1	Supplementary Material
2	Crz1p regulates pH homeostasis in Candida glabrata by altering membrane lipid
3	composition
4	Dongni Yan ^{a,b} , Xiaobao Lin ^{a,b} , Yanli Qi ^{a,b} , Hui Liu ^{a,b} , Xiulai Chen ^{a,b} , Liming
5	Liu ^{a,b,c#} and Jian Chen ^b .
6	Running title: CgCrz1p regulates pH homeostasis in C. glabrata
7	^a State Key Laboratory of Food Science and Technology, Jiangnan University, 1800
8	Lihu Road, Wuxi, Jiangsu 214122, China
9	^b The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan
10	University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
11	^c Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University,
12	1800 Lihu Road, Wuxi, Jiangsu 214122, China
13	[#] Address correspondence to Liming Liu (E-mail address: <u>mingll@jiangnan.edu.cn</u>)
14	Tel: +86-0510-85197875;
15	Fax: +86-0510-85197875.
16	Postal address: State Key Laboratory of Food Science and Technology, Jiangnan
17	University, 1800 Lihu Road, Wuxi 214122, China.
18	
19	
20	
21	
22	

1. Supplementary Data

24	Spreadsheet 1. Up-regulated genes in the wild-type and $Cgcrz1\Delta$ strains in YNB-pH
25	2.0 medium, respectively, compared with that of the wild-type and $Cgcrz1\Delta$ strains in
26	YNB-pH 6.0 medium.
27	Spreadsheet 2. Down-regulated genes in the wild-type and $Cgcrz1\Delta$ strains in
28	YNB-pH 2.0 medium, respectively, compared with that of the wild-type and $Cgcrz1\Delta$
29	strains in YNB-pH 6.0 medium.
30	Spreadsheet 3. Up-regulated genes in the $Cgcrz1\Delta$ mutant strain, compared with the
31	wild-type strain in YNB-pH 6.0 and YNB-pH 2.0 medium.
32	Spreadsheet 4. Down-regulated genes in the $Cgcrz1\Delta$ mutant strain, compared with
33	the wild-type strain in YNB-pH 6.0 and YNB-pH 2.0 medium.
34	Spreadsheet 5. Regulated differentially genes in the $CgcrzI\Delta$ mutant strain compared
35	with the wild-type strain in YNB-pH 2.0 medium in KEGG database (with map).
36	1.1 Supplementary Description
37	The detailed description of the transformation protocol for C. glabrata:
38	C. glabrata ATCC 55 competent cells for electroporation were prepared by an
39	improved method that uses an extra treatment with lithium acetate and dithiothreitol
40	(1). The electroporation-competent cells were mixed with 1 μ g of the flanking PCR
41	fragment in 10 μ L of water, transferred to a 0.2-cm gap cuvette, and incubated for 5
42	min on ice. For construction of $\Delta crz1$ mutants, the flanking PCR fragment was
43	transformed into a Δ HTU strain obtained in this study.

44 The electroporation pulse was applied at 1.5 kV for 5 ms using a GenPulser

45	Xcell [™] electroporation system (BioRad, Herculus, CA) (1). The electroporated cells
46	were immediately diluted with 1 mL of ice-cold 1 mol L^{-1} sorbitol and cultured under
47	30 °C for 4 h. For $\Delta crz1$ transformation, 200 µL aliquots were spread on YNB
48	supplemented with moderate uracil and tryptophan plates to identify the histidine
49	marker mutants.

