
	  

 
 
Figure S1. Related to Experimental Procedure. Putative chromosome locations of custom Beadchip SNPs. Putative 
genomic location was determined by aligning reads to FSJ genome scaffolds, which were aligned to the Zebra Finch 
genome. Here we show the number of SNPs aligned to each Zebra Finch chromosome. Chromosome 0 contains 
scaffolds that were not successfully assigned to a chromosome. 
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Figure S2. Related to Experimental Procedure and Figure 2. Comparison of different genomic estimators of 
inbreeding coefficient. Distributions of different inbreeding coefficient estimators (FPLINK, FI, FII, and FIII) and their 
relationship with pedigree-based inbreeding coefficient (Fped), average SNP homozygosity, and pairwise IBD 
between the parents for 2,087 nestlings with two genotyped parents. Correlation coefficients shown are Spearman’s 
rho.   
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Figure S3. Related to Experimental Procedure and Figure 3. Estimated standardized effect sizes of inbreeding for 
different traits. To test for autocorrelation as a confounder, we split our dataset into five groups, each containing 
samples from every five years. Estimates are provided for six models: the effect size from the original model using 
the full dataset, the combined effect size from a meta-analysis of the five subsets, and effect sizes from models using 
each of the five subsets. Error bars ± SEM. The meta-analysis results are nearly the same as the results from the full 
dataset (red dots) suggesting autocorrelation is not a confounder; therefore we report values from the full dataset in 
the main text.  
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Table S1. Related to Figure 2. The coefficient of determination for different models of mean cohort inbreeding 
levels through time. The first set of models consider the proportion of immigrant-immigrant, immigrant-resident, 
and resident-resident parents for all individuals with known-status parents and grandparents. The second set of 
models look at the number of immigrant grandparents for offspring of resident-resident pairs. 
 
 

Model R2 

Parents of all individuals  
(1) constant p & constant F -0.007 
(2) constant p & time-varying F 0.896 
(3) time-varying p & constant F 0.342 
(4) time-varying p & time-varying F 1 
  
Grandparents of resident-resident birds  
(1) constant p & constant F -0.004 
(2) constant p & time-varying F 0.747 
(3) time-varying p & constant F 0.347 
(4) time-varying p & time-varying F 1 

 

 



	  

Table S2. Related to Figure 3. Estimated standardized effect sizes for additional fixed effects in the inbreeding 
depression models. Random effects included in each model were natal year and either pair identity (for hatching 
success and day 11 weight) or natal nest (for all other models). See Table S3 for sample sizes for each model.   
 
 

Variable β SE p 
Hatching success 

   Clutch size 0.208 0.086 0.015* 
Incubation date -0.135 0.079 0.087 
 
Nestling (Day 11) weight 

   Drought index -0.193 0.041 8.3 x 10-5*** 
Number of helpers 0.084 0.027 0.002** 
Brood size -0.240 0.025 <1 x 10-12*** 
Sex 0.105 0.039 0.007** 
 
Survival from hatch to Day 11 

   Age of father 0.244 0.131 0.063 
Pair experience 0.151 0.114 0.184 
 
Survival from Day 11 to fledge 

   Nestling weight 2.706 0.398 9.94 x 10-12*** 
 
Survival from fledge to independence 

  Drought index -0.194 0.109 0.075 
Rain in previous fall 0.317 0.102 0.002** 
Hatch date -0.471 0.101 3.31 x 10-6*** 
Nestling weight 0.551 0.069 1.51 x 10-15*** 
Age fledged 0.257 0.073 0.0004*** 
Clutch number 0.330 0.160 0.0394* 
 
Survival from independence to yearling 

  Acorn abundance 0.399 0.183 0.030* 
Juvenile weight 0.202 0.101 0.045* 
Rain in previous fall 0.261 0.184 0.157 
 
