SUPPORTING INFORMATION

Design and characterization of chemically-stabilized Aβ42 oligomers

Ghiam Yamin^{1, 3, †}, Tien-Phat Vuong Huynh^{2, †}, and David B. Teplow^{3*}

¹Department of Radiology, University of California San Diego School of Medicine, San Diego, CA;

²Department of Neurology, School of Medicine, Washington University at St. Louis, St. Louis, MO;

³Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA

[†]These authors contributed equally to the manuscript *Send all correspondence to dteplow@mednet.ucla.edu

Keywords: Amyloid β-protein (Aβ), PICUP, cross-linking, oligomers

Running Title: Scanning PICUP of $A\beta$

Table S1. Occurrence frequencies of WT A β 42 oligomers of specific order determined using the Cleveland gel method. Values are percent purity \pm S.D. Bolded values are those for gel bands that displayed molecular weights matching those expected for oligomers of the nominal oligomer order loaded into the gel.

	Nominal Oligomer Order								
Gel band	1	2	3	4	5	6	7		
Monomer	79 ± 5	19 ± 5	13.1 ± 3.9	8.3 ± 2.8	2.4 ± 1	2.3 ± 1.3	2.9 ± 0.8		
Dimer	2.7 ± 0.3	67 ± 3	18.5 ± 0.9	15.5 ± 0.4	10.7 ± 0.3	5.1 ± 0.9	5.5 ± 0.8		
Trimer	10.1 ± 3	2.7 ± 0.7	43 ± 1	18.6 ± 2.6	19.5 ± 1.5	22.2 ± 2.5	12.8 ± 2.7		
Tetramer	8.3 ± 2	7.2 ± 1.3	11.2± 3.5	28 ± 2	4.6 ± 2	4.5 ± 2.1	3.8 ± 1.6		
Pentamer		3 ± 1.4	8 ± 0.8	17.5 ± 2.2	42 ± 3	7.2 ± 0.8	10.4 ± 1.7		
Hexamer		1.3 ± 0.6	5.6 ± 0.9	8.9 ± 0.5	13.3 ± 2	52 ± 4	12 ± 1.4		
Heptamer		1 ± 0.5		3.1 ± 0.6	6±0.3	4.8 ± 2.3	51 ± 4		
Octamer				0.4 ± 0.2	1.5 ± 0.6	2 ± 0.9	2.4 ± 2		
≥Nonamer					0.3 ± 0.1	0.7 ± 0.2	0.2 ± 0.2		

Table S2. Occurrence frequencies of $[Tyr^1, Phe^{10}]A\beta 42$ oligomers of specific order determined using the Cleveland gel method. Values are percent purity \pm S.D. Bolded values are those for gel bands that displayed molecular weights matching those expected for oligomers of the nominal oligomer order loaded into the gel.

	Nominal Oligomer Order								
Gel band	1	2	3	4	5	6	7		
Monomer	93 ± 1	16 ± 2.9	12.7 ± 3.9	5 ± 3	2.6 ± 1.3	2.8 ± 0.9	4.6 ± 1.2		
Dimer	3.4 ± 0.4	74 ± 3	29.7 ± 9	20.6 ± 9.1	11 ± 3.5	7.2 ± 2	7 ± 3.1		
Trimer	2.6 ± 0.8	0.5 ± 0.4	36 ± 8	19.1 ± 5.8	21 ± 1.7	18.9 ± 7.1	11.5 ± 5		
Tetramer	1.5 ± 0.5	5.6 ± 2.2	10.5 ± 8.2	28 ± 5	6.1 ± 2.6	6.9 ± 3.4	8.7 ± 5.9		
Pentamer		2.2 ± 1.6	6.6 ± 3.8	13.7 ± 2.3	43 ± 6	9.9 ± 3.2	5 ± 3		
Hexamer		1.9 ± 0.8	4 ± 3	5.4 ± 1.7	12.3 ± 4.2	36 ± 1	8.2 ± 3		
Heptamer			0.2 ± 0.1	6.9 ± 5	1.8 ± 1.4	16.6 ± 9.5	52 ± 8		
Octamer				1.2 ± 0.9	0.7 ± 0.3	1.7 ± 0.8	3.9 ± 1.7		
≥Nonamer					1.2 ± 1	0.4 ± 0.3			