50 2. Supplementary Figures and Tables

51 **2.1. Supplementary Tables**

Strain	Genotype	Source or reference
C.glabrata ATCC 2001	Wild-type strain	(2)
$C.glabrata \Delta HTU$	$his3\Delta trp\Delta ura3\Delta$	(2)
$Cgcrz1\Delta$	$his3\Delta trp\Delta ura3\Delta crz1\Delta$:: $CgHIS3$	This study
$Cgcrz1\Delta/CgCRZ1$	$his3\Delta trp\Delta ura3\Delta crz1\Delta$:: $CgHIS3$	This study
	CgCRZ1::URA3(PY26/BamHI-StuI)	
Δ HTU/PY26	$his3\Delta trp\Delta ura3\Delta$::URA3(PY26)	This study
Cgcrz1\(\Delta\)/PY26	$his3\Delta trp\Delta ura3\Delta crz1\Delta$:: $CgHIS3$:: $URA3$ (PY26)	This study

52 Table S1 Strains used in this study

53

54 Table S2 The lists of primer sequences for gene knock-out frame construction

Gene	Primer	Sequences $(5' \rightarrow 3')$
$Cgcrz1\Delta$		
CP71 Left Arm	Con-LS	ATTAGTAGCGATAACGAGTTGGACG
CR21 Lett Alli	Con-LA	ACCCTCTTAACAAACGCCATTGCTGAATATTGCAAAATCTTGT
Marker HIS3	Con-HS	TACAAGATTTTGCAATATTCAGCAATGGCGTTTGTTAAGAGGGTT
Marker 11155	Con-HA	ATACTGGAGGTTTGTGTTAATCTATGCTAGGACACCCTTAGTGG
CP71 Dight Arm	Con-RS	CCACTAAGGGTGTCCTAGCATAGATTAACACAAACCTCCAGTATT
CR21 Right Ann	Con-RA	GCAACCCCTTATTTCCTTAGAT

55 "—" represented sequences of regions flanking of target gene.

StainsPrimerSequences $(5^{2} \rightarrow 3^{2})$ $Cgcrz1\Delta$ CRZ1-Ver-STGGCACATATGCCTCGATGTACRZ1-Ver-ATTGTCTTAAATGCGTTGGC

57 Table S3 Primer sequences for gene knock-out verification

58

59 Table S4 Primer sequences for the construction of expression plasmids

Gene	Primer	Sequences $(5^{\prime} \rightarrow 3^{\prime})$	
$C_{a}C_{B}Z_{1}$	C-Sen	CGGGATCCATTAGTAGCGATAACGAGTTGGACG (BamHI)	
CgCKZI	C-Anti	AAGGCCTTGCTGAATATTGCAAAATCTTGT (StuI)	

60

61 Table S5 The number of colonies in *C. glabrata* strains in YNB-pH 2.0 medium

Strain	0 h	4 h	8h	12h
wt	$1.57\pm0.20\times10^{7}$	$2.02\pm0.10\times10^{7}$	$5.54\pm0.32\times10^{7}$	$1.26\pm0.26\times10^{8}$
$Cgcrz1\Delta$	$1.27\pm0.16\times10^{7}$	$1.96\pm0.20\times10^{7}$	$3.20\pm0.20\times10^{7}$	$5.15\pm0.45\times10^{7}$
$Cgcrz1\Delta/CgCRZ1$	$1.50\pm0.10\times10^{7}$	$3.56 \pm 0.40 \times 10^7$	$1.96\pm0.27\times10^{8}$	$2.40\pm0.24\times10^{9}$

62

63 Table S6 Differentially expressed genes associated with membrane lipid

64 metabolism

		Fold change	e (Log2)	
ORF	Name	pH= 6.0	pH= 2.0	Function
		wt vs $Cgcrz1\Delta$	wt vs $Cgcrz1\Delta$	
CAGL0L10780g	ACC1	-3.45382	-2.77941	Propionyl-CoA carboxylase
CAGL0L10780g	FAS1	-3.45382	-2.77941	Fatty acid synthase subunit
CAGL0D00528g	FAS2	-5.09106	-3.26536	Fatty acid synthase subunit
CAGL0E06138g	FabF	-3.83228	-3.58979	Fatty acid synthase subunit
CAGL0J02970g	FabG	-4.41054	-1.84035	Fatty acid synthase subunit
CAGL0M13013g	FabG	-3.96432	-1.21719	Fatty acid synthase subunit
CAGL0J04774g	FabG	-2.83553	0	Fatty acid synthase subunit
CAGL0H10450g	FabD	-2.21458	-1.53906	Fatty acid synthase subunit
CAGL0L08184g	Elo2	-4.02847	-4.11405	Elongation protein of long chain fatty acids
CAGL0K00583g	Elo3	-1.99207	-3.29584	Elongation protein of long chain fatty acids