Survival from yearling to breeder 

   Natal territory size 0.236 0.095 0.013* 
Natal territory time since fire -0.212 0.091 0.020* 
Juvenile weight 0.242 0.134 0.071 
Sex 0.392 0.197 0.046* 
Pair experience 0.310 0.191 0.105 
 
Combined juvenile traits 

   Survival from Day 11 to independence 
  Age of father 0.122 0.079 0.123 

Drought index -0.445 0.161 0.006** 
Rain in previous fall 0.397 0.160 0.013* 
Number of helpers 0.206 0.080 0.001** 
Hatch date -0.478 0.082 6.26 x 10-9*** 
Nestling weight 0.724 0.077 <1 x 10-12*** 
 
Survival from Day 11 to yearling 

   Drought index -0.359 0.169 0.033* 
Rain in previous fall 0.513 0.161 0.001** 
Natal territory size 0.143 0.070 0.041* 
Number of helpers 0.141 0.069 0.040* 
Hatch date -0.254 0.071 0.0004*** 
Nestling weight 0.507 0.071 8.52 x 10-13*** 
 
Survival from Day 11 to breeder 

   Drought index -0.332 0.152 0.029* 
Rain in previous fall 0.315 0.152 0.038* 
Natal territory size 0.164 0.068 0.016* 
Natal territory time since fire -0.165 0.070 0.019* 
Number of helpers 0.163 0.065 0.012* 
Hatch date -0.188 0.071 0.008** 
Nestling weight 0.460 0.075 9.9 x 10-10*** 
Sex 0.206 0.124 0.096 

*p < 0.05 
**p < 0.01 
***p < 0.001 

	    



	  

Table S3. Related to Figure 3. Estimated standardized effect sizes of inbreeding and sample sizes for different traits. 
Adult traits were analyzed for each sex separately. Estimates are for individual inbreeding coefficients for all traits 
except for hatching success and survival from hatch to Day 11, which use proportion IBD-sharing between the 
parents as a measure of expected inbreeding. Results are provided for both genomic-based inbreeding estimates and 
pedigree-based inbreeding estimates. The average number of lethal equivalents per individual (with 95% confidence 
intervals) is provided for survival traits. 

	  
Trait Sample 

size 

Genomic-based 
inbreeding 

Pedigree-based  
inbreeding Lethal equivalents 

β SE p β SE p 
Juvenile traits         
hatching success 769 -0.268 0.073 0.0002*** -0.254 0.069 0.0002*** 1.697 (0.385, 4.598) 
nestling (Day 11) weight 2019 -0.069 0.024 0.004** -0.055 0.025 0.031* NA 
survival from hatch to Day 11 804 -0.006 0.106 0.959 -0.044 0.106 0.679 0.032 (-0.450, 2.976) 
survival from Day 11 to fledge 2019 -0.322 0.299 0.282 -0.302 0.423 0.476 0.0002 (-1.581 x 10-6,0.661) 
survival from fledge to independence 1643 -0.094 0.065 0.146 -0.020 0.064 0.749 2.600 (-0.521, 8.184) 
survival from independence to yearling 939 -0.174 0.085 0.042* -0.088 0.081 0.279 3.672 (0.065, 10.780) 
survival from yearling to breeder 623 -0.164 0.093 0.079 -7.7 x 10-5 0.091 0.999 5.155 (-0.333, 13.782) 
         
Combined juvenile traits         
survival from Day 11 to independence 2019 -0.126 0.073 0.083 -0.046 0.159 0.726 3.838 (-0.327, 10.174) 
survival from Day 11 to yearling 2019 -0.187 0.076 0.014* -0.075 0.071 0.288 7.478 (1.215, 14.757) 
survival from Day 11 to breeder 2019 -0.251 0.089 0.005** -0.055 0.072 0.445 11.434 (3.135, 20.113) 
         
Adult traits         
male breeder lifespan 260 -0.109 0.048 0.023* -0.049 0.053 0.360 NA 
female breeder lifespan 260 -0.112 0.040 0.005** -0.090 0.054 0.099 NA 
male LRS 260 -0.121 0.063 0.054 -0.078 0.127 0.542 NA 
female LRS 260 -0.140 0.057 0.014* -0.089 0.058 0.128 NA 

*p < 0.05 
**p < 0.01 
***p < 0.001 

 

 
  



	  

Supplemental Experimental Procedures 
 

SNP discovery and genotyping 
We used genotyping-by-sequencing (GBS) of 103 individuals to discover genome-wide SNPs in the FSJ [S1]. 

