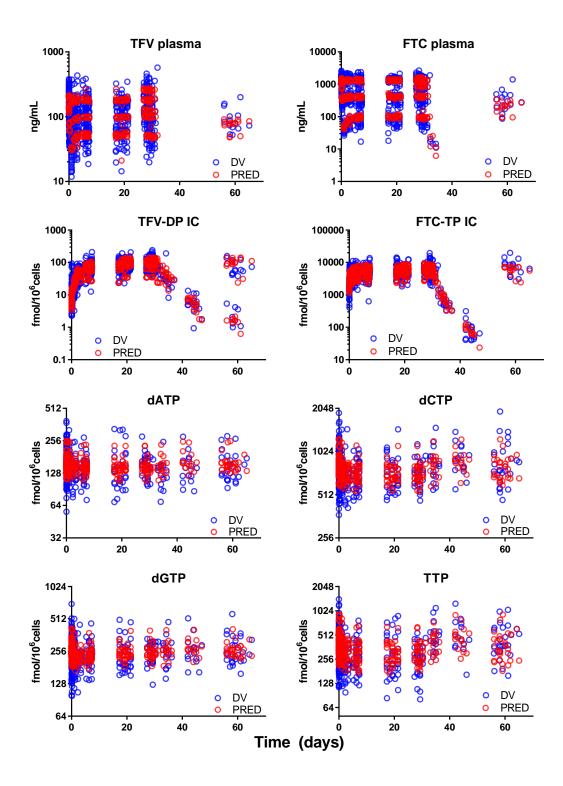
Supplements

Supplement equations:

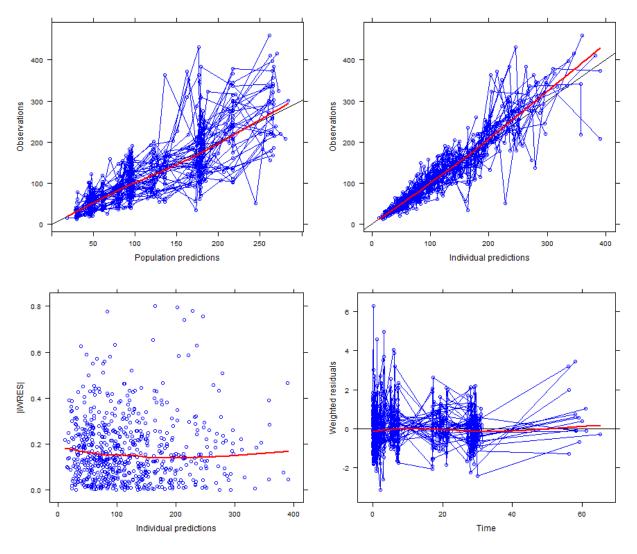
$$\frac{dA(1)}{dt} = -K_a \times A(1) \tag{A}$$

gut:

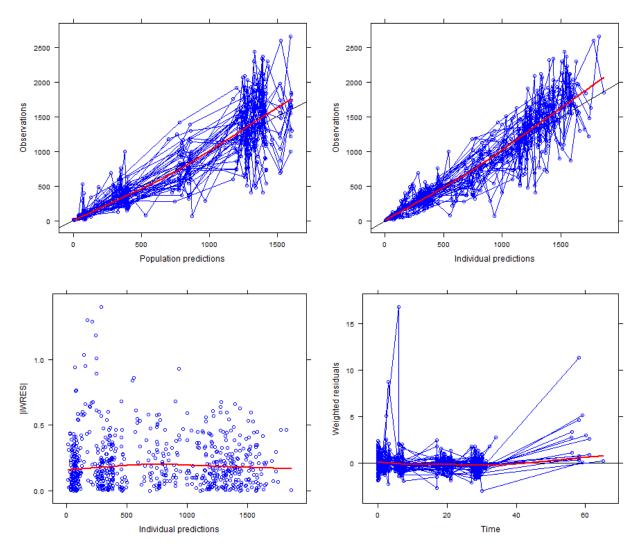
peripheral:

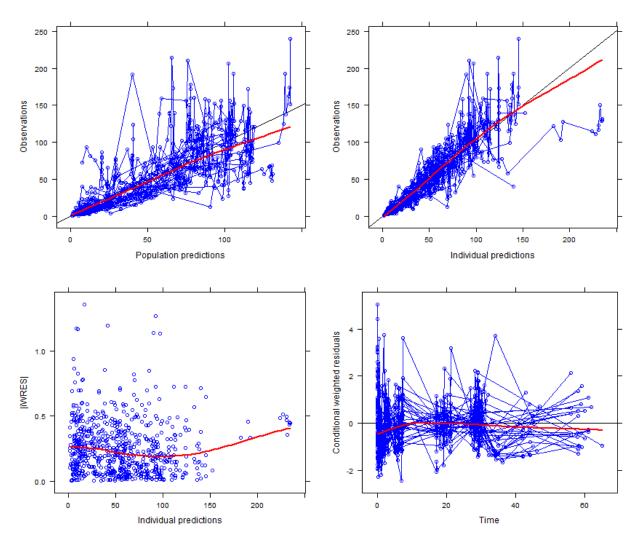

central:
$$\frac{dA(2)}{dt} = K_a \times A(1) - \frac{CL}{Vc} \times A(2) - \frac{Q}{Vc} \times A(2) + \frac{Q}{Vp} \times A(3)$$
(B)

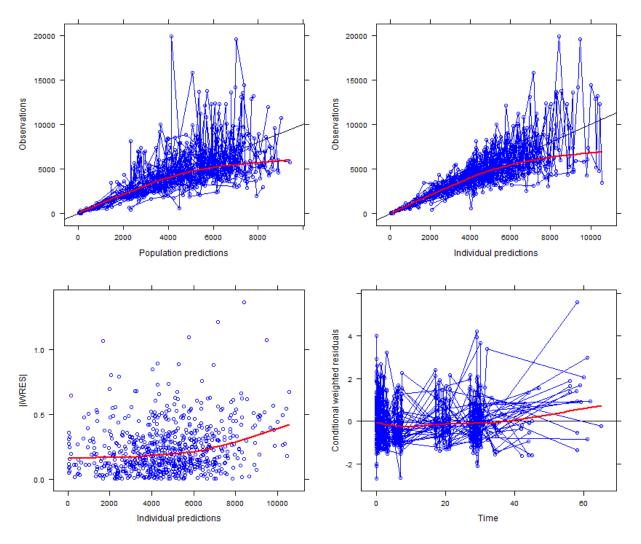
$$\frac{dA(3)}{dt} = \frac{Q}{Vc} \times A(2) - \frac{Q}{Vp} \times A(3)$$
(C)

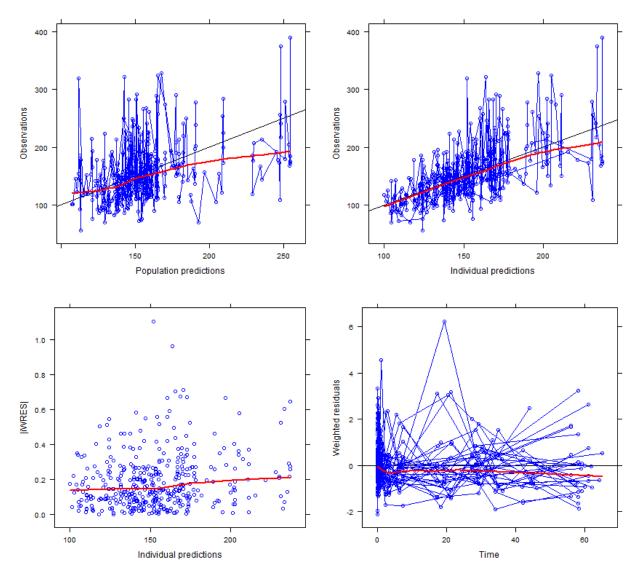

dGTP:
$$\frac{dA(7)}{dt} = K_{in}^{\circ} \times \left(1 - \frac{1}{1 + Time^{\gamma}} \times \frac{A(4)}{A(4) + EC_{50}}\right) - A(7) \times K_{out}$$
(D)