67 Table S6 Differentially expressed genes associated with membrane lipid

		Fold char	nge (Log2)	
ORF	Name	pH= 6.0	pH= 2.0	Function
		wt vs $Cgcrz1\Delta$	wt vs $Cgcrz1\Delta$	
CAGL0G04851g	Elo3	0	1.136983	Elongation protein of long chain fatty acids
CAGL0J10824g	ERG7	-1.66053	0	Lanosterol synthase
CAGL0E04334g	CYP51	1.136591	1.623938	Sterol 14-demethylase
CAGL0E05280g	ERG26	-2.82121	0	Sterol-4α-carboxylate 3-dehydrogenase
CAGL0E05170g	ERG26	-2.78278	0	Sterol-4α-carboxylate 3-dehydrogenase
CAGL0M11506g	ERG27	-1.20818	0	3-keto steroid reductase
CAGL0H04653g	ERG6	0	1.137315	Sterol 24-C-methyltransferase
CAGL0L10714g	ERG2	-2.35562	0	C-8 sterol isomerase
CAGL0F01793g	ERG3	1.748376	2.634495	δ-7-sterol 5-desaturase
CAGL0M07656g	ERG5	0	1.096274	Sterol 22-desaturase
CAGL0A00429g	ERG4	-1.14096	1.449763	δ -24(24(1))-sterol reductase
CAGL0C05137g	GPD1	1.650682	2.18454	Glycerol-3-phosphate dehydrogenase
CAGL0I04752g	CDS1	-2.55371	-2.23864	Phosphatidate cytidylyltransferase
CAGL0I09812g	CDS1	-3.31574	-2.08754	Phosphatidate cytidylyltransferase
CAGL0C03069g	CHO1	-1.6414	-2.54861	CDP-diacylglycerol-serine-O-phosphatidyl transferase
CAGL0I03784g	CLS	0	-1.55532	Cardiolipin synthase A/B
CAGL0M11462g	CLD1	-3.06236	-2.20077	Cardiolipin-specific phospholipase
CAGL0B01969g	CLD1	-5.27799	-1.77761	Cardiolipin-specific phospholipase
CAGL0L04686g	CLD1	-1.41495	-1.03389	Cardiolipin-specific phospholipase
CAGL0J09416g	PISD	-3.33089	-3.26489	Phosphatidylserine decarboxylase
CAGL0I08745g	PISD	-3.17146	-2.56741	Phosphatidylserine decarboxylase
CAGL0K09570g	EPT1	-2.6578	-2.38503	Ethanolamine phosphotransferase
CAGL0L13068g	EPT1	-4.8625	-1.82849	Ethanolamine phosphotransferase
CAGL0M04367g	CKI1	-1.49477	-2.35888	Choline kinase
CAGL0F08723g	ECT1	0	1.093409	Ethanolamine-phosphate cytidylyltransferase
CAGL0J11770g	LYPLA1	-1.39527	-1.51419	Lysophospholipase I
CAGL0I06050g	INO1	-3.64446	-5.82456	Myo-inositol-1-phosphate synthase
CAGL0H01089g	INM1	-1.57606	-2.20862	Myo-inositol-1(or 4)-monophosphatase
CAGL0G08360g	VPS34	-2.42441	-1.30054	Phosphatidylinositol 3-kinase
CAGL0K00297g	Ins-1,4,5	-2.86763	-2.02035	Inositol-1,4,5-trisphosphate 5-phosphatase
CAGL0J02134g	Ins-1,4,5	-2.5808	-1.40713	Inositol-1,4,5-trisphosphate 5-phosphatase
CAGL0E03201g	PEMT	-1.68656	-1.43472	Phosphatidylethanolamine N-methyltransferase

