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Summary
In this supplementary material, we provide more experimental results on the per-

formance of the compared methods on a generic PPIN which is used to generate the

tissue-specific PPINs [1], the effects of a parameter on the selectivity performance

of WCRstar, and the p-values of paired t-test.

More Results on Accuracy Evaluation
In this section, we provide the results of the baseline methods on a generic PPIN

which was used to generate tissue-specific PPINs [1]. The results are shown in Table

1, which can be compared to the results of Table 2 in the paper. Comparing the

results on the tissue-specific PPINs and the generic PPIN, the performance of all

baseline methods are reduced using the generic PPIN, except CIPHER-DN. This is

consistent with the results in [1]. The reason for the better performance of CIPHER-

DN on the generic PPIN may be that the generic PPIN is more connected than the

tissue-specific PPINs, increasing the chance that CIPHER-DN successfully searches

neighboring genes of known disease genes (note CIPHER-DN is a neighborhood

based method [2]). However, the performance of CIPHER-DN on the generic PPIN

is still not competitive.

We also provide the results of ProDiGe [3], a supervised link prediction method,

in Table 2. The results in Table 2 can be compared with the results of Table 2 in

the paper. The authors of [4] have shown that CATAPULT performs better than

ProDiGe, this is consistent with our results. From Table 2, we observe that ProDiGe

works better on the generic PPIN than on the tissue-specific PPINs. The possible

reason is that ProDiGe is sensitive to the number of training examples (i.e., the

number of known disease-gene associations), which is less in a tissue-specific PPIN

than in the generic PPIN, since a tissue-specific PPIN contains a subset of genes

of the generic PPIN which are specific to the tissue. This makes ProDiGe difficult

to train a good link prediction model on the tissue-specific PPINs and results in

inferior performance.

Selectivity of Parameter γ of WCRstar
As mentioned in the paper (Sec. Weighted CrossRankStar) and in the Additional

file 3 (Sec. Optimization Solution to JWCRstar), the parameter γ in the objec-

tive function JWCRstar relates to the selectivity of Algorithm WCRstar. Figure



Ni et al. Page 2 of 3

Table 1 AUC values of the baseline methods on the generic PPIN. The p-value ranges:
*0.005 ∼ 0.05, **0.0005 ∼ 0.005, ***< 0.0005, which represent the significance of
performance difference.

Method AUC50 AUC100 AUC300 AUC500 AUC700 AUC1000
CIPHER-DN 0.2273*** 0.2460*** 0.2738*** 0.2896*** 0.3049*** 0.3350***
CIPHER-SP 0.1750*** 0.2160*** 0.2804*** 0.3060*** 0.3201*** 0.3351***
RWRH 0.2175*** 0.2748*** 0.3578*** 0.4087*** 0.4425*** 0.4801***
PRINCE 0.2440*** 0.2886*** 0.3602*** 0.3983*** 0.4271*** 0.4616***
BIRW 0.2256*** 0.2898*** 0.3846*** 0.4328*** 0.4664*** 0.5020***
Katz 0.1862*** 0.2471*** 0.3367*** 0.3903*** 0.4285*** 0.4704***
CATAPULT 0.1074*** 0.1598*** 0.2645*** 0.3183*** 0.3570*** 0.4050***

Table 2 AUC value of ProDiGe. ProDiGe (g) represents the results on the generic PPIN. ProDiGe
(t) represents the results on the tissue-specific PPINs. The p-value ranges: *0.005 ∼ 0.05,
**0.0005 ∼ 0.005, ***< 0.0005, which represent the significance of performance difference.

Method AUC50 AUC100 AUC300 AUC500 AUC700 AUC1000
ProDiGe (g) 0.2126*** 0.2359*** 0.2520*** 0.2605*** 0.2659*** 0.2744***
ProDiGe (t) 0.0396*** 0.0403*** 0.0407*** 0.0408*** 0.0408*** 0.0408***
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(a) γ = 0.005
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(b) γ = 0.007
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(c) γ = 0.009
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(d) γ = 0.011
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(e) γ = 0.013
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(f) γ = 0.015

Figure 1 Effects of parameter γ on the selectivity of WCRstar.

1 shows the learned weights {αip} and the corresponding ranking inconsistencies

{Φ′

cross(ri∗, rip)} of a random validation run by various values of γ. The datasets are

the same as those in the paper (Sec. Automatically Inferring Weights of Auxiliary

Networks). The learned weights are sorted in decreasing order.
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Table 3 The p-values of paired t-test between the AUC values of CRstar and each
other method in the first two panels of Table 2 (i.e., network models Heterogeneous
network (or HN), NoN and NoSNa) in the paper.

Network Model Method AUC50 AUC100 AUC300 AUC500 AUC700 AUC1000

HN

CIPHER-DN 1.59e−04 1.28e−07 4.15e−14 2.74e−18 4.03e−22 1.09e−25

CIPHER-SP 5.92e−06 2.17e−06 1.46e−07 3.07e−09 1.19e−10 9.55e−12

RWRH 1.26e−04 1.27e−05 1.05e−04 4.91e−03 3.26e−03 4.86e−03

PRINCE 2.59e−02 8.60e−03 7.41e−04 1.80e−04 3.89e−05 1.67e−04

BIRW 2.46e−02 7.30e−03 3.66e−02 6.01e−02 2.50e−02 2.06e−02

Katz 3.59e−07 7.59e−06 3.84e−03 1.54e−02 4.90e−03 1.96e−03

CATAPULT 1.51e−11 6.93e−11 5.26e−07 7.27e−06 2.20e−05 8.52e−05

NoN CR 2.75e−02 5.46e−02 1.40e−01 3.01e−01 1.80e−01 1.44e−01

NoSN CRstar − − − − − −

The results are consistent with the analysis in the Additional file 3 (Sec. Optimiza-

tion Solution to JWCRstar). The larger the value of γ, the more auxiliary networks

will be selected with nearly equal weights.

The p-values of Paired t-test
The p-values of paired t-test between the AUC values of CRstar and each other

method in the first two panels of Table 2 (i.e., network models Heterogeneous net-

work (or HN), NoN and NoSNa) in the paper are summarized in Table 3. Note that

each method has a vector of AUC values from the leave-one-out cross validation.

Each entry in the vector comes from one validation run, that is, the AUC value for

one test gene. Each time, the paired t-test is performed between the AUC vector

generated by CRstar and the one generated by one of other methods.
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