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Summary

In this supplementary material, we provide the matrix form of JCR, the optimization

solution to JCR, the algorithm and the theoretical analysis of CR.

Algorithm CR

Algorithm 1: CR

Input: (1) a disease similarity network A; (2) the tissue-specific molecular networks {Gi}; (3)
the seed vectors {ei}; and (4) the parameters β and c

Output: the ranking vectors r1, ..., rh

Offline-computation: Construct G̃ and Ỹ from A and {Gi};1

Online-ranking:2

Construct the aggregated seed vector e = (eT1 , ...,eT
h
)T ;3

Initialize the aggregated ranking vector r = e;4

while not convergence do5

Update: r← ( c
1+2β

G̃+ 2β
1+2β

Ỹ)r+ 1−c
1+2β

e;6

end7

return the ranking vectors r1, ..., rh based on r8

Complexity Analysis of CR

Let ni be the number of nodes in Gi and n =
∑h

i=1 ni. Let mi be the number of

edges in Gi and m =
∑h

i=1 mi. There are O(m + hn) nonzero entries in G̃ and

Ỹ in total. Thus the offline-computation and online-ranking time complexities of

Algorithm 1 are O(m+hn) and O(T ∗(m+hn)), respectively, where T ∗ is the total

number of iterations. Since we need to store G̃ and Ỹ, thus the space complexity

is O(m+ hn).

Generally, h is much smaller than n and can be regarded as constants. Hence we

can regard the time and space complexities of Algorithm 1 as O(T ∗(m + n)) and

O(m+ n), respectively.

Matrix Form of JCR
The objective function JCR is jointly convex in r1, ..., rh. This can be shown by first

deriving its matrix form.
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Let r = (rT1 , ..., r
T
h )

T , e = (eT1 , ..., e
T
h )

T , i.e., we concatenate all ranking and seed

vectors. Let G̃ = diag(G̃1, ..., G̃h) be a diagonal block matrix. Then we have

crT (In − G̃)r+ (1− c)‖r− e‖2F =
h
∑

i=1

Θwithin(ri) (1)

where In is an n× n identity matrix and n =
∑h

i=1 ni.

Define a common gene mapping matrix Oij ∈ {0, 1}
ni×nj where Oij(x, y) = 1

if node x in Gi and node y in Gj represent the same gene; Oij = 0 otherwise.

Then Y is a block matrix whose (i, j)th block is A(i, j)Oij . Note that A(i, i) = 0.

Further, letDV = diag(dA(1)In1
, ..., dA(h)Inh

) be a diagonal matrix, where dA(i) =
∑h

j=1 A(i, j). We defineX = D
− 1

2

V
(DV−Y)D

− 1

2

V
= In−Ỹ, where Ỹ = D

− 1

2

V
YD

− 1

2

V
.

We have

rTXr =
1

2

h
∑

i,j=1

Θcross(ri, rj) (2)

According to Eq. (1) and Eq. (2), we have the following theorem.

Theorem 1 Matrix Form of JCR. JCR has the following matrix form

min
r≥0

JCR = crT (In − G̃)r+ (1− c)‖r− e‖2F + 2βrTXr (3)

Proof The proof of Theorem 1 includes two equivalence validations:

(1) crT (In − G̃)r+ (1− c)‖r− e‖2F =
∑h

i=1 Θwithin(ri)

(2) r
T
Xr = 1

2

∑h
i,j=1 Θcross(ri, rj)

Since the equivalence (1) is obvious, we only need to prove the equivalence (2).

According to the definition of X and r, we have

rTXr = rT Inr− rT Ỹr =
h
∑

i=1

rTi Ini
ri −

h
∑

i,j=1

rTi Ỹijrj (4)

where Ỹij ∈ R
ni×nj

+ is the (i, j)th block of Ỹ. Note Ỹii = 0 (1 ≤ i ≤ h). Then let

(DV)i be the ith diagonal block of DV and Yij be the (i, j)th block of Y. Recall

Yij = A(i, j)Oij . We have

rTXr =
1

2

( h
∑

i=1

rTi
√

dA(i)
(DV)i

ri
√

dA(i)
− 2

h
∑

i,j=1

rTi
√

dA(i)
Yij

rj
√

dA(j)
+

h
∑

j=1

rTj
√

dA(j)
(DV)j

rj
√

dA(j)

)

Let DY be the degree matrix of Y and (DY)i be the ith diagonal block of DY.

Define DYij
to be the degree matrix of Yij (note the nonzero diagonal values

of DYij
are A(i, j)). Then (DY)i =

∑h

j=1 DYij
. Define D̄Yij

to be an ni × ni

diagonal matrix s.t. DYij
+ D̄Yij

= A(i, j)Ini
. Then let (D̄Y)i =

∑h
j=1 D̄Yij

, we
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have (DV)i = (DY + D̄Y)i. Thus

rTXr =
1

2

( h
∑

i=1

rTi
√

dA(i)
(DY + D̄Y)i

ri
√

dA(i)
− 2

h
∑

i,j=1

rTi
√

dA(i)
Yij

rj
√

dA(j)

+
h
∑

j=1

rTj
√

dA(j)
(DY + D̄Y)j

rj
√

dA(j)

)

=
1

2

( h
∑

i,j=1

rTi
√

dA(i)
DYij

ri
√

dA(i)
− 2

h
∑

i,j=1

rTi
√

dA(i)
Yij

rj
√

dA(j)

+
h
∑

j,i=1

rTj
√

dA(j)
DYji

rj
√

dA(j)
+

h
∑

i,j=1

rTi
√

dA(i)
D̄Yij

ri
√

dA(i)
+

h
∑

j,i=1

rTj
√

dA(j)
D̄Yji

rj
√

dA(j)

)

=
1

2

h
∑

i,j=1

A(i, j)