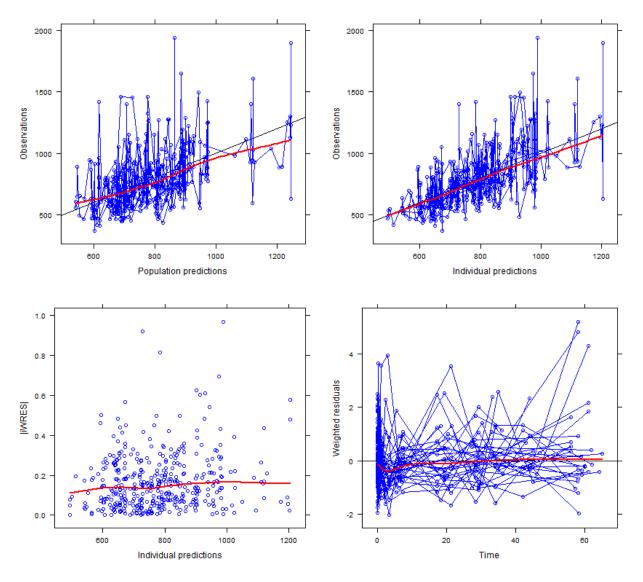
	Model Output Condition Number	Bootstrapping Success Rate	VPC Obs outside 90% Cl
TFV plasma	25.3	99.2%	7.59%
FTC plasma	79.6	94.3%	7.28%
TFV-DP IC	24.9	99.3%	1.81%
FTC-TP IC	27.8	99.5%	5.00%
dATP	6.0	95.7%	9.89%
dCTP	5.5	99.7%	10.4%
dGTP	4.4	99.2%	12.0%
TTP	7.5	99.9%	11.6%

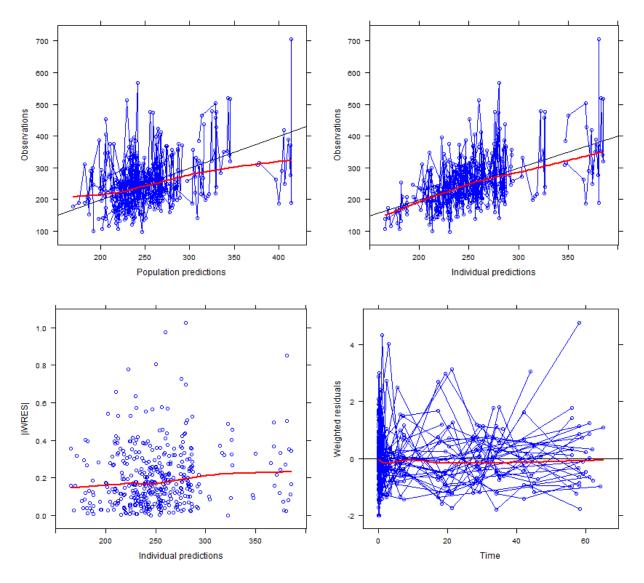

Table A. Other model evaluation results. Obs: observed values.


Figure A. Dependent variables (observed values) and predicted values vs time plots. IC: intracellular. PRED: predicted values. DV: dependent variables.


Figure B. Basic goodness of fit plots of TFV plasma model. Red line represents average values. Black line represents theoretical values. Data from the same individual are showed in blue circles and are connected by lines. *[iWRES]*: absolute values of individual weighted residuals.


Figure C. Basic goodness of fit plots of FTC plasma model. Red line represents average values. Black line represents theoretical values. Data from the same individual are showed in blue circles and are connected by lines. *[iWRES]*: absolute values of individual weighted residuals.


