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Summary

In this supplementary material, we provide the optimization solution to JWCRstar,

the algorithm and the theoretical analysis of WCRstar.

Algorithm WCRstar

Algorithm 1: WCRstar

Input: (1) a disease similarity network A; (2) the tissue-specific molecular networks {Gi∗} and
{Gip}; (3) the seed vectors {ei∗} and {eip}; and (4) the parameters β, γ and c

Output: the ranking vectors {ri∗} and weights {αip}

Offline-computation: Construct {G̃i∗}, {G̃ip}, {S̃i∗,ip} and {Ỹi∗,j∗} from A, {Gi∗} and1

{Gip};
Online-ranking:2

Initialize αip = 1/ki, ∀i = 1, ..., h, p = 1, ..., ki;3

while not convergence do4

for i← 1 to h do5

Update ri∗ by Eq. (1);6

for p← 1 to ki do7

Update rip by Eq. (2);8

φip ← Φ′
cross(ri∗, rip);9

end10

Sort {φip}1≤p≤ki
in increasing order;11

t← ki + 1;12

do13

t← t− 1;14

λi ←
2γ+

∑t
p=1 φip

t
;15

while λi − φit ≤ 0 and t > 116

for p← 1 to t do17

αip ←
λi−φip

2γ
;18

end19

for p← t+ 1 to ki do20

αip ← 0;21

end22

end23

end24

return the ranking vectors {ri∗} and weights {αip}25
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Complexity Analysis of WCRstar

Let ni∗ and nip be the number of nodes in Gi∗ and Gip, respectively, and n∗ =
∑h

i=1 ni∗, n =
∑h

i=1(ni∗ +
∑ki

p=1 nip). Let mi∗ and mip be the number of edges in

Gi∗ and Gip, respectively, and m =
∑h

i=1(mi∗+
∑ki

p=1 mip). Let K = max1≤i≤h ki.

The offline-computation time complexity and space complexity of Algorithm 1 are

the same as Algorithm CRstar in the Additional file 2. The online-ranking step

requires O(T ∗(m+ n+ (h+K)n∗ + hK2)) to update {ri∗}, {rip}, {φip} and {αip}

where T ∗ is the total number of iterations before convergence.

Generally, n∗ ≤ n, h and K are much smaller than n and can be regarded as

constants. Hence we can regard the time and space complexities of Algorithm 1 as

O(T ∗(m+ n)) and O(m+ n), respectively.

Optimization Solution to JWCRstar

We solve the objective function JWCRstar by an alternating minimization approach,

i.e., the objective function is alternately minimized with respect to one variable

while fixing others. This procedure repeats until convergence. In this section, we

provide the solutions to ri∗, rip and αi. Algorithm 1 summarizes our approach

according to the optimization solution.

Solutions to ri∗ and rip.

We solve ri∗ and rip according to Theorem 1 and Theorem 2, respectively.

Theorem 1 Updating ri∗. Fixing other variables, updating ri∗ according to

Eq. (1) monotonically decreases the value of the objective function JWCRstar un-

til convergence.

ri∗ ←
c

ωi

G̃i∗ri∗ +
1− c

ωi

ei∗ +

ki
∑

p=1

αip

ωi

S̃i∗,iprip +
2β

ωi

∑

j∈NA(i)

Ỹi∗,j∗rj∗ (1)

where

ωi =

{

1 + 1
ki

+ 2β, if ki ≥ 1

1 + 2β, if ki = 0

NA(i) is the neighbor set of disease i in A, Ỹi∗,j∗ = dA(i)−
1
2A(i, j)OijdA(j)−

1
2

is the (1, 1)th block of Ỹij and Ỹij is the (i, j)th block of Ỹ.

Proof This update rule can be derived by taking the gradient descent of JWCRstar

w.r.t. ri∗ and setting the step size as 1
2ωi

. Its convergence can be shown in a similar

way to Theorem 2 (Convergence of CR) in the Additional file 1 (Sec. Theoretical

Analysis of CR) and Theorem 2 (Convergence of CRstar) in the Additional file

2 (Sec. Theoretical Analysis of CRstar) since the eigenvalues of G̃i∗ are in the

range of [−1, 1].

Theorem 2 Updating rip. Fixing other variables, updating rip according to

Eq. (2) monotonically decreases the value of the objective function JWCRstar un-

til convergence.

rip ←
c

1 + αip

G̃iprip +
1− c

1 + αip

eip +
αip

1 + αip

S̃T
i∗,ipri∗ (2)



Ni et al. Page 3 of 4

Proof This update rule can be derived by taking the gradient descent of JWCRstar

w.r.t. rip and setting the step size as 1
2(1+αip)

. Its convergence can be shown in

a similar way to Theorem 2 (Convergence of CR) in the Additional file 1 (Sec.

