
A Maximum Likelihood Estimation as a Joint GLM

Recall that maximizing likelihood for the full data set means maximizing

`(θ) =
∑
k

`k,PA(αk, βk) + `k,PO(αk, βk, γk, δ), (23)

where

`k,PA(αk, βk) =
∑
i∈IPA

−yik log
(

1− e− exp{αk+β′
kxi}

)
+ (1− yik) exp{αk + β′kxi}

(24)

`k,POk(αk, βk, γk, δ) ≈
∑

i∈IPOk

(αk + β′kxi + γk + δ′zi)−
∑
i∈IBG

wie
αk+β′

kxi+γk+δ′zi (25)

In this section we discuss how to massage (23) into a large GLM in terms of a common
set of m(p + 2) + r predictors and coefficients. For the moment, we ignore the sum over
IPOk in (25) and deal with the other two sums. The sum in (24) is the log-likelihood for
a Bernoulli GLM with complementary log-log link and the sum over IBG in (25) is the
log-likelihood for a weighted Poisson GLM with log link.

Note that at each survey site we have m presence-absence observations, one for every
species. Similarly, we will introduce one “dummy” response yik = 0 for each species k at
each background site i, for m(nPA + nBG) total observations. For observation ik, introduce
auxiliary indicator variables

uik1,k2 =

{
1 k1 = k2

0 otherwise
(26)

vik =

{
1 i ∈ IBG

0 otherwise
(27)

The variable uk allows parameters to vary by species. For example, αk is the coefficient for
uk and βk,j is the coefficient for the interaction xjuk. The variable v gives us bias terms
that apply only to terms in the presence-only likelihood. Thus γk is the coefficient for ukv
and δj is the coefficient for zjv.

For example, the linear predictor for count or presence-absence for species k at a survey
site with predictors x and z is

αk + β′kxi =
∑

1≤h≤m

(αhuik,h + β′hxiuik,h + γhuik,hvik) + δ′zivik, (28)

using v = 0 because we are predicting for presence-absence data.
To check the proportional bias assumption for variable zj — that is, to check the as-

sumption that δj should be the same for every species — we can augment the model with
interactions zj∗k = ukzj for each k, and test the hypothesis that each of those variables has
no effect on the regression.

Let XPA denote the nPA × p matrix with all x variables for all the survey sites, and let
XBG and ZBG denote all the x and z variables for all the background sites. Then if

X =

(
1 XPA 0
1 XBG 1

)
, Z =

(
0

ZBG

)
, (29)



our likelihood is a large weighted GLM with m(nPA + nBG) observations and overall design
matrix

X =


X 0 · · · 0 Z
0 X · · · 0 Z
...

...
. . .

...
...

0 0 · · · X Z

 , and coefficients θ =


θ1

...
θm
δ

 . (30)

The weights are wi for rows corresponding to background site i, and 1 for presence-absence
sites. Note that the response family and link function are different for different rows.

Turning to the sums over IPOk in (25), note that they are linear in the coefficients, so all k
sums can be combined to obtain a single linear term of the form θ′M . All the parameters may
be estimated simultaneously via a slight modification of iterative reweighted least squares
that takes into account the m linear terms.

A.1 Iterative Reweighted Least Squares Using Block Structure

Let n = nPA + nBG. X has mn rows and m(p+ 2) + r columns. In principle, we could form
the matrix X and use standard GLM software to fit the model, but we would pay a very
high computational price for estimating multiple species at a time.

The main computational bottleneck in each iteration is solving a large weighted linear
least-squares problem with mn equations (one per species per site) and m(p + 2) + r un-
knowns. The update for step t requires solving a weighted linear least-squares problem with
row weights W (t) = diag

(
w(t)

)
and working responses u(t):

min
θ

∥∥∥W (t)
(
Xθ − u(t)

)∥∥∥2

2
. (31)

Solving a completely general problem of the form (31) would require O(m3np2 + mnr2)
floating point operations. Fortunately, we can store and compute much more cheaply if we
exploit the special block structure of X.

