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Summary

In this supplementary material, we provide the matrix form of JCRstar, the opti-

mization solution to JCRstar, the algorithm and the theoretical analysis of CRstar.

Algorithm CRstar

Algorithm 1: CRstar

Input: (1) a disease similarity network A; (2) the tissue-specific molecular networks {Gi∗} and
{Gip}; (3) the seed vectors {ei∗} and {eip}; and (4) the parameters α, β and c

Output: the ranking vectors r1∗, ..., rh∗

Offline-computation: Construct G̃, S̃ and Ỹ from A, {Gi∗} and {Gip};1

Online-ranking:2

Construct the aggregated seed vector e from {ei∗} and {eip};3

Initialize the aggregated ranking vector r = e;4

while not convergence do5

Update: r← ( c
1+α+2β

G̃+ α
1+α+2β

S̃+ 2β
1+α+2β

Ỹ)r+ 1−c
1+α+2β

e;6

end7

return the ranking vectors r1∗, ..., rh∗ based on r8

Complexity Analysis of CRstar

Let ni∗ and nip be the number of nodes in Gi∗ and Gip, respectively, and n∗ =
∑h

i=1 ni∗, n =
∑h

i=1(ni∗ +
∑ki

p=1 nip). Let mi∗ and mip be the number of edges in

Gi∗ and Gip, respectively, and m =
∑h

i=1(mi∗+
∑ki

p=1 mip). Let K = max1≤i≤h ki.

There are O(m + n + (h +K)n∗) nonzero entries in G̃, S̃ and Ỹ in total. Thus

the offline-computation and online-ranking time complexities of Algorithm 1 are

O(m + n + (h +K)n∗) and O(T ∗(m + n + (h +K)n∗)), respectively, where T ∗ is

the total number of iterations. Since we need to store G̃, S̃ and Ỹ, thus the space

complexity is O(m+ n+ (h+K)n∗).

Generally, n∗ ≤ n, h and K are much smaller than n and can be regarded as

constants. Hence we can regard the time and space complexities of Algorithm 1 as

O(T ∗(m+ n)) and O(m + n), respectively.
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Matrix Form of JCRstar
Similar to JCR, the objective function JCRstar is jointly convex in {ri∗} and {rip}.

To show this, we first derive its matrix form. In this section, we denote ni = ni∗ +
∑ki

p=1 nip and n =
∑h

i=1 ni.

Let ri = (rTi∗, r
T
i1, ..., r

T
iki

)T , r = (rT1 , ..., r
T
h )

T , ei = (eTi∗, e
T
i1, ..., e

T
iki

)T , e =

(eT1 , ..., e
T
h )

T , i.e., we concatenate all ranking and seed vectors. Let G̃i =

diag(G̃i∗, G̃i1, ..., G̃iki
), G̃ = diag(G̃1, ..., G̃h). Then the first term of JCRstar is

equivalent to

crT (In − G̃)r+ (1− c)‖r− e‖2F (1)

where In is an n× n identiy matrix.

Define Si∗,ip ∈ {0, 1}ni∗×nip to be a mapping matrix of the common genes between

Gi∗ and Gip. That is, Si∗,ip(x, y) = 1 if node x in Gi∗ and node y in Gip represent

the same gene; Si∗,ip(x, y) = 0 otherwise. Then Si ∈ {0, 1}ni×ni is defined as

Si =





































0 Si∗,i1 ... Si∗,iki

Si1,i∗ 0 0 0

... ... ... ...

Siki,i∗
0 0 0











, if ki ≥ 1

Ini∗
, if ki = 0

Then we let S = diag(S1, ...,Sh). Define a diagonal matrixDUi
= diag(kiIni∗

, Ini1
, ..., Iniki

)

if ki ≥ 1;DUi
= Ini∗

if ki = 0. ThenDU = diag(DU1
, ...,DUh

) is a diagonal matrix.

Define L = D
− 1

2

U
(DU − S)D

− 1

2

U
= In − S̃, where S̃ = D

− 1

2

U
SD

− 1

2

U
. We have

rTLr =
h
∑

i=1

ki
∑

p=1

Φ′
cross(ri∗, rip) (2)

For the third term of JCRstar, let Oij ∈ {0, 1}ni∗×nj∗ be a common gene mapping

matrix between Gi∗ and Gj∗ where Oij(x, y) = 1 if node x in Gi∗ and node y in

Gj∗ represent the same gene; Oij(x, y) = 0 otherwise. Then we define Yij ∈ R
ni×nj

+

as

Yij =





































A(i, j)Oij 0 ... 0

0 0 0 0

... ... ... ...

