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Material and Methods

Study design

Nasopharyngeal wash (using Cheiron Dynamic Il apparatus) and blood samples were prospectively
obtained from patients less than 2 years of age with a bronchiolitis. Patient enrolment occurred 7 days
a week and samples were taken within 24 hours after first contact with the hospital. Only patients with
an RSV infection, as determined by PCR retrospectively, were included in the study. Exclusion criteria
were: immunodeficiency, systemic steroid treatment in the previous 2 weeks, blood transfusion,
congenital heart and chronic lung disease. Patients were followed until recovery and were
retrospectively classified as: mild for children without hypoxia, moderate for patients requiring
supplemental oxygen (oxygen saturations <90%, >10 minutes) and severe for children requiring
mechanical ventilation due to apnea, exhaustion and/or respiratory failure. Recovery samples were
obtained after 4-6 weeks, during home visits. Blood samples were obtained from healthy patients

without underlying diseases or medication subjected to elective surgery.
Sample processing and blood transcriptome profiling

Multiplex RT-PCR was performed to test the nasopharyngeal washes on 15 different viral pathogens,
as previously described (E1). Blood was collected in Tempus tubes and stored at -80°C. Total RNA
was isolated from the blood using Tempus Spin RNA isolation kit (Applied Biosystems, Bleiswijk,
The Netherlands). Globin mRNA was removed from total RNA preparations using the Globinclear kit
(Life Technologies). RNA concentrations and OD 260/280 ratios were measured with the NanoDrop
ND-1000 UV-VIS spectrophotometer (NanoDrop Technologies, Wilmington, USA). Assessment of
RNA quality and purity was performed with the RNA 6000 Nano assay on the Agilent 2100
Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). RNA (200ng) was labelled using the
MessageAmp Premier RNA Amplication kit (Applied Biosystems) and hybridized to Human Genome
U133 plus 2 gene chips (Affymetrix), according to the manufacturer’s recommendations. Image
analysis was performed using GeneChip Operating Software (Affymetrix). Microarray Suite version

5.0 software (Affymetrix) was used to generate .dat and .cel files.
Differential expression analysis

For j=1 .. nsamples and i =1, ...,p transcripts (probesets) the linear model for each

probeset was as follows:
Yl] = ﬁiStatuS]- + ailSexj + aizAgej + aBSexj * Age] + &ij (1)

Where Y; is a vector of the expression values of probeset i, Status is an indication matrix of

the samples by RSV categories and f; is a vector of coefficients of the RSV categories for



probeset i. The DE analysis was then performed by comparing the contrasts of Status for each

probeset.
Identification and evaluation of prognostic biomarkers

Given that we are interested in genomic prognostic biomarker(s), we retained a sex by age
standardized dataset by fitting the linear models in equation (1) above using limma (E2) and from
those models the sex by age standardized expression set was:

?U = BiStatusj + Eij (2)

As class labels, we combined the mild and moderate groups as one class (class 0) with focus on
predicting severe cases (class 1) from others. For clinical application, a prediction of the probability to
progress to severe disease is of primary interest than direct classification (E3). Therefore, using results
of (E4, E5) and the observed correlation distribution shown on supplementary Fig. S2 three
classification functions were chosen. These classification functions were support vector machines
(SVM) with a linear kernel (ES6,), shrunken centroids discriminant analysis (SCDA) also known as

prediction analysis of microarray (PAM) (E7) and random forest (RF) (E8).

For each classification function, a prediction model was built and evaluated using leave one out cross
validation with an inner loop of 5-fold cross validation for parameter(s) optimization as shown on Fig.
S6 step 1, optimizing the parameters by maximizing the binomial log-likelihood function. We
evaluated the prediction models using calibration score (CS) and refinement score (RS) (E5) which is
a decomposition of the Brier score. The calibration score expresses on one hand, how well the
predicted probabilities agree with the true chances of patients and it is equal to zero in case of perfect
agreement. On the other hand, the refinement score expresses how uncertain the predicted probabilities
are; that is how close the predicted probabilities are to 0.5. The closer the predicted probabilities are to
0.5, the higher the uncertainty and the poorer the model. A good class prediction model has a CS and
RS of zero. The best calibrated and refined function amongst the three classification functions (Fig.
S3) was chosen and its performance evaluated using the area under the receiver operating
characteristic (ROC) curve (AUC) as shown on Fig. S6 step 2. Whereas a ROC curve is a plot of the
true positive rate against the false positive rate for the different possible cut-points of the prediction
model, AUC measures the accuracy of the model. An AUC of 1 represents a perfect model and an

AUC of 0.5 represents a worthless model.