The SNP discovery panel included immigrants and residents from 1978–2008 to help minimize ascertainment bias. 
SNPs were called using both a custom reference-free pipeline [S1] and a reference-based pipeline. For the reference-
based pipeline, demultiplexed and adapter-trimmed reads were aligned to the draft FSJ genome using BWA [S2]. 
We used Picard tools (http://picard.sourceforge.net) to sort and merge the individual BAM files before indel 
realignment and variant calling using GATK [S3]. We then designed custom Illumina iSelect BeadChips for 15,416 
SNPs. Because the length of flanking sequence required for Illumina iSelect BeadChip assays (50-60 bp on either 
side) is greater than our GBS read lengths, we could only use SNPs that could be aligned to the FSJ genome. SNPs 
called using the reference-free pipeline were mapped to the FSJ genome using BWA, and the two sets of SNP calls 
combined based on their physical location. After thinning to one SNP per 100 bp window, there were 41,853 SNPs. 
Summary statistics for all SNPs were calculated using custom Perl scripts or VCFtools [S4], and a quantitative score 
of Mendelian inheritance was assigned using MendelChecker [S1]. 

We used a number of criteria when designing custom Illumina iSelect BeadChips. First, we filtered out all sites 
with low mapping quality or read depth (MQ<35, QD<2), high levels of missing data (>8%), excess heterozygosity 
(>75%), low minor allele frequency (MAF<0.02), or low Mendelian inheritance scores (M<-20). We removed SNPs 
that were fewer than 50 bp from the end of a scaffold or had more than 2 alleles. Flanking sequences for each SNP 
assay were derived from the draft FSJ genome. We checked for repetitive elements in the flanking sequences using 
RepeatMasker (http://www.repeatmasker.org) and removed any sites near repetitive elements. The remaining 19,087 
SNPs were submitted to Illumina’s Assay Design Tool for evaluation. Each SNP was assigned a score that 
represents the expected success rate of the assay. The final 20k BeadChip design consisted of 17,628 SNPs, each 
with a minimum score of 0.781 and MAF > 0.0223.  

Custom iSelect BeadChips were manufactured by Illumina, and assay design was successful for 15,416 SNPs. 
Putative chromosomal locations of SNPs were assigned by aligning the FSJ genomic scaffolds to the Zebra Finch 
genome using standalone BLAST [S5] and picking the best BLAST hit. Given the high degree of synteny among 
extant bird lineages [S6], we are confident that these SNPs are well distributed across the genome (Figure S1). 

DNA samples from different years were mixed in a semi-randomized order on 96-well plates to minimize any 
batch effects. We genotyped a total of 4,032 samples with the custom BeadChips at Geneseek, Inc. (Lincoln, NE), 
representing 3,984 unique individuals. For positive controls, 1 individual was genotyped 42 times and 7 individuals 
were genotyped twice. SNP quality control and correction of inconsistent pedigree relationships were performed in 
GenomeStudio (Illumina, San Diego, CA), PLINK [S7] and PedCheck [S8]. We removed SNPs with Gentrain score 
> 0.7 and call rate > 95%, and individuals with call rate > 95%. Reproducibility between duplicate samples was high 
(>98%). We checked for Mendelian inconsistencies using PLINK and PedCheck [S8]. A very small percentage of 
nests have extra-pair paternity, and those were removed from subsequent analyses. After correcting any clear 
pedigree errors, we removed 4 individuals with high Mendelian error rates and any remaining genotypes with 
Mendelian inconsistencies. To obtain unbiased estimates of genetic diversity and relatedness in this study, we 
wanted only autosomal SNPs in approximate linkage equilibrium. We excluded 365 SNPs on the Z chromosome 
because sex-linked SNPs would skew our estimates of mean heterozygosity. We pruned SNPs in high linkage 
disequilibrium (LD) using the PLINK option --indep 50 5 2. Our final dataset consisted of 7,834 autosomal SNPs in 
approximate linkage equilibrium in 3,583 individuals.  

