs, the UCSC Genome Browser 

will open in a separate tab displaying the peptides mapping to the genome. The default 

location shown is ERBB2 but the user can change the view to any location in the 

genome. The overview hub provides tracks showing all peptides identified and peptides 

identified in samples in the different subtypes (Basal, HER2, Luminal A, Luminal B and 

the normal samples) followed by the same tracks for phosphopeptides totaling 12 tracks 

showing the peptide mapping. Below these tracks are the 12 corresponding tracks 

showing the iTRAQ quantitation information. The user can utilize the full functionality of 

http://www.broadinstitute.org/gsea
http://www.broadinstitute.org/cancer/software/GENE-E
http://www.lincsproject.org/
http://fenyolab.org/cptac_breast_bed
https://urldefense.proofpoint.com/v2/url?u=http-3A__fenyolab.org_cptac-5Fbreast-5Fbed&d=CwMF-g&c=j5oPpO0eBH1iio48DtsedbOBGmuw5jHLjgvtN2r4ehE&r=N7V5LPDU_tfStkfAe3R2NOSnDrUsJh_DJho04IyIiRk&m=jlHw7ucpHSpX3wf2DtY25hIDKttF2FSnfdhap7PxvLc&s=8AF8-7d7VwVgDhCgG2Ifv6XDQC2oC2bsx5exllYPaWk&e=


   

the UCSC Genome Browser to view the proteomic data in a genomic context. The 

subtype specific track hubs shows the mapping and iTRAQ quantitation for the global 

and phosphoproteome for each sample.  

 

II. The second tool is an online application that enables researchers to query the dataset 

with genes of interest and to retrieve publication-ready graphical representations of the 

quantitative data, similar to the heatmap shown in Figure 1c. The underlying data 

comprises quantitative information on copy number alterations, RNA-Seq expression 

and MS- and RPPA-based protein and phosphosite expression of a total of 16,826 

genes across the 77 tumors passing QC and three normal breast samples. The different 

data tracks are labeled as follows: “CNA” – categorized gene copy numbers ((CNA 

(Log2)-1 categories: x≤(-1) is “Deletion”, (-1)<x≤(-0.3) is “LOH”, (-0.3)<x<0.3 is “Neutral”, 

0.3≤x<1 is “Gain”, 1≤x is “Amplification”); “RNA-Seq” – RNAseq data (see 3.4) was z-

scored across each sample; “MS Protein” – median iTRAQ ratio of all detected peptides 

of that protein; “MS pSite” – most frequently detected and differentially abundant 

phosphosite iTRAQ ratio of selected gene; “RPPA Protein”, “RPPA pSite” – 

protein/phosphosite expression derived from RPPA (“rppaData-403Samp-171Ab-

Trimmed.txt” dataset downloaded from https://tcga-

data.nci.nih.gov/docs/publications/brca_2012/). Clinical annotation data (PAM50, Her2, 

PR, ER status) are shown as separate tracks on top of the heatmap (Supplementary 

Table 1). Besides the graphical representation of a particular set of genes, researchers 

can export the corresponding expression data together with the clinical annotation in 

Excel-format and use the information in their own analysis.  

 

Using the viewer:  The application can be accessed via the following link: http://prot-

shiny-vm.broadinstitute.org:3838/BC2016/. The user interface is a simple text input field 

that can be used to enter or to paste official gene symbols (e.g. ERBB2) of the genes of 

interest. Lists of up to 20 genes can be pasted into the text field in comma-, semicolon- 

or space-separated form. All matching gene symbols in the dataset will be used to 

generate the data figure.  If none of the entered gene symbols can be matched to the 

dataset a corresponding message will be shown and the user can specify another gene 

list. Using the download buttons for pdf and Excel files the figures and data tables can 

be transferred to a local computer.  To row normalize the visualized data, choose the z-

score option in the viewer window. 

 

 

 

  

http://prot-shiny-vm.broadinstitute.org:3838/BC2016/
http://prot-shiny-vm.broadinstitute.org:3838/BC2016/


   

4. Supplementary Table Legends   

 

Supplementary Table 1: CPTAC breast cancer sample annotation.  

 

Supplementary Table 2: CPTAC/TCGA histopathology annotation.  

 

Supplementary Table 3: CPTAC global proteome analysis.  

Tab “Global-Proteome-G1” contains a table of protein iTRAQ log2 ratios for 111 

samples (105 tumors + 3 tumor replicates + 3 normal breast samples). Both QC-passed 
and QC-failed samples are included. The protein expression is normalized (see 
Supplementary Methods, "Normalization"). Tab “Global-Proteome-G3” contains a table 

of protein iTRAQ log2 ratios for the 83 QC-passed samples (77 tumors + 3 tumor 
replicates + 3 normal breast samples). The protein expression is normalized (see 
Supplementary Methods, "Normalization"). See Extended Data Figure 1b for a dataset 
overview. 
 

Supplementary Table 4: CPTAC global phosphoproteome analysis.  

Tab “Phosphoproteome-P1” contains a table of phosphosite iTRAQ log2 ratios for 111 

samples (105 tumors + 3 tumor replicates + 3 normal breast samples). Both QC-passed 
and QC-failed samples are included. The phosphosite abundance is normalized (see 
Supplementary Methods, "Normalization"). Dataset “Phosphoproteome-P3” is 
available at the CPTAC data portal.  
 

