Supplementary material

Applied Microbiology and Biotechnology

A simple method for isolation and construction of markerless cyanobacterial mutants

defective in acyl-acyl carrier protein synthetase

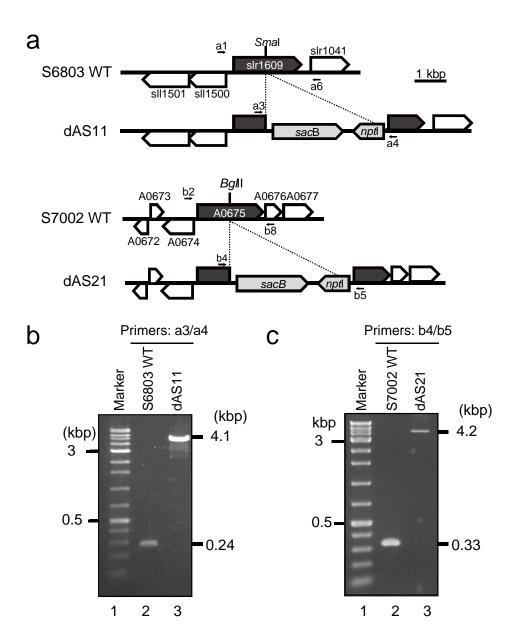
Kouji KOJIMA^{1,4,5}, Sumie KETA^{1,4}, Kazuma UESAKA^{2,4}, Akihiro KATO^{2,4}, Nobuyuki TAKATANI^{2,4},

Kunio IHARA^{3,4}, Tatsuo OMATA^{2,4}, Makiko AICHI1^{1,4,†}

¹Department of Biological Chemistry, Chubu University, Kasugai, 487-8501 Japan

²Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan

³Center for Gene Research, Nagoya University, Nagoya, 464-8602 Japan


⁴Japan Science and Technology Agency, CREST

⁵Present address: Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601

Japan.

†To whom correspondence should be addressed

E-mail: makiko@isc.chubu.ac.jp

Figure S1. Construction of *aas* insertional mutants from *Synechocystis* sp. PCC 6803 and *Synechococcus* sp. PCC 7002. a Diagrams showing the maps of the *aas* loci of the wild-type and the mutant of the two cyanobacterial strains. The PCR primers used to screen for homozygous strains in the *aas* locus are also shown. The primer pair a3/a4 amplifies 0.24-kb and 4.1-kb DNA fragments from *Synechocystis* sp. PCC 6803 WT and the dAS11 mutant, respectively. The primer pair b4/b5 amplifies 0.33-kb and 4.2-kb fragments from *Synechococcus* sp. PCC 7002 WT and the dAS21 mutant, respectively. **b** and **c** DNA fragments amplified from the dAS11 and dAS21 mutants using the primer pairs a3/a4 and b4/b5, respectively. The PCR products were analyzed by electrophoresis on a 0.8% agarose gel.