Supplementary Information

Artificial Blood for Dogs

Kana Yamada¹, Kyoko Yokomaku¹, Moeka Kureishi¹, Motofusa Akiyama¹, Kiyohito Kihira² & Teruyuki Komatsu¹

¹ Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27
Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
² JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration
Agency (JAXA), 2-1-1 Sengen, Tsukuba-shi, Ibaraki 305-8505, Japan

Correspondence and requests for materials should be addressed to T.K. (e-mail: komatsu@kc.chuou.ac.jp)

Methods

Purification of Native CSA from Canine Plasma. Canine plasma was kindly provided from Kyoritsu Seiyaku Corp. To dissolve the frozen plasma, the sample was incubated in a refrigerator overnight at 4 °C. Then the plasma was centrifuged (10,000 × g, 4 °C) to remove the cryoprecipitate. The supernatant was brought to 50% saturation with ammonium sulfate at 25 °C. After leaving for 30 min at 4 °C, the solution was centrifuged (10,000 × g, 4 °C) and the supernatant was filtered using a membrane filter (DISMIC-25CS, 0.2 µm pore; Toyo Roshi Kaisha Ltd.). The obtained solution including CSA was dialyzed against deionized water at 4 °C. Then 11% volume of 500 mM sodium phosphate (pH 6.8) was added. The resultant solution in 50 mM sodium phosphate (pH 7.0) was filtered using a membrane filter (C020A047A, 0.2 µm pore; Toyo Roshi Kaisha Ltd.).

Next, the sample was loaded onto an affinity chromatography with a Toyopearl AF-Blue HC-650M (Tosoh Corp.) column. After washing with five-bed volumes of 50 mM sodium phosphate (pH 7.0), CSA was eluted with 50 mM sodium phosphate (pH 7.4) containing 3 M NaCl. The eluent was dialyzed against deionized water at 4 °C. Thereafter, 25% volume of 100 mM Tris-HCl (pH 8.0) was added. The resulting 20 mM Tris-HCl solution (pH 8.0) of CSA was filtered using a membrane filter (C020A047A, 0.2 µm pore). Then the sample was applied to anion exchange chromatography with a Q Sepharose Fast Flow (GE Healthcare UK Ltd.) column using 20 mM Tris-HCl (pH 8.0) as the running buffer. After washing with five-bed volumes of 20 mM Tris-HCl (pH 8.0) containing 100 mM NaCl, elution of CSA was performed with 20 mM Tris-HCl (pH 8.0) containing 300 mM NaCl. The eluent was dialyzed against deionized water at 4 °C, followed by addition of 11% volume of 10× phosphate-buffered saline (PBS, pH 7.4). Finally, the CSA solution was concentrated to 30 mL using an ultraholder (Advantec UHP-76K; Toyo Roshi Kaisha Ltd.) with an ultrafilter (Advantec Q0100, 10 kDa MWCO; Toyo Roshi Kaisha Ltd.), and was sterilized with a membrane filter (DISMIC-25CS, 0.2 µm pore). All the purification processes were followed by SDS-PAGE analysis. The concentration of CSA was measured using a protein assay kit (Pierce 660 nm; Thermo Fisher Scientific K.K.). The cysteinyl thiol assay of CSA was performed by reaction with 4,4'-dithiopyridine (4,4'-DTP), which binds sulfhydryl group of the protein to generate 4-thiopyridinone (λ_{max} : 324 nm)⁵⁰.

Figure S1. Full-length gel images corresponding to cropped images in Figure 1A (SDS-PAGE) and 1B (Native-Page).