Table S3. Occurrence frequencies of $[Phe^{10}, Tyr^{20}]A\beta 42$ oligomers of specific order determined using the Cleveland gel method. Values are percent purity \pm S.D. Bolded values are those for gel bands that displayed molecular weights matching those expected for oligomers of the nominal oligomer order loaded into the gel.

	Nominal Oligomer Order								
Gel band	1	2	3	4	5	6	7		
Monomer	74 ± 3	17.7 ± 4.3	20.3 ± 6.7	6.1 ± 0.5	1.9 ± 0.1	1.1 ± 0.2	1.1 ± 0.2		
Dimer	4.3 ± 2.9	64 ± 5	27.4 ± 1.2	20.1 ± 1.4	9.4 ± 0.3	4 ± 0.8	3.1 ± 2		
Trimer	11.4 ± 3.3	5.5 ± 1.6	34 ± 6	11.4 ± 1.2	9.8 ± 1	9.7 ± 3	3.8 ± 0.6		
Tetramer	9.7 ± 2.2	8.2 ± 1.7	13.6 ± 3.2	41 ± 2	5.3 ± 1.9	0.2 ± 0.2	0.7 ± 0.6		
Pentamer		2.5 ± 1.6	3.7 ± 1.8	13.7 ± 2.4	50 ± 2	10.5 ± 1.7	9.4 ± 2.6		
Hexamer		1.9 ± 1	1.3 ± 0.6	7 ± 0.9	14.2 ± 1.3	63 ± 2	10.9 ± 3		
Heptamer				1 ± 0.6	5.5 ± 0.9	7.3 ± 3.1	60 ± 2		
Octamer					2.5 ± 0.6	2.6 ± 1.7	11.6 ± 1.3		
≥Nonamer					1.5 ± 0.3	1.9 ± 0.8			

Table S4. Occurrence frequencies of $[Phe^{10}, Tyr^{30}]A\beta 42$ oligomers of specific order determined using the Cleveland gel method. Values are percent purity \pm S.D. Bolded values are those for gel bands that displayed molecular weights matching those expected for oligomers of the nominal oligomer order loaded into the gel.

	Nominal Oligomer Order							
Gel band	1	2	3	4	5	6	7	
Monomer	79 ± 2	14 ± 7.4	8.9 ± 4.2	2.7 ± 0.9	1.5 ± 0.5	1.4 ± 0.4	2.4 ± 1.2	
Dimer	6.5 ± 1	75 ± 7	24 ± 3.5	17.4 ± 2.3	6.1 ± 1.8	6 ± 2.9	4.6 ± 1.8	
Trimer	7.4 ± 1.6	5.1 ± 0.6	46 ± 5	14.6 ± 0.5	9.5 ± 2.1	3.2 ± 0.8	3.5 ± 0.6	
Tetramer	6.7 ± 1.6	6.5 ± 2	16.4 ± 1.5	51 ± 4	2.6 ± 1.2	2.8 ± 1.2	2.7 ± 0.7	
Pentamer			4.3 ± 1.6	10 ± 1.4	71 ± 3	5.9 ± 0.5	3.5 ± 1.5	
Hexamer			0.5 ± 0.2	2.4 ± 1.1	5.8 ± 3.4	77 ± 3	7.2 ± 1.3	
Heptamer						3.7 ± 1.7	76 ± 2	
Octamer				1.5 ± 0.7				
≥Nonamer					3.4 ± 0.9	0.7 ± 0.6	0.5 ± 0.4	

Table S5. Occurrence frequencies of $[Phe^{10}, Tyr^{42}]A\beta 42$ oligomers of specific order determined using the Cleveland gel method. Values are percent purity \pm S.D. Bolded values are those for gel bands that displayed molecular weights matching those expected for oligomers of the nominal oligomer order loaded into the gel.

