
0 0.2 0.4 0.6 0.8 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Amount of Loss

P
as

s 
P

ro
ba

bi
lit

y

θ−protocol

XY−protocol

Supplementary Figure 1 – Loss tolerance of the original and new verifi-

cation protocols. The θ-protocol test performs better than the XY -protocol test

and is still viable after 50% loss.
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Supplementary Figure 2 – Tuning the photonic crystal fibre sources. Spectra of

the microstructured photonic crystal fiber sources. (a) Central wavelengths for source 1 (orange

line) and source 2 (blue line) with varying pump wavelength. The temperature tuning of source 2

(blue points) is also shown. (b) Spectra of signal photons (top) and idler photons (bottom) from

source 1 (orange) and source 2 (blue) tuned at 23.7◦C with a 726 nm pump.

2



Supplementary Note 1

In this section we provide further details of the θ-protocol presented in the main

text (see Fig. 1). Note that the proofs for the XY -protocol follow easily as a special

case with only two measurement settings.

Correctness of the θ-protocol

Here we prove that the n-qubit GHZ state passes the verification test with proba-

bility 1. The measurements that the parties perform in the X-Y plane are equivalent

to rotation operators around the Z axis of the Bloch sphere:

Rz(θj) =

[
1 0

0 e−iθj

]
(1)

followed by a measurement in the Pauli X basis. After the application of the

rotation operators Rz(θj) on an n-qubit GHZ state, we end up with the state
1√
2

(
|0〉⊗n + e−iΘ |1〉⊗n

)
, where Θ =

∑n
j=1 θj. When Θ = 0 (mod 2π) the shared

state written in the Pauli X basis is given by a linear summation of terms with

an even number of |−〉 states for the parties. On the other hand when Θ = π

(mod 2π) the shared state is given by a linear summation of terms with an odd

number of |−〉 states for the parties. Thus, when the parties measure their qubits

in the Pauli X basis the parity of their measurements will be zero if Θ = 0 (mod 2π)

and one if Θ = π (mod 2π). In other words, the test will always be passed with

unit probability.

Security in the Honest Model

Now we prove a lower bound for the fidelity of the shared state, when all parties

are honest, that depends on the pass probability of the test P (ρ). We will specifically

prove the following theorem:

Theorem 1 (Honest Case). Let ρ be the state shared between n parties.

If F (ρ, |Gn
0 〉) := 〈Gn

0 | ρ |Gn
0 〉, where |Gn

0 〉 is an n-qubit GHZ state, then F (ρ) ≥
2P (ρ)− 1.

Let us define a test in order to verify a ‘rotated’ GHZ state, namely |Gn
Θ〉 =

1/
√

2(|0〉⊗n + e−iΘ |1〉⊗n), where Θ ∈ [0, 2π). Here, the sum of the angles of the

parties has to comply with the condition:
∑n

j=1 θj −Θ ≡ 0 (mod π). The test that

we are interested in is the following:

n⊕
j=1

Yj =

∑n
j=1 θj −Θ

π
(mod 2) (2)

3



Let {P n
Θ, I − P n

Θ} be the POVM that corresponds to the above test. We will prove

by induction that:

P n
Θ = |Gn

Θ〉〈Gn
Θ|+

1

2
IΘ
n (3)

where IΘ
n is the projection on the space orthonormal to |Gn

Θ〉 and
∣∣Gn

Θ+π

〉
.

For n = 1 we have that P 1
Θ = |G1

θ1
〉〈G1

θ1
| so the statement holds. We assume it is

true for n and we show the statement for n+ 1.