	1	11	21	31	41
CSA	<mark>e</mark> a <mark>y</mark> kse <mark>i</mark> ahr	<mark>YN</mark> DLGEE <mark>H</mark> F <mark>R</mark>	<mark>g</mark> lvl <mark>v</mark> af <mark>s</mark> qy	LQQCPFEDHV	KL <mark>AK</mark> EVTEFA
HSA	<mark>d</mark> a <mark>h</mark> kse <mark>v</mark> ahr	<mark>FK</mark> DLGEE <mark>N</mark> FK	<mark>a</mark> lvl <mark>i</mark> af <mark>a</mark> qy	LQQCPFEDHV	KL <mark>VN</mark> EVTEFA
	51	61	71	81	91
	K <mark>a</mark> caaeesga	NCDKSLHTLF	GDKLCTVA <mark>S</mark> L	R <mark>DK</mark> YG <mark>D</mark> MADC	C <mark>E</mark> KQEP <mark>D</mark> RNE
	K <mark>T</mark> C <mark>V</mark> ADES <mark>AE</mark>	NCDKSLHTLF	gdklctva <mark>t</mark> l	R <mark>ET</mark> YG <mark>E</mark> MADC	C <mark>A</mark> KQEP <mark>E</mark> RNE
	101	111	121	131	141
	CFL <mark>A</mark> HKDDNP	<mark>gf</mark> p <mark>p</mark> lv <mark>a</mark> pe <mark>p</mark>	d <mark>al</mark> c <mark>a</mark> af <mark>o</mark> dn	E <mark>QL</mark> FL <mark>G</mark> KYLY	EIARRHPYFY
	CFL <mark>Q</mark> HKDDNP	<mark>nl</mark> p <mark>r</mark> lv <mark>r</mark> pe <mark>v</mark>	D <mark>VM</mark> C <mark>T</mark> AF <mark>H</mark> DN	E <mark>ET</mark> FL <mark>K</mark> KYLY	EIARRHPYFY
	151	161	171	181	191
	APELL <mark>YY</mark> A <mark>QQ</mark>	YK <mark>GV</mark> F <mark>A</mark> ECCQ	aadkaacl <mark>g</mark> p	K <mark>IEA</mark> LR <mark>EKVL</mark>	LSSAK <mark>E</mark> R <mark>F</mark> KC
	APELL <mark>FF</mark> A <mark>KR</mark>	YK <mark>AA</mark> F <mark>T</mark> ECCQ	aadkaacl <mark>l</mark> p	K <mark>LDE</mark> LR <mark>DEGK</mark>	<mark>a</mark> ssak <mark>q</mark> r <mark>l</mark> kc
	201	211	221	231	241
	ASLQKFG <mark>D</mark> RA	FKAW <mark>S</mark> VARLS	QRFPKA <mark>D</mark> FAE	<mark>i</mark> sk <mark>v</mark> vtdltk	VH <mark>K</mark> ECCHGDL
	aslqkfg <mark>e</mark> ra	FKAW <mark>A</mark> VARLS	QRFPKA <mark>E</mark> FAE	<mark>v</mark> sk <mark>l</mark> vtdltk	VH <mark>T</mark> ECCHGDL
	251	261	271	281	291
	LECADDRADL	AKY <mark>M</mark> CENQDS	IS <mark>T</mark> KLKECC <mark>D</mark>	KP <mark>V</mark> LEKS <mark>Q</mark> C <mark>L</mark>	AEVE <mark>R</mark> DE <mark>l</mark> PG
	LECADDRADL	AKY <mark>I</mark> CENQDS	IS <mark>S</mark> KLKECC <mark>E</mark>	KP <mark>L</mark> LEKS <mark>H</mark> C <mark>I</mark>	AEVE <mark>N</mark> DE <mark>M</mark> P <mark>A</mark>
	301	311	321	331	341
	DLPSLAADFV	E <mark>D</mark> K <mark>E</mark> VCKNY <mark>Q</mark>	EAKDVFLG <mark>T</mark> F	LYEYARRHP <mark>E</mark>	ysv <mark>s</mark> lllrla
	DLPSLAADFV	e <mark>s</mark> k <mark>d</mark> vckny <mark>a</mark>	EAKDVFLG <mark>M</mark> F	LYEYARRHP <mark>D</mark>	ysv <mark>v</mark> lllrla
	351	361	371	381	391
	K <mark>e</mark> ye <mark>a</mark> tlekc	CA <mark>TD</mark> DP <mark>PT</mark> CY	AKV <mark>L</mark> DEFKPL	V <mark>D</mark> EPQNL <mark>V</mark> KT	NCELFE <mark>K</mark> LGE
	K <mark>T</mark> YE <mark>T</mark> TLEKC	CA <mark>AA</mark> DP <mark>HE</mark> CY	akv <mark>f</mark> defkpl	V <mark>e</mark> epqnl <mark>i</mark> k <mark>q</mark>	NCELFE <mark>Q</mark> LGE
	401	411	421	431	441
	Y <mark>G</mark> FQNALLVR	YTKK <mark>A</mark> PQVST	PTLVEVSR <mark>K</mark> L	GKVG <mark>T</mark> KCCK <mark>K</mark>	PE <mark>SE</mark> RM <mark>S</mark> CAE
	Y <mark>K</mark> FQNALLVR	YTKK <mark>V</mark> PQVST	PTLVEVSR <mark>N</mark> L	GKVG <mark>S</mark> KCCK <mark>H</mark>	PE <mark>AK</mark> RM <mark>P</mark> CAE
	451	461	471	481	491
	D <mark>F</mark> LSVVLN <mark>R</mark> L	CVLHEKTPVS	<mark>e</mark> rvtkcc <mark>s</mark> es	LVNRRPCFS <mark>G</mark>	LEVDETYVPK
	D <mark>y</mark> lsvvln <mark>q</mark> l	CVLHEKTPVS	<mark>d</mark> rvtkcc <mark>t</mark> es	lvnrrpcfs <mark>a</mark>	LEVDETYVPK
	501	511	521	531	541
	EFNAETFTFH	ad <mark>l</mark> ctl <mark>pea</mark> e	<mark>k</mark> q <mark>v</mark> kkqtalv	EL <mark>L</mark> KHKPKAT	DEQLK <mark>T</mark> VM <mark>G</mark> D
	EFNAETFTFH	AD <mark>I</mark> CTL <mark>S</mark> E <mark>K</mark> E	<mark>r</mark> q <mark>i</mark> kkqtalv	EL <mark>V</mark> KHKPKAT	<mark>k</mark> eqlk <mark>a</mark> vm <mark>d</mark> d
	551	561	571	581	
	F <mark>G</mark> AFVEKCC <mark>A</mark>	A <mark>EN</mark> KE <mark>G</mark> CF <mark>S</mark> E	eg <mark>p</mark> klvaa <mark>a</mark> q	AAL <mark>V</mark>	
	F <mark>a</mark> afvekcc <mark>k</mark>	a <mark>dd</mark> ke <mark>t</mark> Cf <mark>a</mark> e	eg <mark>k</mark> klvaa <mark>s</mark> q	AAL <mark>G</mark> L	