68 metabolism (continued table)

OPE	Cono Protoin		Fol	d change ^a
ONF	name	Trotem	qRT-PCR	RNAseq
	name			analysis
CAGL0D00528g	FAS1	Fatty acid synthase subunit 1	-3.03	-3.38
CAGL0L08184g	ELO2	Elongation protein of long chain fatty acids	-5.12	-4.11
CAGL0I04752g	CDS1	Phosphatidate cytidylyltransferase	-1.90	-2.24
CAGL0F01793g	ERG3	δ-7-sterol 5-desaturase	1.85	2.63
CAGL0E06138g	FAS2	Fatty acid synthase subunit 2	-2.38	-3.27
CAGL0I06050g	INO1	Myo-inositol-1-phosphate synthase -4.98		-5.82
CAGL0C03069g	CHO1	CDP-diacylglycerolserine	-2.01	-2.55
		O-phosphatidyltransferase		
CAGL0J00539g	SLT2	Mitogen-activated protein kinase 7	-1.82	-2.51
CAGL0G08107g	MSN2	Stress transcription factor	-2.92	-3.78
CAGL0M04191g	YPS1	a family of 11 GPI-linked aspartyl	-2.57	-3.78
		proteases		

71 Table S7 Genes used in the validation of RNAseq data by qRT-PCR

72

^a Fold change: values represent fold change when $Cgcrz1\Delta$ was treated with acid stress for 6 h.

73

74 Table S8 Primers used in qRT-PCR verification

Gene	Primer	Sequences (5'→ 3')
EAS1	FAS1-S	GGATGAAGCCTACTGGTT
TASI	FAS1-A	CCTTTCTTGCTGGATTTT
EL O2	ELOVL2-S	TGGTGGAAGGAATGGGTC
ELOZ	ELOVL2-A	TGTGGCAGAGTTGGGAAG
CDSI	CDS1-S	GGTGGTTTCTTTGCTTCA
CD51	CDS1-A	ACAATCAACTCTGTCGGTA
FRG3	ERG3-S	CTTGACTGTCCCTTGGTT
LKOJ	ERG3-A	AAGATGAAAGTGGCGTAC
FAS2	FAS2-S	CCTTTCTTGCTGGATTTT
1 1102	FAS2-A	GTAAACGGTAAACCAACA
INO1	INO1-S	TATGGACCGCTAACACCG
mor	INO1-A	ATGGAAGCAGCAGCAAAG
CHO1	CHO1-S	GTCAACTACCCAAGGACG

Gene	Primer	Sequences $(5' \rightarrow 3')$
CHO1	CHO1-A	GGCAAATATCCTAACAAATC
SI T?	SLT2-S	GCGTGAACGAAATGGAAG
5212	SLT2-A	TGGGCTTGTCTGTTGGTAAT
MSN2	MSN2-S	GGCAAATATCCTAACAAATC
1010112	MSN2-A	TCTGAGCTTCTTCGCAAC
VPS1	YPS1-S	CGCCCTATTGGACTCTGG
11 51	YPS1-A	TCATCGGACTGGCTTGG
CR71	CRZ1-S	GATGCTGAAACGCTACTAAA
CKLI	CRZ1-A	AGCCCGATGGTGACGAA
R-ACTIN	β -ACTIN -S	ACCGCTGCTCAATCTTCC
phone	β -ACTIN -A	TCCTTACGAACATCAACATCAC

76 Table S8 Primers used in qRT-PCR verification (continued table)

79 The validation of correct integration of CgCRZ1 fragments by sequencing.

80 **1.** *CgCRZ1* gene knock out frame (DNA sequence)

