
S1 Table. Variability of relative peak sizes in microelectrode-recorded CC CAPs.   
Variability of relative sizes of two major negative peaks, N1 and N2 (myelinated and non-myelinated, 
respectively) in published compound action potentials (CAPs) recorded with field microelectrodes in 
mouse and rat corpus callosum 

Species N 1 > N 2 N1 ≈ N2 N1 < N2 

M
ic

e 

Crawford et al 2009a[1]  
Fig 1, d=2mm  
21–23oC***** 
ME: 3M NaCl, 1-3 MΩ 

Crawford et al 2009b[2] 
Fig 3Bi,Ci, d=2mm  
?oC NA 
ME: 3M NaCl, 1-3 MΩ 

Baltan-Tekkok & Ransom 
2004[3] 
Fig 3**, d=2mm 33.5oC 
ME: 2M NaCl 

Crawford et al 2009b[2] 
Fig 2,3Ai, d=2mm  
21–23oC 
ME: 3M NaCl, 1-3 MΩ 

Patel et al 2013[4] 
Fig 1, d=2mm  
21–23oC? 
ME: 3M NaCl 

Crawford et al 2009a[1] 
Fig 2,3,4, d=2mm  
21–23oC***** 
ME: 3M NaCl, 1-3 MΩ 

Sahel et al 2015[5] 
Fig 7D, d=?****  
33oC? 
ME: glass pipette, no details 

Tekkok et al 2005[6] 
Fig 1**, d=?  
33oC 
ME: 2M NaCl 

Patel et al 2013[4] 
Fig 1, d=2mm  
21–23oC? 
ME: 3M NaCl 

 Ruff et al 2013[7] 
Fig 5, d=?*¶¶  
21–23°C 
ME: 150 mM NaCl 

Ritter 2012[8] 
Fig 21, d=2mm  
?oC NA 
ME: ACSF, 1 MΩ 

 Corcoba et al 2015 [9] 
Fig 4, d=0.7 mm 
28°C 
ME: ??? 

Tekkok & Goldberg 
2001[10] 
Fig 2**, d=? 33oC 
ME: 2M NaCl 

  Tekkok et al 2005[11] 
Fig 2**, d=?  
33oC 
ME: 2M NaCl 

   Ziskin et al 2007 [12] 
Fig 7, d=0.4..1.8mm  
37 oC 
ME: ACSF, 1.5-2.5 MΩ 

  Olmos-Serrano et al 2016 
[13] 
Fig 6; d= varied4-point 
recording;  
25oC 
ME: ???. 1 MΩ 

 
 
 
 

See next page for rat corpus callosum 
 

 



Species N 1 > N 2 N1 ≈ N2 N1 < N2 
Ra

ts
 

DiLeonardi et al 2012[14] 
Fig 1,2***, d=1mm  
?oC NA 
ME: ACSF? 6-8 MΩ? 

Baker et al 2002[15] 
Fig 1,2, d=1 mm  
36–37oC 
ME: 150 mM NaCl, 2-3 MΩ  

Colley et al 2010[16] 
Fig 1,2,4,5,6, d=1mm  
22-23oC****** 
ME: ACSF? 6-8 MΩ? 

Park et al 2011[17] 
Fig 6, d=0.75mm  
?oC – NA 
ME: 150 mM NaCl, 2-3 MΩ 

Colley et al 2010[16] 
Fig 3, d=1mm  
22-23oC****** 
ME: ACSF, 6-8 MΩ 

Preston et al 1983[18] 
Fig 1C*,3B, 4A,4C, 
d=3.3mm 37oC - in vivo 
ME: 20-30 um, 0.5% agar 
in Ringer solution 
 

Preston et al 1983[18] 
Fig 1C*, d=3.3mm  
37oC - in vivo 
ME: 20-30 um, 0.5% agar in 
Ringer solution 

Preston et al 1983[18] 
Fig 1C*, d=3.3mm  
37oC - in vivo 
ME: 20-30 um, 0.5% agar in 
Ringer solution 

 Reeves et al 2005[19] 
Fig 1,2, d=1mm  
23oC*¶ 
ME: ACSF, 6-8 MΩ 

Zhang et al 2013[20] 
Fig 5, d=1-1.5mm  
30oC 
ME: 2M NaCl, 1-4 MΩ 

Reeves et al 2005[19] 
Fig 3, d=1mm  
23oC*¶ 
ME: ACSF, 6-8 MΩ 

Reeves et al 2012[21] 
Fig 3,4, d=1.0–1.5mm  
22–23°C 
ME: ACSF, 2-8 MΩ 

 Reeves et al 2012[21] 
Fig 4, d=1.0–1.5mm  
22–23°C 
ME: ACSF, 2-8 MΩ 

Schultke et al 2005[22] 
Fig 3, d=1mm  
37oC ("body temperature") 
ME: 150 mM NaCl, 2-3 
MΩ 

  Swanson et al 1998[23] 
Fig 2,3, d=2-3mm  
35oC 
ME: ACSF, 0.8-1.5 MΩ 

* Depending on position of recording microelectrode - rat cc in vivo (also has an N3 peak (Preston et al 
1983 - Fig 1C[18]) - conduction distance 3.3 mm.  

** Peak polarities apparently reversed   

*** Immature rat. Good separation from stimulus artifact, despite 1 mm distance 

**** Two stimulating electrodes, monopolar tungsten; Vc = D1-D2/L 

***** Discussion: "... the short latency component, N1 in the biphasic callosal CAP was obscured by the 
stimulus artifact when the ACSF was near physiological temperature (35–37 ◦C) as previously confirmed 
by Reeves et al. (2005). When the recordings were performed with the ACSF at room temperature (21–
23 ◦C), conduction was slowed enough to allow separation of the N1 component from the stimulus 
artifact. All subsequent recordings in our lab have been performed with the ACSF at room 
temperature.." ..." The CAP recordings at room temperature allow the separation of stimulus artifact 
from the fast conducting myelinating N1 component that is lost if the recordings are performed at 35–
37 ◦C (Baker et al., 2002; Reeves et al., 2005)."  

****** "Electrophysiological recording was conducted with slices at room temperature (22–23 °C), 
based on previous findings that this range was optimal for separate quantification of the myelinated and 
unmyelinated CAP components (Reeves et al., 2005)". 



*¶ "During initial recording sessions, it was determined that the short-latency component (N1) in the 
biphasic callosal CAP was obscured by the stimulus artifact, when the bath temperature was near 
physiological (36oC) temperature. Quantification of N1 was facilitated by lowering the bath temperature 
to 23oC, slowing conduction sufficiently to allow separation of this waveform component from the 
stimulus artifact (Fig. 1C). Accordingly, the subsequent evaluation of the effects of injury on the callosal 
CAPs was conducted at 23oC." 

*¶¶ two-microelectrode recording for measuring conduction velocity 
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