Our computational scheme relies heavily on the following well-known and highly useful
lemma:

Lemma 1 (Partitioned Least Squares). Consider the least-squares problem

min
v

∥∥∥∥(A B)

(
v1

v2

)
− c
∥∥∥∥2

2

. (32)

Let B.A represent the matrix B with each column orthogonalized with respect to the column
space of A. Then for v∗ solving (32) we have

B.′AB.Av
∗
2 = B.′Ac = B.′Ac.A. (33)

That is, the least-squares coefficients for B may be obtained by first regressing the columns
of B on A, then regressing c on the residuals.

Proof. Let M be least-squares coefficients for regression of B on A; that is,

B = AM +B.A (34)



Then, (32) is equivalent to the least-squares problem

min
v

∥∥∥∥(A B.A)

(
v1

v2

)
− c
∥∥∥∥2

2

. (35)

To see why, note that
Av1 +B.Av2 = A (v1 −Mv2) +Bv2 (36)

so solutions to (32) and (35) are in direct correspondence with one another, with v2 = v2.
Moreover, because the two blocks in (35) are orthogonal to each other, we can solve the

problem by separately regressing c on A and on B.A to obtain v∗1 and v∗2 = v∗2.

Our proof implies further that having obtainedM and v∗2 , we can compute v∗1 = v∗1−Mv∗2 .

A.2 Least Squares with Block Structure

Suppressing the t superscript, we need to solve a least squares problem with design matrix
WX and response vector u. Writing

W =

W1

. . .

Wm

 , (37)

we have

WX =

W1X W1Z
. . .

...
WmX WmZ

 =

X1 Z1

. . .
...

Xm Zm

 . (38)

Let θ∗1 , . . . , θ
∗
m+1 be the blocks of least-squares coefficients corresponding to the column

blocks in (38). Writing WX = (X Z), Lemma 1 means that given Z̃ = Z.X , we can
efficiently solve for the coefficients θm+1 by solving the r × r system

Z̃ ′Z̃θ∗m+1 = Z̃ ′u (39)

Because X is block diagonal, the kth row block of Z̃ is Z̃k = Zk.Xk ; that is, orthogo-
nalizing Z with respect to X is equivalent to orthogonalizing each Zk independently with
respect to the corresponding Xk. After computing a single QR decomposition of Xk, we
compute and store the least-squares coefficients θk and Γk from regressing uk and Zk on
Xk. Having done this we can also compute the residuals Z̃k cheaply.

To obtain θ∗m+1 in the end, we need only keep a running tally of the quantities appearing
in (39),

Z̃ ′Z̃ =
∑
k

Z̃ ′kZ̃k, and Z̃ ′u =
∑
k

Z̃ ′kuk, (40)

and solving (39) gives θ∗m+1. Now, per Lemma (32), we can reconstruct all of θ∗ if we retain
the least-squares coefficients of u and Zk on Xk at every step. Algorithm 1 gives the full
details of the procedure.

Most of the computational will typically be spent computing the QR decompositions of
the blocks Xk. Each QR decomposition requires O(np2) operations, so that O(mnp2) total



operations are required for this step. Computing Z̃ ′Z̃ requires O(mnr2) operations. Thus
our method requires O(mn(p2 + r2)) operations, compared to O(m3np2 + mnr2) required
for the naive method. For m = 36 species with p ≈ r, for example, our method does roughly
650 times less work than the naive approach.

Our method is also lightweight with respect to its storage costs. After one block’s
computation is completed in the first for loop of Algorithm 1, we do not need to store
uk, Zk, Xk, or its QR decomposition. We need only store the p(r+1) least-squares coefficients
from each step.

Algorithm 1: Efficient Least-Squares Using Block Structure of WX
A← 0r×r;
b← 0r;
for k = 1, . . . ,m do

Compute QR decomposition of Xk;

Regress Zk on Xk to obtain Zk = XkΓk + Z̃k;

A← A+ Z̃ ′kZ̃k;

Regress uk on Xk to obtain uk = Xkθk + ũk;

b← b+ Z̃ ′kũk;

end
Solve Aθ∗m+1 = b for θ∗m+1;
for k = 1, . . . ,m do

θ∗k ← θk − Γkθ
∗
m+1;

end