81 GATGTTTGGCACATATGCCTCGATGTAGATATAGACCACTAGCTATTCATAGGTTACATA CGTATATGCCCATATCCATATAGCAATTCATCAACCTTTGCAGCCAGAGGGACCCTTCCC 82 CCATCCAGTGATCCCACTTTTGCCGAACTTGGTCACTTTTCTTGCAGGAAAAATTATCC 83 CGGTGAGTCCTCCGAAAAGCTCAGTTTCCTTGTAATTACTTGTACAGCACAATGAAGG 84 85 CTTATAATAGCAAAAAACTTCAAAATTAGTAGCGATAACGAGTTGGACGCCCTCTTTTG GAAGTCTGTTCTGGTTGCAGATGCTTATAGACCCTGGATCAAGCACTTCATTCGT 86 87 CACTTGGGAAGGGTTTTCTGTCAAAACCACTGCTAACCTGGTTTCTTTTTTGTAAGCA 88 AACTGGAAATAACATTTGCTGAGTTGCACAAACTTCACATTAAGTTTTAGAGTTTGATA 89 90 GACAGTTTTCTTTTTAATCTTTTTTTCACATTGGGAGCATACTATACAAGATTTTGCAAT ATTCAGCAATGGCGTTTGTTAAGAGGGTTACGCAGGAGACGAATATACAGCTGGCGCT 91 GGATCTTGACGGTGGGTCTGTTTCTGTACGGGAGAGCATACTGGGCAAGGAATATGCT 92 93 AGTGGTGATGGGCAGACCATCCATGTGCACACTGGAGTTGGGTTTTTGGACCACATGT 94 TGACTGCGCTGGCGAAGCATGGCGGGGGGGGGTCTCTGATCCTGGAGTGTATAGGGGACTT GCACATCGATGACCACCACACTGTTGAGGACTGTGGGATTGCGCTGGGCCAAGCGTTC 95 96 AAGGAGGCGCTTGGCTCCGTGCGTGGTATCAAGAGGTTCGGGCATGGGTTTGCACCAC 97 TGGACGAGGCGCTGAGCCGCGCTGTGGTTGACTTCTCCAATAGGCCTTTCGCCGTGGT GGAGCTGGGCCTGAAGCGAGAACGCATAGGCCAGCTATCCACAGAGATGATCCCGCA 98 99 GGCACCAACGACCACCGCTCCGAATCAGCTTTCAAGGCGCTCGCCATCGCCATCA 100

101 102 103 TGTGATGAGATATAAGCATAAAGATCATAAGATAGTTGGTAATTACAAGGAGATTAACAT CCTGATATAAGGCAGTTTTAAATACAAAAGTCTATATAAACTACTTAAATAGAGTTGTAA 104 105 AAGATAGGGACTCTAAATATTTTCAAACAAATGAAATTTAGTCAAAGCAAGACATGCAT 106 107 108 AAAGGTTTAGGAATTAACCACTGAACTGTTGAAAATAATCTAGTCTGTTCCTAAAGTCA 109 GTTCAATTAGCACTTCCAGTTGTTTGAATCTAAGGAAATAAGGGGTTGCCAACGCATTT 110 AAGACAAATTAAGTAACTATCAGTTAAACAAAATATAGTTCATGATGTCAGCATCTGAT GATCAGTTGCAAGCAGAACTACAAGCCGAATTACAAAGGTTTCAAAACTTTCAGAATG 111 112 GTTTGTTGA 2. The verified gene sequence of the *CgCRZ1* gene deleted mutant strain 113 TACGTATATGCCCATATCCATATAGCAATTCATCAACCTTTGCAGCCAGAGGGACCCTTC 114 CCCCATCCAGTGATCCCACTTTTGCCGAACTTGGTCACTTTTCTTGCAGGAAAAATTAT115 116 CCCGGTGAGTCCTCCGAAAAGCTCAGTTTCCTTGTAATTACTTGTACAGCACAATGAAG GCTTATAATAGCAAAAAACTTCAAAAATTAGTAGCGATAACGAGTTGGACGCCCTCTTTT 117 GGAAGTCTGTTCTGGTTGCAGATGCTTATAGACCCTGGATCAAGCACTTCATTTCATTG 118 119 CCACTTGGGAAGGGTTTTCTGTCAAAACCACTGCTAACCTGGTTTCTTTTTTGTAAGC 120 AAACTGGAAATAACATTTGCTGAGTTGCACAAACTTCACATTAAGTTTTAGAGTTTGAT 121