Let {P n+1
Θ (θ1), I − P n+1

Θ (θ1)} be the POVM that corresponds to the test for a

given angle θ1. There are two cases:

1. Party 1 outputs Y1 = 0. Then, the following equality should hold:

n+1⊕
j=2

Yj =

∑n+1
j=2 θj − (Θ− θ1)

π
(mod 2) (4)

2. Party 1 outputs Y1 = 1. Then, the following equality should hold:

n+1⊕
j=2

Yj =

∑n+1
j=2 θj − (Θ− θ1 + π)

π
(mod 2) (5)

Let Θ′ ≡ Θ − θ1 (mod 2π). It is evident that the first outcome of the test is

equivalent to P n
Θ′ and the second to I − P n

Θ′ . For any given θ1, we have:

P n+1
Θ (θ1) = |G1

θ1
〉〈G1

θ1
| ⊗ P n

Θ′ +
∣∣G1

θ1+π

〉 〈
G1
θ1+π

∣∣⊗ (I − P n
Θ′) (6)

= |G1
θ1
〉〈G1

θ1
| ⊗ |Gn

Θ′〉〈Gn
Θ′ |+

∣∣G1
θ1+π

〉 〈
G1
θ1+π

∣∣⊗ ∣∣Gn
Θ′+π

〉 〈
Gn

Θ′+π

∣∣
+

1

2

(
|G1

θ1
〉〈G1

θ1
|+
∣∣G1

θ1+π

〉 〈
G1
θ1+π

∣∣ )⊗ IΘ′

n

= |Gn+1
Θ 〉〈Gn+1

Θ |+ |Φθ1〉〈Φθ1|+
1

2
I1 ⊗ IΘ′

n

where we define:

|Φa〉 =
1√
2

( ∣∣G1
a

〉 ∣∣Gn
Θ−a
〉
−
∣∣G1

a+π

〉 ∣∣Gn
Θ−a+π

〉 )
(7)

It is straightforward to verify that:

IΘ
n+1 = |Φθ1〉〈Φθ1|+ |Φθ1+π

2
〉〈Φθ1+π

2
|+ I1 ⊗ IΘ′

n (8)

where as before IΘ
n+1 is the projection on the space orthonormal to

∣∣Gn+1
Θ

〉
and∣∣Gn+1

Θ+π

〉
. Since angle θ1 is chosen uniformly at random in [0, π), we have that:

P n+1
Θ =

1

π

∫ π

0

P n+1
Θ (θ1)dθ1 (9)

=
1

π

∫ π/2

0

[
P n+1

Θ (θ1) + P n+1
Θ (θ1 +

π

2
)
]
dθ1

= |Gn+1
Θ 〉〈Gn+1

Θ |+ 1

2
IΘ
n+1
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For Θ = 0 (mod 2π), we can easily infer the basic argument of the proof, that the

test is equivalent to performing the POVM {P n
0 , I−P n

0 }. We can therefore express

any state ρ with fidelity F (ρ) to the GHZ state as ρ = F (ρ)|Gn
0 〉〈Gn

0 |+ (1−F (ρ))χ,

where χ is a 2n × 2n density matrix with zero in the place of |Gn
0 〉〈Gn

0 |. We then

have P (ρ) = Tr(P n
0 ρ) ≤ 1

2
+ F (ρ)

2
.

Security in the Dishonest Model

Figures of merit for the dishonest case. Without loss of generality, the source

generates a state
∑

r pr|r〉〈r| ⊗ |Ψr〉〈Ψr|HDE where r corresponds to some classi-

cal information controlled by the dishonest players, and HDE are respectively the

Hilbert space of the honest parties, the dishonest parties and the external environ-

ment, which no parties can control.

Here we prove a lower bound for the fidelity of the shared state, when the n− k
parties are dishonest and there are no loss in the system. Since we consider that

the dishonest parties can collaborate between themselves and with the source, any

security statement should consider that they can apply any operation Ur (possibly

depending on r) to their part of the state that works to their advantage. More

specifically, we prove the following theorem:

Theorem 2 (Dishonest Case). Let ρ =
∑R

r=1 pr|r〉〈r| ⊗ ρr be the state shared

between n parties in the space HD. If F ′(ρ) :=
∑

r pr maxUrn−k F
(
(Ik⊗U r

n−k)ρr(Ik⊗
(U r

n−k)
†), |Gn

0 〉
)
, where U r

n−k are operators on the space of the dishonest parties, then

F ′(ρ) ≥ 4P (ρ)− 3.

