The ubiquitin hybrid gene *UBA52* regulates ubiquitination of ribosome and sustains embryonic development

Masanori Kobayashi^a, Shigeru Oshima^a*, Chiaki Maeyashiki^a, Yoichi Nibe^a, Kana Otsubo^a, Yu Matsuzawa^a, Yasuhiro Nemoto^a, Takashi Nagaishi^a, Ryuichi Okamoto^{a,b}, Kiichiro Tsuchiya^a, Tetsuya Nakamura^c, and Mamoru Watanabe^a

^aDepartment of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
^bCenter for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
^cDepartment of Advanced Therapeutics for GI Diseases, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan

*Corresponding author: Shigeru Oshima, M.D., Ph.D., E-mail: <u>soshima.gast@tmd.ac.jp</u>
Department of Gastroenterology and Hepatology
Tokyo Medical and Dental University (TMDU)
1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
Phone No.: +81-3-5803-5877
Fax No.: +81-3-5803-0268

Supplementary Figure 1.

Myc-UBA52 (WT) regulates cyclin D expression. DLD-1 cells were transfected with a *UBA52* #5 siRNA. After 6 h, DLD-1 cells were transfected with the siRNA-resistant vectors #5R indicated. Twenty-seven hours later, cells were harvested for immunoblotting. Data are representative of more than three independent experiments. Note that *UBA52*-deficient cell by #5 siRNA also displayed the decreased Cyclin D1 expression, and that Myc-UBA52 (WT) #5R ameliorated the decreased expression of Cyclin D1