For the chosen classification function, the model was built on the entire dataset with a 5-fold cross
validation for parameter(s) optimization based on maximizing the binomial log-likelihood function.

The list of transcripts from the optimal parameter(s) was retained (Fig. S6, step 3) as a gene signature.



Logistic regression models

Let p; be the leave one out cross-validated predicted probability of sample i to progress to severe state

by a genomic signature, then the genomic score is given as: GS; = log (%). The general logistic

i

regression model is then written as:

T(x;) \
log (1——n(xl)) = Bo + B1P; 3)

where m(x;) is the probability of sample i to progress to severe state, P a vector or matrix of
predictive parameters (i.e. Genomic score, Age, and/or Sex) and B4 is a vector of parameter(s)
estimate(s). Let y; be the predicted value of sample i from equation (3), the probability of that sample

to progress to severe state is computed from its predicted value using the inverse logistic function as:

n(x;) = :Zlyl With these predicted probabilities, the AUCs were computed.

Validation of biomarkers

For an independent (external) validation, a subset of the Illumina RSV data set of (E9) was used. Since
the experimental data and validation data are from different platforms, we opted to link the data using
gene symbols. To achieve this, the signature transcripts were annotated to gene symbols and
unannotated transcripts were eliminated if any (Fig. S6, step 4). The lllumina data was also annotated
to gene symbols (Fig. S6, step 5) and the common genes between our annotated gene signature and the
annotated Illumina data were extracted using common gene symbols as shown in step 6 of Fig. S6 and
were referred to as the surrogate signature (step 7). The final expression set of the surrogate signature
was computed by assigning the median expression value of a gene with multiple transcripts to the
corresponding gene (step 8) and was referred to as unique surrogate signature. The final model was
then built with the unique surrogate signature expression set from the Affymetrix data (step 9) and

validated with the unigue surrogate signature expression data from Illumina (step 12).

To be able to validate with the lllumina data, all the beads corresponding to the genes in the surrogate
signature were retrieved (step 10) and multiple beads per gene were combined by calculating their
median expression values (step 11). Since the expression values of a single gene might be measured on
different scales across Illumina and Affymetrix platforms, we rescaled the lllumina data of the gene
signature to same scale as Affymetrix data (step 12). Suppose for each gene i the expression scale in
Affymetrix is in the interval [a;, bj] and [c;, di] in Illumina. To transform an expression value x;; of
gene i in sample j from Illumina to Affymetrix scale, we use the following function:

(bi —a;) X (xi; — ¢;)

(di — )

The scaled Illumina data was then predicted using our prognostic model (step 12) and the validating

f(xl-j) = a; + di * Ci (4)

ability of the model was evaluated (steps 13 and 14) of the same Fig. S6. Worth to mention is the fact



that this transformation does not affect the expression values of genes with same scale on Affymetrix
and Illumina platforms and since there is no gene with a constant expression value, the function stays
defined.

For a confirmatory analysis of our validation performance, using the chosen classification function we
built class prediction model on the entire Illumina data using LOOCV as shown on step 1 of Fig. S6.
We then compared our validation performance to the performance that can be achieved on this data
with the chosen function.
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Figure S1: Principal component analysis (PCA) of all probesets before (a) and after (b) batch adjustment. It can clearly be seen that before
batch adjustment samples from both batches cluster together on PC2 while such clusters disappear after batch adjustment.
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Figure S2: Distribution of transcripts’ pair-wise correlation values (cor) for the RSV experimental data. This figure clearly shows a low
proportion of highly correlated genes. As such, the data might be classified as lowly correlated data.
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Figure S3: A plot of the predicted probabilities and the relative frequencies of severe (Sev). Relative frequencies are computed over 10 bins

using binning on the probability interval [0, 1]. Calibration score (CS), refinement scores (RS) and accuracies (AC) are presented for each

classification function. Of the three classification functions, SVM outperforms PAM and RF as the most calibrated and refined.