Proof.

Case 1 : Pure state. We first consider the case without classical information r

and without environment, i .e. where ρ is a pure state |Ψ〉〈Ψ|HD. We write

|Ψ〉 =
∣∣Gk

θ

〉
|Ψθ〉+

∣∣Gk
π+θ

〉
|Ψπ+θ〉+ |X 〉 (10)

where θ =
∑

j∈H θj (mod π) is the honest angle, H is the set of the honest parties

and
∣∣Gk

α

〉
= 1/

√
2(|0〉⊗k + eiα |1〉⊗k) for any angle α. Note that the component of

the honest parties in |X 〉 is orthogonal to both
∣∣Gk

θ

〉
and

∣∣Gk
π+θ

〉
.

The dishonest parties want to know in which of the two states
∣∣Gk

θ

〉
and

∣∣Gk
θ+π

〉
the state the honest parties share will collapse into after the measurement, and by

consequence what will be the honest output YH =
⊕

i∈H Yi. They will perform
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a Helstrom measurement on their share in order to distinguish between |Ψθ〉 and

|Ψθ+π〉. This measurement is optimal and gives the following bound:

Pr[guess YH |θ] =
1

2
+

1

2

∥∥∥|Ψθ〉〈Ψθ| − |Ψθ+π〉〈Ψθ+π|
∥∥∥ (11)

To calculate the above norm, we make use of a known property, that the trace

norm of a Hermitian matrix is equal to the sum of the absolute values of its eigen-

values. After some simple calculations we can verify that the above probability is

equal to:

Pr[guess YH |θ] =
1

2
+

1

2

√(
|||Ψθ〉||2 + |||Ψθ+π〉||2

)2 − 4|〈Ψθ|Ψθ+π〉|2

≤ 1

2
+

1

2

(( |||Ψθ〉||2 + |||Ψθ+π〉||2
)2 − 4|〈Ψθ|Ψθ+π〉|2 + 1

2

)
=

3

4
+

1

4

((
|||Ψθ〉||2 + |||Ψθ+π〉||2

)2 − 4|〈Ψθ|Ψθ+π〉|2
)

(12)

We now perform a Schmidt decomposition of
∣∣Gk

θ

〉
|Ψθ〉+

∣∣Gk
θ+π

〉
|Ψθ+π〉:∣∣Gk

θ

〉
|Ψθ〉+

∣∣Gk
θ+π

〉
|Ψθ+π〉 =

∣∣A0
θ

〉 ∣∣B0
θ

〉
+
∣∣A1

θ

〉 ∣∣B1
θ

〉
(13)

where 〈A0
θ|A1

θ〉 = 〈B0
θ |B1

θ〉 = 0. We use the following normalization: || |A0
θ〉 ||2 =

|| |A1
θ〉 ||2 = 1, || |B0

θ〉 ||2 = pθ, || |B1
θ〉 ||2 = qθ. There exist z0, z1 ∈ C such that:∣∣A0

θ

〉
= z0

∣∣Gk
θ

〉
+ z1

∣∣Gk
θ+π

〉
and

∣∣A1
θ

〉
= z∗1

∣∣Gk
θ

〉
− z∗0

∣∣Gk
θ+π

〉
(14)

where |z0|2 + |z1|2 = 1, which gives us:∣∣A0
θ

〉 ∣∣B0
θ

〉
+
∣∣A1

θ

〉 ∣∣B1
θ

〉
= (z0

∣∣Gk
θ

〉
+ z1

∣∣Gk
θ+π

〉
) |B0〉+ (z∗1

∣∣Gk
θ

〉
− z∗0

∣∣Gk
θ+π

〉
) |B1〉

=
∣∣Gk

θ

〉
(z0

∣∣B0
θ

〉
+ z∗1

∣∣B1
θ

〉
) +

∣∣Gk
θ+π

〉
(z1

∣∣B0
θ

〉
− z∗0

∣∣B1
θ

〉
)