122 AGACAGTTTTCTTTTAATCTTTTTTCACATTGGGAGCATACTATACAAGATTTTGCA

ATATTCAGCAATGGCGTTTGTTAAGAGGGTTACGCAGGAGACGAATATACAGCTGGCGC 123 TGGATCTTGACGGTGGGTCTGTTTCTGTACGGGAGAGCATACTGGGCAAGGAATATGCT 124 125 AGTGGTGATGGGCAGACCATCCATGTGCACACTGGAGTTGGGTTTTTGGACCACATGT TGACTGCGCTGGCGAAGCATGGCGGGGGGGGGTCTCTGATCCTGGAGTGTATAGGGGACTT 126 GCACATCGATGACCACCACACTGTTGAGGACTGTGGGATTGCGCTGGGCCAAGCGTTC 127 AAGGAGGCGCTTGGCTCCGTGCGTGGTATCAAGAGGTTCGGGCATGGGTTTGCACCAC 128 129 TGGACGAGGCGCTGAGCCGCGCTGTGGTTGACTTCTCCAATAGGCCTTTCGCCGTGGT GGAGCTGGGCCTGAAGCGAGAACGCATAGGCCAGCTATCCACAGAGATGATCCCGCA 130 131 GGCACCAACGACCACCGCTCCGAATCAGCTTTCAAGGCGCTCGCCATCGCCATCA 132 133 134 TGTGATGAGATATAAGCATAAAGATCATAAGATAGTTGGTAATTACAAGGAGATTAACAT 135 136 CCTGATATAAGGCAGTTTTAAATACAAAAGTCTATATAAACTACTAAATAGAGTTGTAA 137 AAGATAGGGACTCTAAATATTTTCAAACAAATGAAATTTAGTCAAAGCAAGACATGCAT 138 139 140 AAAGGTTTAGGAATTAACCACTGAACTGTTGAAAATAATCTAGTCTGTTCCTAAAGTCA 141 GTTCAATT

Figure S2 The growth curve of wild type, $Cgcrz1\Delta$ and $Cgcrz1\Delta/CgCRZ1$ strains during pyruvate production (A) with CaCO₃; (B) without CaCO₃. All data are represented as mean values of three independent experiments.

Figure S3 Heat maps of differentially regulated genes from $Cgcrz1\Delta$ strain compared with wild-type strain at pH 6.0 and pH 2.0. Black squares represent unchanged mRNA ratios below the significance threshold. Genes were grouped based on their functional classification in KEGG databases (with map in KEGG databases).

YNB-pH 2.0

lipid metabolism. Log-phase *C. glabtata* cells were cultured in YNB-pH6.0 and
YNB-pH2.0 medium for 6h. The means and standard deviations for three independent
experiments are shown. Error bars represent standard deviations. (*P < 0.05 compared
to the corresponding wild-type strain, as determined by t-test).

Figure S6 Flow cytometry analyses of *C. glabrata* at pH 6.0 and pH 2.0. (A) the wide-type strains at pH 6.0; (B) the $Cgcrz1\Delta$ mutants at pH 6.0; (C) the overexpressed strain $Cgcrz1\Delta/CgCRZ1$ at pH 6.0; (D) the wide-type strains at pH 2.0; (E) the

172 $Cgcrzl\Delta$ mutants at pH 2.0; (F) the overexpressed strain $Cgcrzl\Delta/CgCRZl$ at pH 2.0.

Q2-UL region: the percentage of PI-stained yeast cell, suggesting that cell membrane
was destroyed by low pH stimulia; Q2-LL region: the percentage of PI-unstained
yeast cell, suggesting that cell membrane was intact in low pH enviroment.