0 0 0 0











, if i 6= j

diag(0ni∗
, Ini1

, ..., Iniki
), if i = j

and Y ∈ R
n×n
+ is defined as a block matrix whose (i, j)th block is Yij . Define a diag-

onal matrix DVi
= diag(dA(i)Ini∗

, Ini1
, ..., Iniki

). Then DV = diag(DV1
, ...,DVh

)

is a diagonal matrix. Finally, let X = D
− 1

2

V
(DV − Y)D

− 1

2

V
= In − Ỹ, where

Ỹ = D
− 1

2

V
YD

− 1

2

V
. We have

rTXr =
1

2

h
∑

i,j=1

Φcross(ri∗, rj∗) (3)

According to Eq. (1), Eq. (2) and Eq. (3), we have the following theorem.
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Theorem 1 Matrix Form of JCRstar. JCRstar has the following matrix form

min
r≥0

JCRstar = crT (In − G̃)r+ (1− c)‖r− e‖2F + αrTLr+ 2βrTXr (4)

Proof The proof of Theorem 1 includes three equivalence validations:

(1) crT (In − G̃)r+ (1− c)‖r− e‖2F =
∑h

i=1

(

Φwithin(ri∗) +
∑ki

p=1 Φwithin(rip)

)

(2) rTLr =
∑h

i=1

∑ki

p=1 Φ
′
cross(ri∗, rip)

(3) rTXr = 1
2

∑h
i,j=1 Φcross(ri∗, rj∗)

Since the equivalence (1) is obvious, we will prove the equivalences (2) and (3),

respectively.

For the equivalence (2), since L is a diagonal block matrix, we have rTLr =
∑h

i=1 r
T
i Liri where Li is the ith diagonal block of L. We only need to show

rTi Liri =

ki
∑

p=1

Φ′
cross(ri∗, rip)

First, if ki = 0, then Si = Ini∗
and DUi

= Ini∗
according to the definition. This

implies S̃i = Ini∗
. Thus rTi Liri = rTi (Ini∗

− Ini∗
)ri = 0, which is equivalent to

∑ki

p=1 Φ
′
cross(ri∗, rip) for ki = 0.

If ki ≥ 1, for simplicity of notation, we regard the subscript i∗ as i1 and increase

all other subscripts by 1, then we have

rTi Liri =

ki+1
∑

p=1

rTipInip
rip −

ki+1
∑

p,q=1

rTipS̃ip,iqriq

where S̃ip,iq is the (p, q)th block of S̃i and S̃i is the ith diagonal block of S̃. Note

S̃ip,iq 6= 0 if p = 1 or q = 1 but p 6= q. Let DUip
(1 ≤ p ≤ ki + 1) be the pth

diagonal block of DUi
, dUip

be the diagonal value of DUip
(recall DUip

has the

same diagonal values). Then

rTi Liri =
1

2

( ki+1
∑

p=1

rTip
√

dUip

DUip

rip
√

dUip

− 2

ki+1
∑

p,q=1

rTip
√

dUip

Sip,iq

riq
√

dUiq

+

ki+1
∑

q=1

rTiq
√

dUiq

DUiq

riq
√

dUiq

)

Let DSi
be the degree matrix of Si and DSip

be the pth diagonal block of DSi
.

Define DSip,iq
to be the degree matrix of Sip,iq (note the nonzero diagonal values of

DSip,iq
are 1). Then DSip

=
∑ki+1

q=1 DSip,iq
. Define D̄Sip,iq

be an nip × nip diagonal

matrix s.t. DSip,iq
+D̄Sip,iq

= Inip
if p = 1 or q = 1 but p 6= q; D̄Sip,iq

= 0 otherwise.
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Then let D̄Sip
=