|_ __________________________ ;;'P'H'E ___________________________________

T O ]

E‘T

s

=

i ]

x5

-

) R
o o7
Ty)

SIS

0 a0 100 130 200

topk
Figure S4: To extract the prognostic signature, the same SVM with a linear kernel was built with the entire experimental data and a 5-fold cross-validation
for the optimization of the cost parameter. Using the coefficients of the support vectors, the weights of the transcripts were computed and the transcripts were
ranked by their absolute weights. The same 5-fold cross-validation used to optimized parameters was used to determine which top number of transcripts
yielded a one standard error (1-SE) maximum binomial log-likelihood. The green dotted lines represent the MAX and MAX-1SE of the log-likelihoods.
The first value to fall within the band is considered the 1-SE maximum and corresponds to 95 transcripts.
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Figure S5: A simulated 2-dimensional plot of two genes named Gene 4 and Gene 10 which individually do not separate the groups (black from
red). Gene 4 can be considered differentially expressed (DE) with an absolute fold change (FC) of 0.971 but Gene 10 is definitely not DE with a
small FC of 0.096 but a combination of the two separates the group almost perfectly. This illustrates the use of non-differentially expressed genes
in class discrimination.
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outside brackets and per class sample size in brackets. Blue indicate analysis with Affymetrix data while Green indicate analysis with Illumina
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Table S1: List of genes involved in each and every pathway identified by IPA.

52

138

60

43

51

50

21
15

AHNAK, BCL3, BID, BPI, CARD11, CD1C, CD1E, CD58, CD59, CD63, CEACAM1, CEACAMS3, CLEC5A, DOKS3, F5,
FCAR, FCGR1A, FKBP1A, FPR1, GADD45A, GNAI2, HLA-DMB, HLA-DQB1, HLA-DRA, HLA-DRB1, IGHM, IL1RN,
IRF8, KIR3DL1, KLRB1, LAX1, LTB4R, LY96, LYST, MAPK14, MMP9, NFATC2, NFATC3, NFKBIZ, PIK3CB, PLSCR1,
PVRL2, RAB27A, RETN, RORA, S100A12, S100A8, SAMSN1, SBNO2, SEMA4A, SLPI, ST6GAL1, STAT3, STATSB,
TNFRSF18

AATK, ABCB1, ACVR1B, ADAM12, ADM, ARG1, BAGALTS5, BACH2, BCL3, BHLHE41, BID, BMX, BPI, BTG1,
C11orf82, CA4, CAMK2D, CD59, CEACAM1, CFLAR, CLEC5A, CMIP, CREBL2, CTSD, DNASE1L3, DRAM1, E2F1, E2F3,
EEF1D, EFHC1, EHD1, EIF3F, EIF4B, ETV6, FCER1A, FCGR1A, FKBP1A, FLNB, FURIN, G0S2, GADD45A, GLTSCR2,
GNAI2, GNB2L1, GRB10, HIST1H1C, HRK, HSPAS, IFI16, IGHM, IL10RA, IL1RN, IL23R, IRAKS, IRF8, ITGA7, KDM6B,
KIDINS220, KIF1B, KIR3DL1, KLF7, KRAS, LIMK2, LMO2, MAPK14, MEF2C, MGP, MITF, MLLT11, MMP8, MMP9,
MTF1, MYBL1, NAIP, NAPA, NBN, NCAM1, NCOA3, NDST1, NFATC1, NFATC2, NFKBIZ, PAFAH2, PALLD, PDLIM7,
PDXK, PGLYRP1, PIK3CB, PIM3, PKM, PLSCR1, PPIF, PPP3CC, PRMT2, PTGDS, PVRL2, RAB27A, RASSF6, RBBP4,
RHOG, RPL10, S100A8, SAT1, SEMA4A, SH3GLB1, SIGLEC5, SLC25A6, SLC2A3, SLC40A1, SLPI, SMADS5, SOCS3,
SOD2, SORT1, SOX5, SPIB, SRPK1, ST6GAL1L, STAT3, STATSB, TCF3, TCF4, TCF7L2, TDRDS9, TFPI, TIAM1, TLR6,
TNFRSF18, TOP2B, TPD52, TRIM2, UBE2V1, UGCG, XCL1, YY1, ZC3H12A, ZFP36L2, ZMAT3