Supplementary Table 5: Proteogenomic identification of Single Amino Acid 

Variants (SAAVs) and altered transcripts.  

Tab “Variants” contains all identified SAAVs. Tab “SpliceIsoforms” contains all novel 

splice isoforms. Tables of proteogenomic event levels show iTRAQ log2 expression 
ratios for 108 samples (105 tumors + 3 tumor replicates). Both QC-passed and QC-failed 
samples are included. 
 

Supplementary Table 6: Quantification comparison of TCGA Reversed Phase 

Protein Array (RPPA) data to RNA-seq, MS protein and MS phosphosite data. 

 

Supplementary Table 7: Identification and sensitivity comparison of TCGA 

Reversed Phase Protein Array (RPPA) data to MS protein and MS phosphosite 

data. 

 

Supplementary Table 8: Correlation of E3 ligases to p53 protein level.  

Pearson correlation of TP53 protein abundance compared to 9,988 other proteins across 
77 CPTAC samples. All p-values were Benjamini-Hochberg corrected. 
 



   

Supplementary Table 9: mRNA-to-protein correlation analysis.  

Pearson correlation of RNA-seq to protein abundance for 9,302 genes across 77 
CPTAC samples. All p-values were Benjamini-Hochberg corrected. 
 

Supplementary Table 10: CNA-to-mRNA/protein/phosphoprotein correlation in cis 

and trans.  

Pearson correlation of CNA to RNA-seq/protein/phosphoprotein data.  All p-values were 
Benjamini-Hochberg corrected.  
 

Supplementary Table 11: LINCS analysis of candidate regulatory genes in CNA 

regions.  

Tab “LINCS-enrichment” contains LINCS enrichment results for CNA amplification 

(“CNAAMP”) and CNA deletion (“CNADEL”) (see Supplementary Methods, "Copy 
number correlation and Connectivity Map analysis"). Tab “LINCS-zscores” contains 
LINCS z-scores of shRNA knockdown experiments for the 10 genes shown in Fig. 2c. 
Common effects across four cell lines were identified using a moderated t-test analysis 
(Benjamini-Hochberg corrected p-values shown). Common significant knockdown effects 
were compared to trans correlation events observed in human tumors for the same 
genes. 
 

Supplementary Table 12: Enrichment of RNA and RPPA subtypes in proteomic 

subtypes  

Fisher exact test p-values are shown. 
 

Supplementary Table 13: Pathway enrichment analysis for breast cancer 

proteome clusters.  

Table of pathway enrichment using the Fisher exact test (Benjamini-Hochberg corrected 
p-values are shown). Genesets from the MSigDB C2 (curated pathways) set were tested 
for enrichment in each proteome cluster (clusters 1, 2 and 3) for 
RNA/protein/phosphoprotein marker genes (see Supplementary Methods, "Differential 
marker selection and gene-set enrichment analysis"). 
 

Supplementary Table 14: Pathway enrichment scores for breast cancer 

phosphoproteome data.  

Single sample GSEA analysis on phosphoproteome data was performed to obtain 

normalized enrichment scores over 908 curated (MSigDB c2) pathways with at least 10 

overlapping genes. 

 

Supplementary Table 15: Phosphoprotein marker analysis for phosphoproteome 

pathway clusters.  

Median phosphoprotein iTRAQ ratios were calculated across all phosphosites for each 

phosphoprotein. Tabs “Cluster1-4” contain all phosphoprotein markers detected by SAM 

across the entire set of 77 tumors and replicates. Markers for each cluster were 



   

determined by comparing differential markers for a given cluster versus all other 

clusters. Compare to Fig. 3d. 

 

Supplementary Table 16: RemMap kinase to phosphosite network analysis.  

This table contains all kinase-to-phosphosite connections identified by multivariate 
RemMap regression analysis (see Supplementary Methods, “Kinase-phosphosites 
regulatory network analysis”). 
 

 

Supplementary Table 17: JRF co-expression network analysis.  

Tab “JRFnetwork” contains the list of JRF edges and a column indicating if the edge is 

shared across the two networks (“Common”) or is network-specific (“RNA-seq” or 
“Protein specific”). Tab “P1-module” contains all network edges shown in Extended 

Data Fig. 8c. 
 

Supplementary Table 18: PIK3CA- and TP53-mutation phosphosite markers in 

human tumors and phosphoproteome signatures of isogenic mutated cell lines.   

Tab “PI3K_SAM” contains all phosphosite markers detected by SAM across all luminal 
tumors and the entire set of 77 tumors and tumor replicates. Tab “PI3K_isogenic-
signatures” contains all PIK3CA mutation phosphosite-sets tested for enrichment in 
CPTAC data. Tab “TP53_SAM” contains all phosphosite markers detected by SAM 

across all luminal tumors and the entire set of 77 tumors and tumor replicates. Tab 
“TP53_isogenic-signatures” contains all TP53 mutation phosphosite-sets tested for 

enrichment in CPTAC data. 
 

Supplementary Table 19: Kinase outlier analysis summary table.  

The table contains 4 tabs for CNA, RNA, Protein, and Phosphosite outlier status of 684 
kinase genes curated from MSigDB, EntrezGene, Kinase.com and interpro domain 
annotations. Only genes that had an outlier in at least one data type were included in the 
table. 
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