We checked for an influence of DNA concentration, plate number and location, DNA extraction method and 
year, and collection year on sample call rate and heterozygosity, and found no strong batch effects. We verified the 
correctness of our genotype data by checking for Mendelian errors (we found few but all were true pedigree errors) 
and used a stringent call rate filter (0.95); therefore it is highly unlikely that batch effects will have a significant 
effect on downstream analyses. There is no significant correlation between DNA concentration and heterozygosity 
(Spearman’s rho = 0.026, p = 0.104). Although our SNP discovery panel included both immigrants and residents 
from 1978–2008, we sampled more residents than immigrants. It is possible that any observed differences in 
heterozygosity between immigrants and residents may be due to our ascertainment scheme. However, we compared 
mean heterozygosity calculated from our BeadChip data to values calculated from the GBS data (after applying 
standard filters), and found a significant correlation (Spearman’s rho = 0.476, p = 1.383 x 10-5). In the sample of 77 
individuals with high quality genotypes in both BeadChip and GBS datasets, immigrants did not have significantly 
different observed heterozygosity from residents using either dataset (Wilcoxon rank sum test, p > 0.1 for both 
tests).  

 



	  

Estimation of inbreeding coefficients 
Because pedigree-based inbreeding coefficients only provide an expectation for the mean IBD and are limited 

by available pedigree information, inbreeding estimates obtained from thousands of genetic markers that provide a 
measure of realized IBD are more precise [S9]. Any kinship coefficient calculated from the pedigree for a pair 
containing an immigrant will be zero even if the true kinship coefficient is higher than zero. We calculated pedigree-
based inbreeding coefficients for each individual using the R package pedigree [S10] and kinship coefficients for 
each pair of individuals using the R package kinship2 [S11]. We compared four different genomic estimators of 
individual inbreeding coefficients: an estimate based on SNP homozygosity implemented in PLINK, an estimate 
based on the variance of additive genotype values (FI in GCTA), an estimate based on excess homozygosity (FII in 
GCTA), and an estimate based on the correlation between uniting gametes (FIII in GCTA) [S12] (Figure S2). Here, 
we decided to use FIII because it is often one of the more accurate estimators of inbreeding coefficient [S9, 13-15] 
and in our case it had the highest correlation with pedigree-based inbreeding coefficients, homozygosity, and 
relatedness of parents. 

We tested for inbreeding depression using both pedigree-based estimates of inbreeding and genomic-based 
estimates of inbreeding (Table S3). Similar to previous studies [S9, 13-15], we find that our genomic estimator of 
inbreeding coefficients (FIII) provided much more power for detecting inbreeding depression: we fail to detect 
inbreeding depression in six of eight fitness-related traits using pedigree-based estimates. Therefore, we use results 
from genomic estimators of inbreeding coefficients in the main text. 
 