ADM, ARG1, BACH2, BID, CD58, CD63, CEACAM1, CLEC5A, DOCKS8, ETV6, F11R, FCAR, FCER1A, FLOT1, FPR1,
FYB, GBA, GNAI2, GNB2L1, GPR183, HP, IL10RA, IL17RA, ILIRN, KDM6B, KRAS, LTB4R, LY96, LYST, MAPK14,
MLLT11, MMP8, MMP9, NDST1, NFATC1, NFATC2, NFKBIZ, PGLYRP1, PIK3CB, PRMT2, PTGDS, RAB27A, RETN,
RPL13A, S100A12, S100A8, SEMA4A, SERPINB1, SLPI, SOCS3, SOD2, STAT3, STATSB, TET2, TFPI, TIAM1, TNFRSF18,
TRIO, XCL1, ZC3H12A

ABCB1, AHNAK, BACH2, BCL3, BST1, CARD11, CEACAM1, DOCKS, F11R, FCER1A, FCGR1A, FLOT1, FYB, GNAI2,
GPR183, GPR84, HLA-DQB1, IGHM, IL10RA, IL23R, IRF8, KLRB1, LAX1, LTB4R, LY96, MMP9, NFATC1, NFATC2,
NFKBIZ, RHOG, SAMSN1, SEMA4A, SERPINB1, SH2D1B, SLPI, SPPL2A, ST6GAL1, STAT3, STAT5B, TAPBP, TCF4,
TLR6, TNFRSF18

AHNAK, ARG1, B3GNTS5, BCL3, CARD11, CD58, CD59, CEACAM1, CFLAR, CTSD, DOCKS, E2F1, FKBP1A, FYB,
GADDA45A, GNAI2, GPR183, HLA-DQB1, HLA-DRB1, HLA-DRB3, HSPAS8, IGHM, IL10RA, IL1IRN, IRF8, KLRB1, KRAS,
LY96, MAPK14, MEF2C, MMP9, MYBL1, NFATC1, NFATC2, NFATC3, PCYT1A, PIK3CB, PIM3, PLEKHA1, RHOG,
SAMSNL, SLPI, SOCS3, SOXS5, SPIB, ST6GAL1, STAT3, STATSB, TCF3, TNFRSF18, XCL1

AHNAK, ARG1, B3GNTS5, BCL3, CARD11, CD58, CD59, CEACAM]1, CFLAR, CTSD, DOCKS, E2F1, FKBP1A, FYB,
GADDA45A, GNAI2, GPR183, HLA-DQB1, HLA-DRB1, HLA-DRB3, HSPA8, IGHM, IL1RN, IRF8, KLRB1, KRAS, LY96,
MAPK14, MEF2C, MMP9, MYBL1, NFATC1, NFATC2, NFATC3, PCYT1A, PIK3CB, PIM3, PLEKHAL, RHOG, SAMSN1,
SLPI, SOCS3, SOX5, SPIB, ST6GAL1L, STAT3, STATSB, TCF3, TNFRSF18, XCL1

B3GNT5, BACH2, BCL3, BST1, CARD11, CLEC4D, DOCKS8, FCGR1A, GADD45A, GNAI2, HLA-DQB1, IGHM, LAX1,
MYBL1, NFATC1, NFATC2, RFTN1, SAMSNL1, SPIB, SPPL2A, ZC3H12A

CARD11, CD59, CD9%, CEACAM1, CFLAR, DOCKS, FCGR1A, HLA-DRB1, KIR3DL1, KLRB1, NFATC1, NFATC2,



15
15

13

33

RAB27A, STATSB, XCL1

E2F1, PPIF, STAT3
ABCB1, GBA, UGCG

ABCB1, GBA, UGCG

B3GNT8, DYRK2, GRB10, GYG1, HS3ST3B1, IL1IRN, KRAS, NDST1, PCYT1A, PPP1R3D, RETN, SOCS3, STAT3,
TCF7L2, TNFAIP6

ABCB1, B3GNTS5, BACH2, BCL3, CARD11, E2F1, HLA-DQB1, IGHM, IL1RN, IRF8, LYST, NFKBIZ, SPIB, STATSB, TCF3
CD1C, CD1E, CLEC4D, CTSD, FCGR1A, IGHM, MAPK14, SEMA4A, TAPBP