(15)

and from Eq. (13) we have:

|Ψθ〉 = z0

∣∣B0
θ

〉
+ z∗1

∣∣B1
θ

〉
|Ψθ+π〉 = z1

∣∣B0
θ

〉
− z∗0

∣∣B1
θ

〉
(16)

Since |A0
θ〉 and |A1

θ〉 are on the same subspace as
∣∣Gk

θ

〉
and

∣∣Gk
θ+π

〉
, there exist

x ∈ R, y ∈ C such that:∣∣A0
θ

〉
= x

∣∣0k〉+ y
∣∣1k〉 and

∣∣A1
θ

〉
= y∗

∣∣0k〉− x ∣∣1k〉 (17)

where x2 + |y|2 = 1 (we can assume that x ∈ R up to a global phase on |A0〉 and

|A1〉). Then:

|z0|2 = |〈A0
θ|Gθ

k〉|2 =
1

2
|x+ yeiθ|2 (18)
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and since y ∈ C, we rewrite y = |y|eiα and get:

|z0|2 =
1

2

∣∣x+ |y|eiθ+α
∣∣2 =

1

2
(1 + 2x|y| cos(θ + α)) (19)

Using |z0|2+|z1|2 = 1, we have |z1|2 = 1
2
(1−2x|y| cos(θ+α)). Also, from x2, |y|2 ≥ 0

and x2 + |y|2 = 1, we have that x2|y|2 ≤ 1/4. This gives us:

|〈Ψθ|Ψθ+π〉|2 = (pθ − qθ)2|z0|2|z1|2 = (pθ − qθ)2 1

4
(1− 4x2|y|2 cos2(θ + α))

≥ (pθ − qθ)2 1

4
(1− cos2(θ + α)) = (pθ − qθ)2 1

4
sin2(θ + α) (20)

We then revisit Eq. (12):

Pr[guess YH |θ] ≤
3

4
+

1

4

(
(pθ + qθ)

2 − (pθ − qθ)2 sin2(θ + α)
)

(21)

Now, let us consider the optimal local operation that the dishonest parties can

perform on their state, in order to maximize their cheating probability. If the

reduced density matrices of the honest parties of the ideal state |Gn
0 〉 and the state

ρ are σH and ρH respectively, it holds that there exists a local operation R on the

dishonest state that maximizes the fidelity:

F ′(ρ) = F ((I ⊗R) |Ψ〉 , |Gn
0 〉) = F (σH , ρH) (22)

Let us decompose |Gn
0 〉 in the same orthonormal bases for the honest parties, as

we did for |Ψ〉. We have |Gn
0 〉 = |A0

θ〉 |C0〉+ |A1
θ〉 |C1〉. Then:

σH =
1

2

(
|A0

θ〉〈A0
θ|+ |A1

θ〉〈A1
θ|
)

(23)

ρH = pθ|A0
θ〉〈A0

θ|+ qθ|A1
θ〉〈A1

θ|+ Trn−k|X 〉 〈X | (24)

and we can express fidelity F ′(ρ) = Tr[
√√

ρHσH
√
ρH ]2, which gives:

F ′(ρ) =
1

2
(
√
pθ +

√
qθ)

2 =
pθ + qθ

2
+
√
pθqθ

≥ (pθ + qθ)
2

2
+ 2pθqθ = (pθ + qθ)

2 − (pθ − qθ)2

2
(25)

because for all non-negative p and q such that p + q ≤ 1, it holds that p + q ≥
(p + q)2 for p + q ≤ 1 and also that

√
pq ≥ 2pq. Let us note here that whatever

decomposition we do to the state |Ψ〉, the sum (pθ + qθ) is a constant that always

equals ‖ |Ψθ〉 ‖2 + ‖ |Ψθ+π〉 ‖2. It follows that (pθ − qθ)
2 is lower bounded by the

7



constant 2((pθ+qθ)
2−F ′(ρ)). Since θ is chosen uniformly at random, we have that:

P (ρ) =
1

π

∫ π

0

Pr[guess YH |θ] (26)

≤ 3

4
+

1

4

(
(pθ + qθ)

2 − 1

π

∫ π

0

(pθ − qθ)2 sin2(θ + α)dθ
)

(27)

≤ 3

4
+

1

4

(
(pθ + qθ)

2 + F ′(ρ)− (pθ + qθ)
2
)

(28)

≤ 3

4
+

1

4
F ′(ρ) (29)

Case 2 : No classical information, mixed state. We consider the case where

ρ =
∑

j qj|Ψj〉〈Ψj|HD. Since the two functions P (·) and F (·) are linear, we can

write

P (ρ) =
∑
j

qjP (|Ψj〉〈Ψj| ≤
3

4
+

1

4

∑
j

qjF
′(|Ψj〉〈Ψj|) =

3

4
+

1

4
F ′(ρ) (30)

Case 3 : General Case. We write ρ =
∑R

r=1 pr|r〉〈r| ⊗ ρr. We then write

P (ρ) =
∑
r

prP (ρr) =
3

4
+

1

4

∑
r

pr(F (ρr)) (31)

=
3

4
+

1

4

∑
r

pr max
Urn−k

F
(
(Ik ⊗ U r

n−k)ρr(Ik ⊗ (U r
n−k)

†), |Gn
0 〉
)

(32)

Corollary 1. Let ρ be the state shared between n parties. If F ′(ρ) := maxU F
(
(Ik⊗

Un−k)ρ(Ik⊗Un−k), |Gn
0 〉
)

= 1
2
, where U is an operator on the space of the dishonest

parties, then

1. if the parties run the θ-protocol, P (ρ|θ-protocol) ≤ 1
2

+ 1
π
.

2. if the parties run the XY -protocol, P (ρ|XY -protocol) ≤ cos2(π
8
).

Proof. We will first show the upper bound of the pass probability for the θ-protocol

and then examine the special case where the honest angle θ is either equal to 0 or

π/2. Following the derivations of Eq. (12) and Eq. (21) we have

Pr[guess YH |θ] =
1

2
+

1

2

√(
|||Ψθ〉||2 + |||Ψθ+π〉||2

)2 − 4|〈Ψθ|Ψθ+π〉|2

≤ 1

2
+

1

2

√
(pθ + qθ)2 − (pθ − qθ)2 sin2(θ + α) (33)

8



We know that S = pθ + qθ is a constant, independent of θ. From Eq. (25) and the

fact that F ′(ρ) = 1
2
, we have that 2

√
pθqθ = 1− S. We can easily infer:

(pθ − qθ)2 = S2 − 4pθqθ = 2S − 1 (34)

Eq. (33) then becomes:

Pr[guess YH |θ] ≤
1

2
+

1

2

√
S2 − (2S − 1) sin2(θ + α) (35)

It also holds that F ′(ρ) ≤ S which implies S ≥ 1
2
. When S ∈ [1/2, 1], we can

analytically show that P [ρ|θ-protocol] is maximal for S = 1. This gives

P [ρ|θ-protocol] ≤ 1

π

∫ π

0

1

2
+

1

2

√
1− sin2(θ + α)dθ =

1

2
+

1

π
≈ 0.818. (36)

Now if the parties are running the XY -protocol, then instead of integrating from

0 to π, we just need to add the cases where θ = 0 and θ = π/2. We have:

P [ρ|XY -protocol] =
1

2

[
Pr[guess YH |0] + Pr[guess YH |

π

2
]
]

(37)

≤ 1

2
+

1

4

[
cos2(α)− sin2(α)

]
(38)

Since α is a characteristic of the state, and can therefore be chosen by the source,

the above probability is maximized for α = −π/4, and is equal to cos2(π/8) ≈ 0.854.