Modeling temporal variation in inbreeding 

To investigate the impact of decreased immigration on changes in mean inbreeding of the birth cohort over 
time, we wrote the mean expected inbreeding coefficient of the birth cohort each year (t) from 1995 to 2013 as a 
function of the proportion of immigrant parents and the mean IBD between those pairs: 
 

𝐹!"# 𝑡 = 𝑝!! 𝑡 𝐹!! 𝑡 +   𝑝!" 𝑡 𝐹!" 𝑡 +   𝑝!! 𝑡 𝐹!! 𝑡  
 
where Fexp(t) is the mean IBD between parents of the birth cohort in year t, pII(t), pIR(t), and pRR(t) are the proportion 
of offspring with immigrant-immigrant, immigrant-resident, and resident-resident parents in year t, and FII(t), FIR(t), 
and FRR(t) are mean IBD between immigrant-immigrant, immigrant-resident, and resident-resident breeding pairs in 
year t, weighted by the number of offspring. Here we used IBD between the parents as a proxy for the expected 
inbreeding coefficient of the offspring, and we only included offspring with no unknown-status parents or 
grandparents. We then fitted four models, holding the p terms and/or the F terms constant (we used the mean across 
all years) or using the observed values for each year:   
 

1. Constant p & constant F: 𝐹!"# 𝑡 = 𝑝!!𝐹!! +   𝑝!"𝐹!" +   𝑝!!𝐹!! 
2. Constant p & time-varying F: 𝐹!"# 𝑡 = 𝑝!!𝐹!! 𝑡 +   𝑝!"𝐹!" 𝑡 +   𝑝!!𝐹!! 𝑡  
3. Time-varying p & constant F: 𝐹!"# 𝑡 = 𝑝!! 𝑡 𝐹!! +   𝑝!" 𝑡 𝐹!" +   𝑝!! 𝑡 𝐹!! 
4. Time-varying p & time-varying F: 𝐹!"# 𝑡 = 𝑝!! 𝑡 𝐹!! 𝑡 +   𝑝!" 𝑡 𝐹!" 𝑡 +   𝑝!! 𝑡 𝐹!! 𝑡  

 
We calculated the coefficient of determination for each model as follows: 
 

𝑅! = 1 −   
𝑆𝑆!"#$%&'(
𝑆𝑆!"!#$

= 1 −   
(𝑦! −   𝑓!)!!

(𝑦! −   𝑦)!!
 

 
where yi are the observed values, with associated predicted values fi. We used the coefficient of determination of 
Model 3 to determine the proportion of the variance in cohort inbreeding explained by temporal variation in the 
proportion of immigrant parents (Table S1). 

We then used the same logic to look at the importance of grandparent immigrant ancestry in explaining the 
variation in inbreeding observed in offspring of resident-resident pairs in 2002 to 2013 (we dropped before 2002 as 
sample sizes are too small). In this case, individuals were separated into groups based on the number of immigrant 
grandparents: 
 

𝐹!! 𝑡 = 𝑝! 𝑡 𝐹! 𝑡 +   𝑝! 𝑡 𝐹! 𝑡 +   𝑝! 𝑡 𝐹! 𝑡 +   𝑝! 𝑡 𝐹! 𝑡 + 𝑝! 𝑡 𝐹! 𝑡  
 



	  

where pi(t) is the proportion of offspring with i immigrant grandparents in year t and Fi(t) is the mean IBD between 
parents of children with i immigrant grandparents in year t. We fit the same four models as above and calculated the 
coefficient of determination for each (Table S1). 
 
Mixed model covariates 

Fixed effects considered in the inbreeding depression models included characteristics of the individual (sex, 
nestling and juvenile weight), the natal nest (clutch size, brood size, incubation date, hatch date, age at fledgling, the 
number of helpers at the territory, pair experience, the ages of the female and male breeders), the natal territory 
(territory size, time since fire of that territory), and the natal year (acorn abundance, breeding density, drought index, 
precipitation, and temperature).  

Sex of individuals was determined using standard molecular sexing protocols or by behavioral observations in 
the field. Nestling weight was measured at Day 11, and juvenile weight at Day 85. Not all nestlings were weighed 
exactly on Day 11; therefore we used a linear regression between weight and age to estimate Day 11 weight for all 
individuals. The same was done for juvenile weight.  