176

177 The *CgCRZ1* expression level in the wide type, *Cgcrz1* Δ and *Cgcrz1* Δ /*CgCRZ1* 178 strains

In order to determine the expression level of CgCRZI in the wide type, $CgcrzI\Delta$ and $CgcrzI\Delta/CgCRZI$ strains the $CgcrzI\Delta/CgCRZI$ strains, cells grown in the logarithmic phase in YNB were extracted and then diluted in fresh medium at pH 6.0 or pH 2.0 to A_{600} =0.1. Then the three different type cells were cultured for 4 h, total RNA was extracted using the MiniBEST Universal RNA Extraction Kit and 1 µg was used to synthesize cDNA with the Primer Script II 1st Strand cDNA Synthesis Kit
(TaKaRa). The cDNA mixture was diluted to ~100 ng/µL and used for qRT-PCR with
SYBR Premix Extaq (TaKaRa) on an iQ5 Continuous Fluorescence Detector System
(Bio-Rad, Hercules, CA, USA). Data were normalized to the actin gene. The primers
used for qRT-PCR verification are given in Table S8 in supplemental material.

190 Figure S7 The expression level of CgCRZ1 in the wide type, $Cgcrz1\Delta$ and

191

189

$Cgcrz1\Delta/CgCRZ1$ strains

192 Log-phase *C.glabtata* cells were cultured in YNB-pH6.0 and YNB-pH2.0 medium for

193 4 h. The means and standard deviations for three independent experiments are shown.

194 Error bars represent standard deviations. (*P < 0.05 compared to the corresponding

195 wild-type control, as determined by t-test).

196 The detailed description of Fig 6A in supplemental material

Phospholipid, glycolipid and cholesterol are the major lipids in the plasmamembrane and fatty acid acyl chains serve as precursors for phospho- or glycolipids.

Glycerophospholipid and sphingomyelin constitute the phospholipid bilayer, which is 199 a fundamental membrane structure. Glycolipid signaling chains are embedded in its 200 surface and ergosterol-enriched membrane domains are distributed within the 201 transbilayer. Phospholipid molecules included phosphatidylcholine (PC), 202 phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol, 203 (PI), phosphatidylglycerol (PG) and phosphatidic acid (PA). 204

205 Corrected description of transcriptome data

2	n	2
2	υ	υ

The accession is <u>SRP068794</u>, for the sample <u>SAMN04435264</u>.

The old library name	the Cgcrz1-pH 2.0-6h	The new (corrected)	RNAseq of Candida
		library name	glabrata under acidic
			conditions
The old library	Illumina HiSeq 2000	The new (corrected)	Illumina HiSeq 2500
instrument		instrument	
The old library	RANDOM	The new (corrected)	RT-PCR
selection		library selection	
The old Sample	<u>Saccharomycetes</u>	The new (corrected)	<u>Candida glabrata</u>
Organism		Sample Organism	
The old Abstract	to study the	The new (corrected)	Identify the function
	mechanism that	Abstract	of transcription factor
	Candida glabrata		CgCrz1p in
	responds to the acid		regulating pH
	stimuli at		homeostasis
	transcriptional level		
For corrections of the sa	ample <u>SAMN04435264</u> i	n Biosample section	
The old Sample	<u>Saccharomycetes</u>	The new (corrected)	<u>Candida glabrata</u>
Organism		Sample Organism	
The old Package	Microbe; version 1.0	The new Package	Pathogen: clinical or
			host-associated;
			version 1.0
Attributes			
The old strain	Candida glabrata	The new strain	Candida glabrata
			gene CgCRZ1
			deletion strain