Figure D. Basic goodness of fit plots of intracellular TFV-DP model. Red line represents average values. Black line represents theoretical values. Data from the same individual are showed in blue circles and are connected by lines. |iWRES|: absolute values of individual weighted residuals.


Figure E. Basic goodness of fit plots of intracellular FTC-TP model. Red line represents average values. Black line represents theoretical values. Data from the same individual are showed in blue circles and are connected by lines. |iWRES|: absolute values of individual weighted residuals.

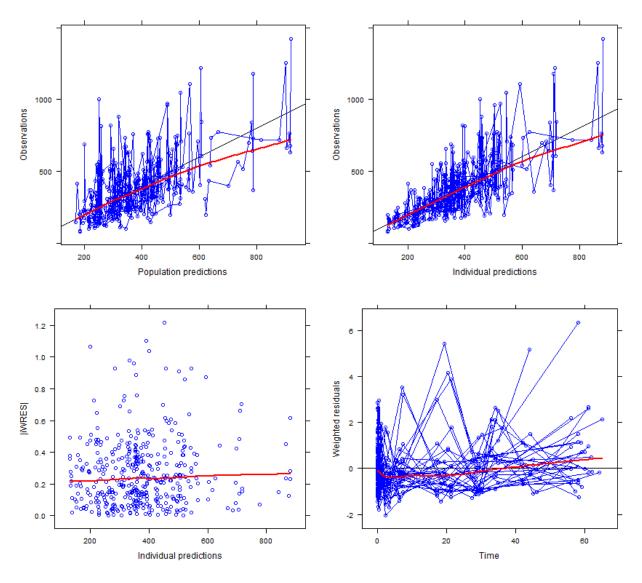

Figure F. Basic goodness of fit plots of intracellular dATP model. Red line represents average values. Black line represents theoretical values. Data from the same individual are showed in blue circles and are connected by lines. *[iWRES]: absolute values of individual weighted residuals.*

Figure G. Basic goodness of fit plots of intracellular dCTP model. Red line represents average values. Black line represents theoretical values. Data from the same individual are showed in blue circles and are connected by lines. |iWRES|: absolute values of individual weighted residuals.

Figure H. Basic goodness of fit plots of intracellular dGTP model. Red line represents average values. Black line represents theoretical values. Data from the same individual are showed in blue circles and are connected by lines. |iWRES|: absolute values of individual weighted residuals.

Figure I. Basic goodness of fit plots of intracellular TTP model. Red line represents average values. Black line represents theoretical values. Data from the same individual are showed in blue circles and are connected by lines. *\iWRES\: absolute values of individual weighted residuals.*

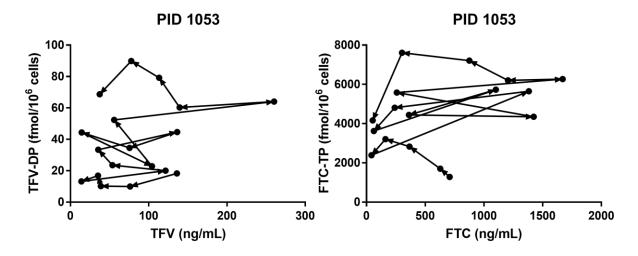


Figure J. An example of the plasma TFV/FTC vs the intracellular TFV-DP/FTC-TP "handshape"

plot. Arrows indicate the progression of time after treatment initiation.

NONMEM code:

The NONMEM code for the modeling of concentration-time data are selectively shown below.