	Nominal Oligomer Order							
Gel band	1	2	3	4	5	6	7	
Monomer	72 ± 1.5	7.3 ± 2.3	2.1 ± 0	1 ± 0.2	0.7 ± 0.3	0.8 ± 0.4	0.2 ± 0.1	
Dimer	9 ± 1.2	82 ± 0.9	7.9 ± 1.4	5.1 ± 1.2	1.7 ± 0.5	0.9 ± 0.2	0.8 ± 0.4	
Trimer	14 ± 3.6	2.3 ± 1	81 ± 2.3	10.9 ± 0.4	2.7 ± 0.6	2.6 ± 1.1	2.5 ± 0.7	
Tetramer	5 ± 2.2	8.5 ± 2.5		75 ± 2.6	1.8 ± 1.4	2.4 ± 1	2.4 ± 1.3	
Pentamer			0.7 ± 0.6		90 ± 0.6		0.9 ± 0.7	
Hexamer			7.6 ± 1.7	1 ± 0.8		92 ± 1.7		
Heptamer							92 ± 1.2	
Octamer				7.1 ± 1.4				
≥Nonamer			0.6 ± 0.5		3.2 ± 0.2	1.8 ± 1.4	1.5 ± 1.2	

Table S6. Occurrence frequencies of WT A β 42 oligomers of specific order determined using two consecutive Cleveland gels. Values are percent purity \pm S.D. Bolded values are those for gel bands that displayed molecular weights matching those expected for oligomers of the nominal oligomer order loaded into the gel.

Nominal Oligomer Order											
Gel band	1	2	3	4	5	6	7	8			
Monomer	96 ± 2	1.1 ± 0.6	0.4 ± 0.3	0.7 ± 0.5	0.5 ± 0.4						
Dimer	0.2 ± 0.2	90 ± 2	2.9 ± 0.7	11.7 ± 1.4	5.2 ± 0.4	0.6 ± 0.3	0.4 ± 0.3				
Trimer	2.6 ± 1.4	0.4 ± 0.3	90 ± 2	6.1 ± 1.3	8.3 ± 0.6	10.2 ± 1.2	5.1 ± 0.6	2.9 ± 1.8			
Tetramer	1.2 ± 0.7	4.0 ± 1.4	2.2 ± 0.3	61 ± 5	3.3 ± 1.5	2.7 ± 0.5	5.2 ± 2.6	0.8 ± 0.5			
Pentamer			0.9± 0.7	8.6 ± 3.7	59 ± 5	2.6 ± 0.4	1.3 ± 0.6	1.0 ± 0.9			
Hexamer		5.0 ± 2.6	2.9 ± 0.6	8.8 ± 2.8	10.7 ± 1.6	57 ± 4	5.1 ± 1.5	5.7 ± 3.9			
Heptamer			0.4 ± 0.3	0.6 ± 0.5	2.4 ± 1.3	15.7 ± 3.0	64 ± 5	2.0 ± 0.9			
Octamer				1.9 ± 1.3	2.4 ± 0.1	5.1 ± 0.8	9.1 ± 1.7	83 ± 2			
≥Nonamer				0.6 ± 0.4	3.2 ± 0.4	5.9 ± 0.6	9.8 ± 6.8				

Table S7. Occurrence frequencies of $[Phe^{10}, Tyr^{42}]A\beta 42$ oligomers of specific order determined using two consecutive Cleveland gels. Values are percent purity \pm S.D. Bolded values are those for gel bands that displayed molecular weights matching those expected for oligomers of the nominal oligomer order loaded into the gel.