207

The old library name	the Cgcrz1-pH 6.0-6h	The new (corrected)	RNAseq of Candida	
		library name	glabrata under acidic	
			conditions	
The old library	Illumina HiSeq 2000	The new (corrected)	Illumina HiSeq 2500	
instrument		instrument		
The old library	RANDOM	The new (corrected)	RT-PCR	
selection		library selection		
The old Sample	<u>Saccharomycetes</u>	The new (corrected)	<u>Candida glabrata</u>	
Organism		Sample Organism		
The old Abstract	to study the	The new (corrected)	Identify the function	
	mechanism that	Abstract	of transcription factor	
	Candida glabrata		CgCrz1p in	
	responds to the acid		regulating pH	
	stimuli at		homeostasis	
	transcriptional level			
For corrections of the sa	For corrections of the sample <u>SAMN04435264</u> in Biosample section			
The old Sample	<u>Saccharomycetes</u>	The new (corrected)	<u>Candida glabrata</u>	
Organism		Sample Organism		
The old Package	Microbe; version 1.0	The new Package	Pathogen: clinical or	
			host-associated;	
			version 1.0	
Attributes				
The old strain	Candida glabrata	The new strain	Candida glabrata	
			gene CgCRZ1	
			deletion strain	

209 The accession is SKP008/94, for the sample SAMIN04	√04435263.
--	------------

The old library name	WT-pH 2.0	The new (corrected)	RNAseq of Candida
		library name	glabrata under acidic
			conditions
The old library	Illumina HiSeq 2000	The new (corrected)	Illumina HiSeq 2500
instrument		instrument	
The old library	RANDOM	The new (corrected)	RT-PCR
selection		library selection	
The old Sample	<u>Saccharomycetes</u>	The new (corrected)	<u>Candida glabrata</u>
Organism		Sample Organism	
The old Abstract	to study the	The new (corrected)	Identify the function
	mechanism that	Abstract	of transcription factor
	Candida glabrata		CgCrz1p in
	responds to the acid		regulating pH
	stimuli at		homeostasis
	transcriptional level		
For corrections of the sample <u>SAMN04435264</u> in Biosample section			
The old Sample	<u>Saccharomycetes</u>	The new (corrected)	<u>Candida glabrata</u>
Organism		Sample Organism	
The old Package	Microbe; version 1.0	The new Package	Pathogen: clinical or
			host-associated;
			version 1.0
Attributes			
The old strain	Candida glabrata	The new strain	Candida glabrata
			ATCC 55

219	The accession	is SRP068794,	for the same	ble SAMN04435262.
-----	---------------	---------------	--------------	-------------------

The old library name	the wide-type strains	The new (corrected)	RNAseq of Candida
	at pH 6.0	library name	glabrata under acidic
			conditions
The old library	Illumina HiSeq 2000	The new (corrected)	Illumina HiSeq 2500
instrument		instrument	
The old library	RANDOM	The new (corrected)	RT-PCR
selection		library selection	
The old Sample	<u>Saccharomycetes</u>	The new (corrected)	<u>Candida glabrata</u>
Organism		Sample Organism	
The old Abstract	to study the	The new (corrected)	Identify the function
	mechanism that	Abstract	of transcription factor
	Candida glabrata		CgCrz1p in
	responds to the acid		regulating pH
	stimuli at		homeostasis
	transcriptional level		
For corrections of the sample <u>SAMN04435264</u> in Biosample section			
The old Sample	<u>Saccharomycetes</u>	The new (corrected)	<u>Candida glabrata</u>
Organism		Sample Organism	
The old Package	Microbe; version 1.0	The new Package	Pathogen: clinical or
			host-associated;
			version 1.0
Attributes			
The old strain	Candida glabrata	The new strain	Candida glabrata
			ATCC 55

229 The accession is <u>SRP068794</u>, for the sample <u>SAMN04435261</u>.

233 2.

Roetzer A, Gregori C, Jennings AM, Quintin J, Ferrandon D, Butler G, Kuchler K,

Ammerer G, Schueller C. 2008. Candida glabrata environmental stress response 234 235 involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors. Mol Microbiol **69:**603-620. 236

^{1.} Wu SX, Letchworth GJ. 2004. High efficiency transformation by electroporation of 230 231 Pichia pastoris pretreated with lithium acetate and dithiothreitol. BioTechniques 232 **36:**152-154.