ABCB1, UGCG

ABCB1, UGCG

BCL3, C11orf82, DYRK2, GADD45A, IFI16, NABP1, NBN, NFATC2, SESN1, SP100, USP28, YY1, ZBTB4

ACVRI1B, ADAM12, BCL3, CRIM1, E2F1, E2F3, ETV6, FGF13, GADDA45A, IFI16, IRF8, LMO2, MAPK14, MEF2C, MITF,
MMP9, MYBL1, NCOA3, NFATC1, NFATC2, NFE2, PRMT2, RORA, SOCS3, SPIB, STAT3, STAT5B, TCF3, TCF4,
TCF7L2, TGIF1, YY1, ZBTB10

ARG1, GLS

NAPA, STXBP3

BCL3, CARDL11, EEF1D, FGF13, FKBP1A, GADD45A, GNAI2, GRB2, IGHM, IL23R, MEF2C, NDST1, RORA, S100A12,
SECTML1, SOCS3, STAT3, STAT5B, TLE1, TLR6, UBE2V1

G0S2, KRAS, PID1, PKM, PPIF, SOCS3, STAT3
G0S2, KRAS, PID1, PKM, PPIF, SOCS3, STAT3



Table S2: Differentially expressed transcripts for the three contrasts and those that were included in the prognostic signature (shaded in green)

. . -(Mil . . -(Mil
Mod - Mil Sev -Mil Sev - Mod se‘;w( dl & Pred Mod - Mil Sev -Mil Sev - Mod Se‘:w( dl & Pred
N°  Probeset od) : N°  Probeset od) Sign.
LFC Adj.P LFC Adj.P LFC Adj.P LFC Adj.P LFC Adj.P
1 206871_at 0.808  0.952 30 226188 at 0.279  0.952
2 203949_at 0.804  0.952 31  206208_at 0.525  9.952
3 211657_at 0.892  0.952 32 214539 _at 0.353  0.953
4 207269_at 1.284  9.952 33 231122 x_at 0.381  9.953
5 205557_at 8.777  0.952 34 2022865 at . 13; 0.987
6  203757_s_at 1.041  0.952
35 213541 s_at 0.233  0.953
7 203948_s_at 0.828  0.952
36 209651 at 0.016  0.998
8 231688_at 1.574  0.952
37 223767 at 0.746  0.952
9 207341_at 0.352  0.957
38 206464_at 0.599  9.952
10 207384 at 0.522  0.952
39  207802_at 0.768  0.952
11 212531 at 0.965  0.952
40  200696_s_at 0.198  9.959
12 207329_at 1.173  9.952
41 209498_at 1.098  9.952
13 206676_at 1.145  0.952
14 227140_at 0.219  0.960 42 | 225207 at 6.231 297
15 210254 at 0.740  0.952 43 1554892_a_at  ©.711  0.952
16  214575_s_at 0.427  0.957 44 220496_at 0.239  0.962
17 220570_at 0.347  0.960 45  1553952_at 0.217  9.958
18 203021_at 0.515  0.952 46 1553605_a_at  ©.355  0.959
19 202018_s_at 1.284 0.952 47 203725_at 0.297 0.952
20 206851 at 0.624  0.952 48  206440_at 0.545  0.952
21 205653_at 8.562  0.952 49 1553177 at 0 24; 0.957
22 235816_s_at 8.337  0.952
50  206697_s_at 1.857  9.952 1.277  0.069
23 205033_s_at 1.043  0.952
51 206655_s_at - 0.993
24 203936_s_at 1.242  0.952 0.075
25 212768 s at 2.289 9.952 52 208470_s_at 1.178 0.952 1.359 0.079 --
26 225782_at 0.335  0.952 53 220001 at 0.443 | 0.952 --
Se esessat  oco 0952 1305 | e8| o0 0.0 |iiess
27 231093 at 0.156  0.967
55 227297 at 0.273  0.957 --
28 205513 at 0.985  0.952

29 219890_at 0.906 0.952




N°

57
58
59
60
61
62
63
64

65

66
67
68
69
70
71

72

73
74

75

76
77
78
79
80
81
82

83

84
85

Probeset

241652_x_at
205040_at
205110_s_at
205041_s_at
205627_at
202252_at
201061_s_at

200999_s_at

209823_x_at

229934_at
220000_at

211889_x_at
211883_x_at
222071_s_at

202948_at

216956_s_at

211372_s_at

208168_s_at

220646_s_at

235764_at
217977_at
227929_at
227889 _at
201060_x_at
205403_at

204614_at

206493_at

205863_at

226726_at

Q.