Plasma model:

\$SUBROUTINES ADVAN4 TRANS4

\$PK

```
TVCL=THETA(1)

CL=TVCL*EXP(ETA(1))

TVV2=THETA(2)

V2=TVV2*EXP(ETA(2))

TVQ=THETA(3)

Q=TVQ*EXP(ETA(3))

TVV3=THETA(4)

V3=TVV3*EXP(ETA(4))

TVKA=THETA(5)

KA=TVKA;

S2=V2
```

Intracellular PK link model:

```
$SUBROUTINES ADVAN13 TRANS1 TOL=6
$MODEL
  NCOMP=6
  COMP = (DEPOT, DEFDOS)
  COMP = (CENTRAL)
  COMP = (RESPONSE, DEFOBS)
  COMP = (PHERIPH)
  COMP = (SATURATION)
  COMP = (RECYCLE)
$PK
  CL2 = ICL
  V2 = IV2
  KA2 = IKA
      = IQ
  Q
  V4 = IV3
  SIN = THETA(1)
  SOUT = CL2/V2
  KF = THETA(1) * EXP(ETA(1))
  SC50 = THETA(2)
  KEL = THETA(3) *EXP(ETA(2))
      = THETA(4)
  R
      = V2
  S2
  K20 = CL2/V2
  K24 = Q/V2
  K42 = O/V4
```

\$DES

```
DADT(1) = -KA2*A(1)

DADT(2) = KA2*A(1) - K20*A(2) + K42*A(4) - K24*A(2)

C2 = A(2)/V2

DADT(5) = SIN*C2-A(5)*SOUT

CS=A(5)

KR=KEL*R/100

DADT(3) = KF*C2/(1+CS/SC50)-KEL*A(3)+KR*A(6)

DADT(4) = -K42*A(4) + K24*A(2)

DADT(6) = KR*A(3) - KR*A(6)
```

Intracellular PKPD link model:

```
$SUBROUTINES ADVAN13 TRANS1 TOL=6
$MODEL
  NCOMP=7
  COMP = (DEPOT, DEFDOS)
  COMP = (CENTRAL)
  COMP = (RESPONSE)
  COMP = (PHERIPH)
  COMP = (SATURATION)
  COMP = (RECYCLE)
  COMP = (DNTP, DEFOBS)
$PK
  CL2 = ICL
  V2 = IV2
  KA2 = IKA
  Q
      = IQ
  V4 = IV3
  SIN = ISIN
  SOUT = CL2/V2
  KIN = IKIN
  SC50 = ISC50
  KOUT = IKOUT
  R
      = IR
  S2 = V2
  K20 = CL2/V2
  K24 = Q/V2
  K42 = Q/V4
  BPOP = THETA(1)
  IIV
        = THETA(2)
  RV
         = THETA(3)
  BIDV = BPOP*EXP(ETA(2)*IIV)
  IIVW = IIV**2/(IIV**2+RV**2)
  RVW
       = RV^{*}2/(IIV^{*}2+RV^{*}2)
  BRV
        = EXP(ETA(1) *RV*IIVW)
  IBASE = (BPOP*RVW + OBASE*IIVW) *BRV
  KOUT = 1
  KIN = IBASE*THETA(5)
  A 0(7) = KIN/KOUT
```

EC50 = EXP(THETA(4)) * EXP(ETA(3))

\$DES

```
DADT(1) = -KA2*A(1)

DADT(2) = KA2*A(1) - K20*A(2) + K42*A(4) - K24*A(2)

C2 = A(2)/V2

DADT(5) = SIN*C2-A(5)*SOUT

CS=A(5)

KR=KEL*R/100

DADT(3) = KF*C2/(1+CS/SC50)-KEL*A(3)+KR*A(6)

DADT(4) = -K42*A(4) + K24*A(2)

DADT(6) = KR*A(3) - KR*A(6)

DADT(7) = KIN * (1- A(3) / (EC50 + A(3))) - KOUT*A(7)
```

```
$ERROR
```

```
IF (TIME.EQ.0) THEN
IPRE=IBASE
ELSE
IPRE=A(7)
ENDIF
```

Y = IPRE * EXP (EPS (1) * RV)

```
$OMEGA
```

1 FIXED ; [P] omega(1,1) 1 FIXED ; [P] omega(2,2) ; [P] omega(3,3)

\$SIGMA

1 FIXED ; [P] sigma(1,1)