We used the Julian date for incubation and hatch date. Age at fledgling was measured in days. Brood size 
refers to the number of nestlings that hatched in a given nest. FSJs are cooperative breeders, which means that 
offspring delay dispersal and help their parents raise future nestlings. We included the number of helpers at a natal 
territory as a fixed effect. Pair experience was the number of years a given pair has bred together. Breeder age for 
birds born outside the study tract was estimated as two plus the number of years they were known to breed.  

Every territory in the study population was mapped each year and digitized as ArcGIS shapefiles, and detailed 
habitat and fire history maps were available for the study area, providing fine-scale data on habitat composition and 
fire history at 3-m2 resolution. We calculated territory size and the average time since last fire for each territory. 
Acorns are an important food source for FSJs in the winter, when insect abundance is low [S16]. Each year, plant 
height and the number of acorns and stems were measured for a number of marked oak plants across the study tract. 
Here our measure of acorn abundance was the total acorn count across all five oak species each year. Annual 
breeding density was modeled as the inverse of the mean territory size for that year. Daily rainfall in inches, drought 
index, and temperature data were obtained from the Archbold Biological Station weather station 
(http://www.archbold-station.org/station/html/datapub/data/data.html). We included mean rainfall in the previous 
summer (June – August), the previous fall (September – November), and the current breeding season (March – 
May). The Keetch-Byram drought index is a number from 0 to 800 that reflects soil moisture levels, with 0 
indicating no drought and 800 indicating maximum drought. We considered mean drought index in the current 
breeding season. Because we know that only minimum temperatures affect FSJ phenology, we considered two ways 
of measuring minimum temperature deviations: the minimum temperature in January – March and the number of 
degree days below freezing in December – March. 
 
Temporal autocorrelation 

Given that we are analyzing longitudinal data, it is possible that our data show autocorrelation across years. 
We used the Acf() and Pacf() functions in the R package forecast [S17] to test for autocorrelation in the residuals of 
our models. Some of our models showed significant peaks at high time lags. We used a meta-analysis to determine 
the importance of temporal autocorrelation in our inbreeding depression models. We divided our dataset into five 
groups, sampling every five years. The mean breeding lifespan of adults is less than five years; therefore this 
sampling scheme should largely break any temporal autocorrelation caused by the same individuals breeding year 
after year. We then fit the appropriate model for each trait on these subsets, and found that subsetting our data 
largely eliminates autocorrelation in the residuals of our models. We calculated a combined effect size using a fixed-
effects model with inverse-variance weights using the R package metaphor [S18]. The results from the meta-
analysis are not significantly different from the results of our original models (Figure S3). Therefore, we report the 
results from the original models in the main text.  
 
Estimating lethal equivalents 

We used an approach similar to that described in [S19] to estimate the number of lethal equivalents per 
individual and their 95% confidence intervals for our survival traits. Briefly, we used the final model of each trait to 
predict survival probabilities when f = 0 (outbred) and f = 0.25 (inbred), using the mean for all other fixed effects. 
Instead of using pedigree-based inbreeding coefficients, we used the genomic-based estimator of inbreeding 
coefficient that corresponds to the pedigree-based inbreeding coefficient of 0 and 0.25 (FIII = -0.065 and 0.324, 
respectively). For hatching success and survival from hatch to Day 11, which used proportion IBD-sharing between 
the parents as a measure of expected inbreeding, we substituted IBD = 0 for f = 0 and IBD = 0.5 for f = 0.25. Note 



	  

that the original models were fit with standardized fixed effects, so we used standardized values when predicting 
survival. We used the invlogit function in the R package arm [S20] to back-transform our estimated probabilities 
from a logit scale. We substituted these values in the equation from [S21] to calculate the number of lethal 
equivalents: 

 
𝐵 = −ln  (𝑆!/𝑆!)/𝑓 

 
where Sf is the survival probability at inbreeding level f (conventionally set at 0.25) and S0 is the survival probability 
at f = 0. To calculate the 95% confidence interval, we repeated the above process, substituting in the lower and upper 
bounds for each parameter estimate. 
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