	Nominal Oligomer Order							
Gel band	1	2	3	4	5	6	7	
Monomer	96 ± 0.7	2.0 ± 1.1	1.7 ± 0.9	0.6 ± 0.3				
Dimer	2.3 ± 1.2	96 ± 1.4	8.5 ± 2.0	4.0 ± 0.7	0.7 ± 0.3	0.2 ± 0.2	0.4 ± 0.3	
Trimer	1.0 ± 0.4	0.5 ± 0.4	87 ± 0.4	6.7 ± 0.5	3.0 ± 0.6	0.9 ± 0.4	0.8 ± 0.6	
Tetramer	0.5 ± 0.2	1.8 ± 0.4		83 ± 3	3.9 ± 2.1	2.4 ± 0.2	1.1 ± 0.9	
Pentamer			1.3 ± 0.5	2.0 ± 1.6	91 ± 2.3	2.7 ± 1.2	1.2 ± 1.0	
Hexamer			1.1 ± 0.9	1.9 ± 0.9		92 ± 1.3	3.5 ± 1.5	
Heptamer							92 ± 3	
Octamer				2.2 ± 0.4	0.1 ± 0.1			
≥Nonamer					1.7 ± 1.1	1.8 ± 1.1	1.5 ± 1.2	

SUPPORTING FIGURE LEGENDS

Fig. S1. [Tyr¹, Phe¹⁰]Aβ42 oligomer stability. [Tyr¹, Phe¹⁰]Aβ42 was cross-linked and then electrophoresed in an SDS gel (see Methods). (a) Coomassie-stained oligomer bands were excised, re-electrophoresed, and the resulting bands visualized by silver staining. Each lane number represents the expected oligomer order. (b) Image J and MagicPlot software were used to determine the occurrence frequencies (%) of oligomers of each order. Data are representative of at least three independent experiments.

Fig. S2. [Phe¹⁰, Tyr²⁰]Aβ42 oligomer stability. [Phe¹⁰, Tyr²⁰]Aβ42 was cross-linked and then electrophoresed in an SDS gel (see Methods). (a) Coomassie-stained oligomer bands were excised, re-electrophoresed, and the resulting bands visualized by silver staining. Each lane number represents the expected oligomer order. (b) Image J and MagicPlot software were used to determine the occurrence frequencies (%) of oligomers of each order. Data are representative of at least three independent experiments.

Fig. S3. [Phe¹⁰, Tyr³⁰]Aβ42 oligomer stability. [Phe¹⁰, Tyr³⁰]Aβ42 was cross-linked and then electrophoresed in an SDS gel (see Methods). (a) Coomassie-stained oligomer bands were excised, re-electrophoresed, and the resulting bands visualized by silver staining. Each lane number represents the expected oligomer order. (b) Image J and MagicPlot software were used to determine the occurrence frequencies (%) of oligomers of each order. Data are representative of at least three independent experiments.

Fig. S4. WT Aβ42 oligomer stability after two consecutive Cleveland gel procedures. WT Aβ42 was cross-linked and then electrophoresed in two consecutive SDS gels (see Methods). (a) Coomassie-stained oligomer bands were excised, re-electrophoresed, and the resulting bands visualized by silver staining. Each lane number represents the expected oligomer order. (b) Image J and MagicPlot software were used to determine the occurrence frequencies (%) of oligomers of each order. Data are representative of at least three independent experiments.

Fig. S5. $[Phe^{10}, Tyr^{42}]A\beta 42$ oligomer stability after two consecutive Cleveland gel procedures. $[Phe^{10}, Tyr^{42}]A\beta 42$ was cross-linked and then electrophoresed in two consecutive SDS gels (see Methods). (a) Coomassie-stained oligomer bands were excised, reelectrophoresed, and the resulting bands visualized by silver staining. Each lane number represents the expected oligomer order. (b) Image J and MagicPlot software were used to determine the occurrence frequencies (%) of oligomers of each order. Data are representative of at least three independent experiments.

153x234mm (300 x 300 DPI)

146x218mm (300 x 300 DPI)

166x236mm (300 x 300 DPI)

171x253mm (300 x 300 DPI)

167x227mm (300 x 300 DPI)