(

rTi (Iij)
√

dA(i)

ri(Iij)
√

dA(i)
− 2

rTi (Iij)
√

dA(i)

rj(Iij)
√

dA(j)
+

rTj (Iij)
√

dA(j)

rj(Iij)
√

dA(j)

+
rTi (Īij)
√

dA(i)

ri(Īij)
√

dA(i)
+

rTj (Īji)
√

dA(j)

rj(Īji)
√

dA(j)

)

=
1

2

h
∑

i,j=1

A(i, j)

(

‖
ri(Iij)
√

dA(i)
−

rj(Iij)
√

dA(j)
‖2F + ‖

ri(Īij)
√

dA(i)
‖2F + ‖

rj(Īji)
√

dA(j)
‖2F

)

=
1

2

h
∑

i,j=1

Θcross(ri, rj)

This completes the proof.

Optimization Solution to JCR
From Theorem 1, JCR is a quadratic function of r. We can derive a power method

to minimize JCR as follows.

∂JCR

∂r
= 2

(

(1 + 2β)In − (cG̃+ 2βỸ)

)

r− 2(1 − c)e

Using gradient descent, if we set r← r− η ∂JCR

∂r
, where η = 1

2(1+2β) , we have

r←

(

c

1 + 2β
G̃+

2β

1 + 2β
Ỹ

)

r+
1− c

1 + 2β
e (5)

Eq. (5) is a fixed-point approach to compute r that converges to the global optimal

solution of JCR. Algorithm 1 summarizes our approach according to the optimiza-

tion solution.

Theoretical Analysis of CR

In this section, we show that Algorithm 1 converges to the global minimum of JCR

by Theorem 2 and Theorem 3.

Theorem 2 Convergence of CR. Algorithm 1 converges to the closed-form

solution

r = (In −
c

1 + 2β
G̃−

2β

1 + 2β
Ỹ)−1 1− c

1 + 2β
e
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Proof First, the closed-form solution can be obtained by solving ∂JCR

∂r
= 0. Then let

M = c
1+2β G̃+ 2β

1+2β Ỹ, the CR updating rule in Eq. (5) becomes r = Mr+ 1−c
1+2β e.

Next, we show that the eigenvalues of M are in the range of (−1, 1).

Let G = diag(G1, ...,Gh) and DG be its degree matrix, then G̃ = D
− 1

2

G
GD

− 1

2

G
.

Since G̃ is similar to the stochastic matrix GD
−1
G

= D
1

2

G
G̃D

− 1

2

G
, it has eigenvalues

within [−1, 1]. Also, Ỹ is similar to the matrix YD
−1
V

= D
1

2

V
ỸD

− 1

2

V
where each

column sum of YD
−1
V

is no greater than 1.

The Gershgorin Circle Theorem [1] states that for a complex n×n matrixB, every

eigenvalue λ of B lies within at least one of the Gershgorin discs {λ : |λ − bii| ≤∑n

j=1,j 6=i |bji|} (i = 1, ..., n), where bii is the ith diagonal value of B and bji is the

(j, i)th entry ofB. Since A(i, i) = 0 for i = 1, ..., h, the diagonal values ofY are zero.

Therefore, the eigenvalues of YD
−1
V

satisfy |λ| ≤ 1, which implies the eigenvalues

of Ỹ are within [−1, 1].

One result of the Weyl’s Inequality Theorem [2] states that for matrices Ĥ,H,P ∈

Hn, where Hn is the set of n × n Hermitian matrices, if Ĥ = H + P and their

eigenvalues are arranged in non-increasing orders, i.e., λ1(Ĥ) ≥ ... ≥ λn(Ĥ),

λ1(H) ≥ ... ≥ λn(H), λ1(P) ≥ ... ≥ λn(P), then the following inequalities hold:

λn(P) ≤ λi(Ĥ)− λi(H) ≤ λ1(P), ∀i = 1, ..., n

Since G̃, Ỹ,M ∈ Hn and M = c
1+2β G̃+ 2β

1+2β Ỹ, we have

λ1(M) ≤
c

1 + 2β
λ1(G̃) +

2β

1 + 2β
λ1(Ỹ)

λn(M) ≥
c

1 + 2β
λn(G̃) +

2β

1 + 2β
λn(Ỹ)

which means the eigenvalues ofM are in the range of [− c+2β
1+2β ,

c+2β
1+2β ]. Since 0 < c < 1,

the eigenvalues of M are in the range of (−1, 1).

Based on this property, we can show the convergence of the fixed-point approach.

Without loss of generality, let r
(0) = e, and t be the iteration index (t ≥ 1).

According to the CR updating rule in Eq. (5), we have

r
(t) = M

t
e+

t−1∑

i=0

M
i 1− c

1 + 2β
e

Since the eigenvalues of M are all in (−1, 1), we have

lim
t→∞

Mt = 0, and lim
t→∞

t−1
∑

i=0

Mi = (In −M)−1

Therefore

r = lim
t→∞

r(t) = (In −M)−1 1− c

1 + 2β
e = (In −

c

1 + 2β
G̃−

2β

1 + 2β
Ỹ)−1 1− c

1 + 2β
e

which is the closed-form solution.
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Theorem 3 Optimality of CR. At convergence, Algorithm 1 gives the global

minimum of JCR defined in Eq. (3).

Proof This can be proved by showing that the function in Eq. (3) is convex. The

Hessian matrix of Eq. (3) is ▽
2JCR = 2((1 + 2β)In − (cG̃ + 2βỸ)). Following the

similar idea as in the proof of Theorem 2, we have that the eigenvalues of ▽2JCR

are no less than 2(1 − c). Since 0 < c < 1, ▽2JCR is positive-definite. Therefore,

Eq. (3) is convex.
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