Theoretical Analysis of CR) and Theorem 2 (Convergence of CRstar) in the

Additional file 2 (Sec. Theoretical Analysis of CRstar) since the eigenvalues of

G̃ip are in the range of [−1, 1].

Solution to αi.

Since we take an alternating minimization approach, we regard other variables as

constants when we solve for αi. Let φi = (Φ′
cross(ri∗, ri1), ...,Φ

′
cross(ri∗, riki

))T , we

can rewrite the objective function JWCRstar w.r.t. αi by ignoring constants as

min
αi, 1≤i≤h

JWCRstar(αi) =
h
∑

i=1

(αT
i φi + γαT

i αi)

s.t. αi ≥ 0, αT
i 1 = 1

(3)

where 1 is a length ki column vector of all ones.

Eq. (3) is a quadratic optimization problem w.r.t.αi. Define the Lagrange function

w.r.t. α1, ...,αh of JWCRstar(αi) as

LWCRstar(α1, ...,αh,µ1, ...,µh, λ1, ..., λh) =
h
∑

i=1

(

αT
i φi + γαT

i αi −αT
i µi − λi(α

T
i 1− 1)

)

where µi = (µi1, ..., µiki
)T ≥ 0 and λi ≥ 0 are Lagrange multipliers. The optimal

α∗
i should satisfy the following Karush-Kuhn-Tucker (KKT) conditions [1]:

(1) Gradient condition. ∂LWCRstar

∂α∗

i

= φi + 2γα∗
i − µi − λi1 = 0

(2) Feasibility. α∗
i ≥ 0, (α∗

i )
T
1− 1 = 0

(3) Complementary slackness. µipα
∗
ip = 0, 1 ≤ p ≤ ki

(4) Nonnegativity. µi ≥ 0

From the gradient condition, we can obtain αip

αip =
µip + λi − φip

2γ

Thus αip relies on the specification of µip and λi, where we have three cases [2]:

(1) When λi − φip > 0, since µip ≥ 0, we have αip > 0. From the complementary

slackness, µipαip = 0, we have µip = 0 thus αip =
λi−φip

2γ

(2) When λi − φip < 0, since αip ≥ 0, we have µip > 0. Because µipαip = 0, we

have αip = 0

(3) When λi−φip = 0, we have αip =
µip

2γ . Since µipαip = 0, we have αip = 0 and

µip = 0

Therefore, if we sort φi1 ≤ φi2 ≤ ... ≤ φiki
, there can be λi > 0 s.t. λi − φit > 0

and λi − φit+1 ≤ 0. Thus αip can be solved as

αip =

{

λi−φip

2γ
, if p ≤ t

0, otherwise
(4)
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where λi can be solved by using
∑ki

p=1 αip = 1

λi =
2γ +

∑t
p=1 φip

t
(5)

Eq. (4) implies the intuition of weight assignments. When φip is large, αip is small.

Recall φip is the ranking inconsistency Φ′
cross(ri∗, rip) between the center network of

disease i and its pth auxiliary network. The inconsistency may come from the noise in

the auxiliary network. Thus, Eq. (4) assigns small weights to large center-auxiliary

ranking inconsistencies to get a consensus ranking and improve the ranking quality.

In Eq. (5), γ relates to the selectivity of the model. When γ is very large, λi

becomes large and all auxiliary networks will be selected with nearly equal weights.

When γ is very small, at least one auxiliary network (with the smallest φip) will be

selected. Therefore, we can use γ to control the auxiliary network integration for

the ranking.

From Eq. (4) and Eq. (5), we can search the value of t decreasingly from ki to 1 [2].

Once λi−φit > 0, we find the value of t. Then we can calculate αi1, ..., αiki
according

to Eq. (4). The algorithm for solving {αip} is involved in Algorithm 1. Note in

Algorithm 1, when we find t, we have λi − φit > 0 and λi − φit+1 ≤ 0. The former

is obvious. The latter is because at previous iteration, λi =
2γ+

∑t+1
p=1 φip

t+1 ≤ φit+1,

which gives 2γ +
∑t+1

p=1 φip ≤ (t + 1)φit+1. Then 2γ +
∑t

p=1 φip ≤ tφit+1 and
2γ+

∑
t
p=1

φip

t
≤ φit+1. Thus λi − φit+1 ≤ 0.
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