S

Mod - Mil
LFC Adj.P
594  0.952
.651  0.952
.647  0.952
.777  8.952
.413 0.952
.296  0.952
.490  0.952
.443 0.952
.335 0.952
731 0.952
.605 0.952
.637  0.952
.728  0.952
.369  0.952
.586  0.952
.26; 0.958
.843 0.952
234 08.959
.21; 0.965
.665 0.952
.468  0.952
.662  0.952
.759  ©8.952
.592  ©.952
.014  08.952
.447  0.952
.07; 0.994
.550  ©8.952
471 ©.952

. Sev-(Mil &
Sev -Mil Sev - Mod Mod) Pred.
LFC Adj.P LFC Adj.P LFC Adj.P

0.697 0.081

0.753 0.068

0.658 0.072

0.518 0.232
0.825 0.086
0.962 0.076
0.859 0.110
0.719 0.058

0.859 0.080

1.012 0.115

0.951 0.079

N°

87
88
89

920

91
92
93
94
95

96

97
98
99
100
101

102

103
104
105
106
107
108
109
110
111
112
113

114

Probeset

224480_s_at
206576_s_at
240027_at

222833_at

215118_s_at

206177_s_at
1553518_at
228648_at
214465_at

220615_s_at

37145_at

206157_at
209369_at
206522_at
1553604 _at

213478_at

205495_s_at

1560527_at
211275_s_at
210244 _at
232958_at
200998_s_at
1553723_at
218660_at
219938_s_at
221485_at
209238_at

210004_at

201110_s_at

Mod - Mil
LFC Adj.P
0.554  9.952
0.660  ©.952
0.490  9.952
0.536  0.952
0.070  ©.994
0.527  0.957
0.187  0.977
0.956  0.952
0.353  9.953
0.532  9.952
a.19i 0.977
0.177  0.969
1.156  9.952
1.104  9.952
0.309  9.953
0.347  0.952
a.zaé 0.974
0.907  0.952
0.487  0.952
0.779  9.952
0.655 0.952
0.321  9.952
0.767  0.952
0.627  0.952
0.452  0.952
0.576  0.952
0.616  0.952
0.436  0.952
0_27; 0.960

Sev-(Mil &

Sev -Mil Sev - Mod Mod)

LFC Adj.P LFC Adj.P LFC Adj.P

0.123

0.194

1.539 0.052

0.611 0.318

0.541 0.430

0.728 0.077

0.778 0.122




N°

115
116
117

118

119
120

121

122
123
124
125
126

127

128

129

130
131
132
133
134
135
136
137
138

139

140
141
142
143

Probeset

203814_s_at
1562289_at

209395_at

206494_s_at

201554_x_at

202391_at

211734_s_at

231886_at
266_s_at
227236_at
220945_x_at

220404_at

223836_at

220088_at

206641_at

206111_at
228285_at
220416_at
206515_at
224412 s_at
220603_s_at
202499_s_at
209396_s_at

227250_at

230083_at

1556185_a_at
224707_at
215223_s_at

229967_at

Mod - Mil
LFC Adj.P
0.377  0.952
0.421  0.952
1.626  0.952
0'14; 0.985
0.452  0.952
0.634  0.952
9.32; 0.953
0.802  0.952
0.272  0.958
0.378  0.952
0.982  0.952
0.684  0.952
e.zgé 0.965
8.551  0.952
0_00; 0.999
0.497  0.952
8.619  0.952
0.429  0.952
1.055 0.952
0.832  0.952
0.605 0.952
0.596  0.952
1.495 0.952
8.910  0.952
e.ssé 0.952
0.955 0.952
0.863 0.952
0.679  0.952
0.771  0.952

Sev-(Mil &

Sev -Mil Sev - Mod

LFC Adj.P LFC Adj.P LFC Adj.P

0.436

Mod) Pred.
Sign.