Figure S2. Comparison of amino acid sequences of CSA and HSA. The first row represents CSA sequence (colors correspond to the subdomain colors in Fig. 2A) and the second row represents HSA sequence (black)³³. The yellow-marked amino acids are different kind pairs between CSA and HSA. The homology of these proteins is 79.8%.

Figure S3. Superposition of crystal structures of rCSA and HSA-phenylbutazone (PBZ) complex. (A) Subdomain IIA (drug site 1: forest) and subdomain IIIA (drug site 2: blue) of rCSA are almost the same structures to the corresponding subdomains of HSA-PBZ complex (PDB ID: 2BXC, light orange)³⁸. PBZ is depicted in space-filling representation and colored in light magenta. (B) PBZ (light magenta) bound in the hydrophobic pocket of drug site 1 of HSA (light orange) (PDB ID: 2BXC). The PBZ forms a hydrogen bond with Tyr-150 of subdomain IB. Lys-199 and Arg-222 may form weak interactions with PBZ through water molecule. The α -helices of rCSA is colored in forest. The positions and orientations of the amino acid residues (Y150, K199, R222) of HSA (orange) and rCSA (green) are almost identical.

Figure S4. Surface electrostatic potential representations of (A) rCSA and (B) HSA. Blue and red respectively represent positive charge and negative charge density. Calculations were carried out using Adaptive Poisson-Boltzmann Solver (APBS) and PyMOL. The pdb files were converted to pqr files for APBS electrostatics calculations by PDB2PQR service^{S1}. PDB ID of HSA: 1E78³⁶.

Figure S5. Full-length gel images corresponding to cropped images in Figure 4B (Native-PAGE) and 4D (IEF).

Figure S6. Immunological reactivity against anti-HbA antibody. The result of quick chaser occult blood test kit. Appearance of a red test-line indicates the immunological activity to anti-HbA antibody.

Figure S7. Immunological reactivity against anti-CSA antibody. The relation between CSA unit concentration of the sample and absorption intensity of the reactant solution at 694 nm. The dotted line is calibration curve prepared using CSA standard.

Wavelength (Å)	1.0000		
Resolution range (Å)	34.84–3.0 (3.05–3.0)		
Space group	P 1 21 1		
Cell dimensions	<i>a</i> = 46.72 Å, <i>b</i> = 118.4 Å, <i>c</i> = 58.33 Å		
	$\alpha = 90^{\circ}, \beta = 114.82^{\circ}, \gamma = 90^{\circ}$		
Total reflections	77559		
Unique reflections	11596 (577)		
Multiplicity	6.7 (6.0)		
Completeness (%)	99.9 (99.8)		
Mean I/sigma (I)	30.3 (6.6)		
B-factor ($Å^2$)	48.12		
R-merge	0.110 (0.453)		
Mosaicity Range (°)	1.25–1.98		
Refinement			
Resolution range (Å)	34.84–3.2 (3.315–3.2)		
No. reflections	9425 (948)		
R-work	0.2530 (0.3006)		
R-free	0.2916 (0.3322)		
No. non-hydrogen atoms	4424		
Macromolecules	4424		
RMS (bonds)	0.008		
RMS (angles)	0.87		
Ramachandran favored (%)	90		
Ramachandran outliers (%)	1.6		
Clashscore	9.47		
Average B-factor	47.80		

Table S1.X-ray crystallography data collection and refinement statistics ofrCSA

Statistics for the highest-resolution shell are shown in parentheses.

	λ_{\max} (nm)				
Hemoproteins	deoxy	oxy	carbonyl		
Hb-rCSA ₃	429, 556	414, 541, 577	419, 538, 569		
Hb-CSA ₃	429, 556	414, 541, 577	420, 538, 569		
Hb-HSA₃	430, 556	413, 541, 577	420, 538, 569		
Hb^{\dagger}	430, 555	414, 541, 577	420, 538, 569		
HbA [‡]	430, 555	415, 541, 577	419, 540, 569		

Table S2. UV-vis absorption spectral data of Hb-rCSA $_3$ and Hb-CSA $_3$ clusters in PBS solution (pH 7.4) at 25 °C

[†] From ref. 29. [‡] Ref. 40.

Reference

S1. Dolinsky, T. J., Nielsen, J. E, McCammon, J. A. & Baker, N. A. PDB2PQR: an automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann electrostatics calculations. *Nucleic Acids Res.* 32, W665–W667 (2004).