∑ki+1
q=1 D̄Sip,iq

, we have DUip
= DSip

+ D̄Sip
. Thus

rTi Liri =
1

2

( ki+1
∑

p=1

rTip
√

dUip

(DSip
+ D̄Sip

)
rip

√

dUip

− 2

ki+1
∑

p,q=1

rTip
√

dUip

Sip,iq

riq
√

dUiq

+

ki+1
∑

q=1

rTiq
√

dUiq

(DSiq
+ D̄Siq

)
riq

√

dUiq

)

=
1

2

( ki+1
∑

p=1

rTip
√

dUip

DSip

rip
√

dUip

− 2

ki+1
∑

p,q=1

rTip
√

dUip

Sip,iq

riq
√

dUiq

+

ki+1
∑

q=1

rTiq
√

dUiq

DSiq

riq
√

dUiq

+ 2

ki+1
∑

p=1

rTip
√

dUip

D̄Sip

rip
√

dUip

)

=
1

2

( ki+1
∑

p,q=1

rTip
√

dUip

DSip,iq

rip
√

dUip

− 2

ki+1
∑

p,q=1

rTip
√

dUip

Sip,iq

riq
√

dUiq

+

ki+1
∑

q,p=1

rTiq
√

dUiq

DSiq,ip

riq
√

dUiq

+ 2

ki+1
∑

p,q=1

rTip
√

dUip

D̄Sip,iq

rip
√

dUip

)

=
1

2

ki+1
∑

p,q=1

(

rTip(Iip,iq)
√

dUip

rip(Iip,iq)
√

dUip

− 2
rTip(Iip,iq)
√

dUip

riq(Iip,iq)
√

dUiq

+
rTiq(Iip,iq)
√

dUiq

riq(Iip,iq)
√

dUiq

+ 2
rTip(Īip,iq)
√

dUip

rip(Īip,iq)
√

dUip

)

=
1

2

ki+1
∑

p,q=1

(

‖rip(Iip,iq)√

dUip

− riq(Iip,iq)
√

dUiq

‖2F + 2‖rip(Īip,iq)√

dUip

‖2F
)

According to the definitions of Si, DSip,iq
and D̄Sip,iq

, Iip,iq 6= ∅ and Īip,iq 6= ∅ if

p = 1 or q = 1 but p 6= q. According to the definition of DUi
, dUip

= ki if p = 1

and dUip
= 1 if 2 ≤ p ≤ ki + 1. Therefore

rTi Liri =
1

2

ki+1
∑

q=2

(

‖ri1(Ii1,iq)√
ki

− riq(Ii1,iq)‖2F + 2‖ri1(Īi1,iq)√
ki

‖2F
)

+
1

2

ki+1
∑

p=2

(

‖rip(Iip,i1)−
ri1(Iip,i1)√

ki
‖2F + 2‖rip(Īip,i1)‖2F

)

=

ki+1
∑

p=2

(

‖ri1(Ii1,ip)√
ki

− rip(Ii1,ip)‖2F + ‖ri1(Īi1,ip)√
ki

‖2F + ‖rip(Īip,i1)‖2F
)

Replace subscript 1 to ∗, decrease other subscripts by 1, we have

rTi Liri =

ki
∑

p=1

Φ′
cross(ri∗, rip)

For the equivalence (3), according to the definition of X, we can consider X as

a block matrix with Xij ∈ R
ni×nj (1 ≤ i, j ≤ h) corresponding to each Yij as

Xij =





































−Ỹi∗,j∗ 0 ... 0

0 0 0 0

... ... ... ...

0 0 0 0











, if i 6= j

diag(Ini∗
,0ni1

, ...,0niki
), if i = j
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where Ỹi∗,j∗ = dA(i)−
1

2A(i, j)OijdA(j)−
1

2 is the (1, 1)th block of Ỹij and Ỹij is

the (i, j)th block of Ỹ. Since only the first diagonal block of Xij is nonzero, we have

rTXr =
h
∑

i=1

rTi∗Ini∗
ri∗ −

h
∑

i,j=1

rTi∗Ỹi∗,j∗rj∗ (5)

Note Ỹi∗,i∗ = 0 (1 ≤ i ≤ h). Since Eq. (5) is equivalent to Eq. (4) in the proof of

Theorem 1 (Matrix Form of JCR) in the Additional file 1 (Sec. Matrix Form of JCR),

the proof for equivalence (3) is similar to the proof of Theorem 1 in the Additional

file 1 thus omitted.