N°

144
145

147
148
149
150
151
152
153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

Probeset

211413_s_at
207896_s_at
208656_s_at
225612_s_at
215783_s_at
209930_s_at
226064_s_at
207674_at

225987_at

224327_s_at

208450_at

211163_s_at

204731 _at

229228 at

203290_at

209480_at

238439_at

227474_at

41469_at

203691_at

218876_at

201058_s_at

229510_at

202859_x_at

206632_s_at

232197_x_at

Mod - Mil
LFC Adj.P
0.323  9.955
0.540  0.952
0.405 0.952
0.605 0.952
0.705 0.952
0.503  0.952
0.572  0.952
0.688  0.952
0.6706  0.952
0.546  0.952
0.204  ©.984
0.919  0.952
0.25; 6.962
0.822  9.952
0.388  0.981
e.esé 0.998
0.735 0.952
0.399  ©.954
a.a1é 0.998
0.070  ©.994
0.245 0.952
0_14; 0.978
0.125 0.978
0.336  0.958
0.189  0.986
e.esé 0.989

Sev-(Mil &

Sev -Mil Mod) Pred.

Sev - Mod

LFC Adj.P LFC Adj.P LFC Adj.P

.121

.760 .146 NO
.510 .312 NO
.763 .242 NO
.506 .262 NO

.344 NO

.352

.607

1.631 0.220 5.019 0.107

0.945 0.602 0.995 0.616

0.278 6.702 0.677 0.291 0.477

0.970

0.307

0.445

0.862 0.177 0.878 0.162

0.870 0.053

0.127 0.852

0.659 0.080



-(Mil -(Mil
Mod - Mil Sev -Mil Sev - Mod Se\'lw( dl g Pred Mod - Mil Sev -Mil Sev - Mod Se"’w( dl = Pred
N° Probeset od) L N° Probeset od) L
Sign. Sign.
LFC Adj.P LFC Adj.P LFC Adj.P LFC Adj.P LFC Adj.P LFC Adj.P LFC Adj.P LFC Adj.P
170 210321_at 0.053 0.995 1.093 0.110 1.040 0.117 --
171 224225_s_at 0.216 0.982 0.517 0.552 0.301 0.784 0.409 0.518 a0 238717_at 0.003 6.999 0.443 6.201 0.440 0.264 0.442 0.072
172 244523_at 0.280 0.957 0.833 0.065 0.554 0.231 --
173 219519_s_at 9.538 0.960 1.011 0.335 0.473 0.728 0.742 0.340

174 217148 x_at 0.092 0.994 1.168 0.093 1.075 0.107 --
s s 0.321 oo -- 0.564 o --

176 213506_at 0.571 0.952 0.991 0.064 0.421 0.504 0.706 0.066
177 212592 _at 0.016 0.998 0.889 0.088 0.872 0.076
178 234764_x_at 8.129 0.988 1.075 0.101 0.946 0.145

179 239196_at 0.673 0.952

181 1569110_x_at 0.040 0.996 0.286 0.718 0.246 0.793 0.266 0.637

180 219410_at 0.146 0.967

182 208146_s_at 0.056 0.994 0.58; 0.178 0.6 4é 0.125 --
183  201242_s_at 0.3 4; 0.952  0.406  0.120 ----
184 221690_s_at e.4zé 0.952 0.67; 0.155 0_24; 0.691 e.46é 0.188
185 206343_s_at 0.199 0.981 0’21; 0.803 0’40; 0.619 0'31é 0.574

17 Haer et 0.279 0% -- 6.541 o080 --
188 2isdesat o8 o563 6.640 oo ----

189 222196_at 0.147 0.977 0.412 0.369 0.265 0.627 0.338 0.311
190 206647_at 0.142 0.990 0.797 0.322 0.656 0.462 0.727 0.208
191 210262_at 0.116 0.982 0.817 0.063 0.701 0.093 --
192 213537_at 1.061 0.952 0.272 0.687 0.789 0.165 0.259 0.592

192 zsesat 0.005 °-%% ------
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