Combining equivalences (1), (2), (3), we complete the proof of Theorem 1.

Optimization Solution to JCRstar
From Theorem 1, JCRstar is a quadratic function of r. We can derive a power method

to minimize JCRstar as follows.

∂JCRstar

∂r
= 2

(

(1 + α+ 2β)In − (cG̃+ αS̃+ 2βỸ)

)

r− 2(1 − c)e

Using gradient descent, if we set r← r− η ∂J
∂r
, where η = 1

2(1+α+2β) , we have

r←
(

c

ω
G̃+

α

ω
S̃+

2β

ω
Ỹ

)

r+
1− c

ω
e (6)

where ω = 1+α+2β. Eq. (6) is a fixed-point approach to compute r that converges

to the global optimal solution of JCRstar. Algorithm 1 summarizes our approach

according to the optimization solution.

Theoretical Analysis of CRstar

In this section, we show that Algorithm 1 converges to the global minimum of

JCRstar by Theorem 2 and Theorem 3.

Theorem 2 Convergence of CRstar. Algorithm 1 converges to the closed-form

solution

r = (In −
c

ω
G̃− α

ω
S̃− 2β

ω
Ỹ)−1 1− c

ω
e

where ω = 1 + α+ 2β.

Proof First, the closed-form solution can be obtained by solving ∂JCRstar

∂r
= 0. Then

let M = c
ω
G̃ + α

ω
S̃ + 2β

ω
Ỹ, the CRstar updating rule in Eq. (6) becomes r =

Mr+ 1−c
ω

e. Next, we show that the eigenvalues of M are in the range of (−1, 1).

Let Gi = diag(Gi∗,Gi1, ...,Giki
), G = diag(G1, ...,Gh) and DG be the degree

matrix of G, then G̃ = D
− 1

2

G
GD

− 1

2

G
. Since G̃ is similar to the stochastic matrix

GD−1
G

= D
1

2

G
G̃D

− 1

2

G
, it has eigenvalues within [−1, 1]. Also, S̃ and Ỹ are similar to

the matrices SD−1
U

= D
1

2

U
S̃D

− 1

2

U
and YD−1

V
= D

1

2

V
ỸD

− 1

2

V
, respectively, where each

column sum of SD−1
U

and YD−1
V

is no greater than 1. Therefore, both S̃ and Ỹ

have eigenvalues within [−1, 1] according to the Gershgorin Circle Theorem [1].
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Since G̃, S̃, Ỹ,M ∈ Hn and M = c
ω
G̃ + α

ω
S̃ + 2β

ω
Ỹ, where ω = 1 + α + 2β,

according to the Weyl’s Inequality Theorem [2], we have

λ1(M) ≤ c

ω
λ1(G̃) +

α

ω
λ1(S̃) +

2β

ω
λ1(Ỹ)

λn(M) ≥ c

ω
λn(G̃) +

α

ω
λn(S̃) +

2β

ω
λn(Ỹ)

which means the eigenvalues of M are in the range of [− c+α+2β
1+α+2β ,

c+α+2β
1+α+2β ]. Since

0 < c < 1, the eigenvalues of M are in the range of (−1, 1).

Based on this property, we can show the convergence of the fixed-point approach

in a similar way to the proof of Theorem 2 (Convergence of CR) in the Additional

file 1 (Sec. Theoretical Analysis of CR) by letting r(0) = e and showing

r = lim
t→∞

r(t) = (In −M)−1 1− c

ω
e = (In −

c

ω
G̃− α

ω
S̃− 2β

ω
Ỹ)−1 1− c

ω
e

where t is the iteration index (t ≥ 1). This completes the proof.

Theorem 3 Optimality of CRstar. At convergence, Algorithm 1 gives the

global minimum of JCRstar defined in Eq. (4)

Proof This can be proved by showing that the function in Eq. (4) is convex. The

Hessian matrix of Eq. (4) is ▽
2JCRstar = 2((1 + α + 2β)In − (cG̃ + αS̃ + 2βỸ)).

Following the similar idea as in the proof of Theorem 2, we have that the eigenvalues

of ▽2JCRstar are no less than 2(1−c). Since 0 < c < 1, ▽2JCRstar is positive-definite.

Therefore, Eq. (4) is convex.
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