Loss

If the Verifier is willing to accept an individual loss rate λ, then a cheating party

can profit from declaring ‘loss’ in order to increase the probability of passing the

test. We are interested to see how the two protocols behave in the presence of

loss. We concentrate on checking for genuine multipartite entanglement. Since

the dishonest parties have full control of the source, and in particular their part

(including purification), we treat the dishonest parties as a single system. That

is, we say that a source state |ψ〉H,D is genuinely multipartite entangled if it is

entangled across all bipartite cuts where D is treated as a single party (that is all

D systems are on one side of the bipartition).

Looking only at GME in this way greatly simplifies the analysis. We now wish

to bound the probability of passing the test for states which are not GME, that is,

there exists a partition such that |ψ〉H,D is separable. To bound this take all the

honest players which are on D’s side of this partition, and imagine the dishonest

party has control of them too, i.e. we have a bigger D including these (this cannot

9



but help the dishonest party pass the test). We thus concentrate on product states

of the form |H〉H ⊗ |D〉D.

The θ-protocol. Let |H〉 = α |0〉⊗k + eiθ
′
β |1〉⊗k + γ |X 〉 the state shared by the

honest players with |X 〉 orthogonal to both |0〉⊗k and |1〉⊗k and α, β ∈ R+. For a

fixed θ and using the characterization of our test, the honest players will output

YH = 0 with probability

Pr[YH = 0|θ] =
|γ|2

2
+ | α√

2
+

β√
2
ei(θ

′−θ)|2 =
1

2
+ αβ cos(θ′ − θ) (39)

The dishonest parties want to guess YH . They will guess YH = 0 when cos(θ′−θ) ≥ 0

and YH = 1 otherwise, and they will succeed with probability 1
2

+ αβ| cos(θ′ − θ)|.
This probability is maximized for α, β = 1√

2
. Without any loss, the dishonest

players succeed with probability:

1

π

(∫ π

0

1

2
+

1

2
| cos(θ′ − θ)|dθ

)
=

2

π

∫ θ′+π/2

θ′
cos2(

θ

2
)dθ (40)

In the case where there is loss, the cheating players can post-select on a λ fraction

of the angles. This is the only thing they can do since their state |D〉 is unentangled

with |H〉. The worst angles are the ones close to π/2 + θ′. In that case, when the

state is tested, the cheating players pass the test with probability:

P (λ) =
2

π(1− λ)

∫ θ′+π(1−λ)/2

θ′
cos2(

θ

2
)dθ =

2

π(1− λ)

∫ π(1−λ)/2

0

cos2(
θ

2
)dθ (41)

The XY-protocol. Analyzing this protocol is done in a similar way as before. We

start from |H〉 = α |0〉⊗k + eiθ
′
β |1〉⊗k + γ |X 〉 with α, β ∈ R+.

• The honest parties receive an even number of Pauli Y measurement requests:

this corresponds to them performing a θ-test with θ = 0. This means that the

honest players output YH = 0 with probability 1
2

+ αβ cos(θ′). The optimal

dishonest strategy is to guess YH = 0 when cos(θ′) ≥ 0. Otherwise, they guess

YH = 1. This overall strategy will succeed with probability 1
2

+ αβ| cos(θ′)|.
Notice that this is maximized for α, β = 1√

2
which gives Pr[pass test|even Y ] =

1
2

+ | cos(θ′)|
2

.

• The honest parties receive an odd number of Pauli Y measurement requests:

this corresponds to them performing a θ-test with θ = π/2. Similarly as

above, we can show that Pr[pass test|odd Y ] = 1
2

+ | cos(θ′+π/2)|
2

= 1
2

+ | sin(θ′)|
2

.

In the case when there is no loss, the pass probability of state |H〉 is maximised

for θ′ = π/4, since for both measurement settings of the honest parties, the pass

probability is cos2(π/8) ≈ 0.854. For 50% loss, the pass probability of state |H〉
is maximised for θ′ = 0, since whenever the dishonest party is asked to measure in

10



the Pauli Y basis, he declares loss, resulting in a pass probability equal to 1. For

any amount of loss between these two values, the optimal dishonest strategy is a

probabilistic mixture of the two pure strategies:

• With probability 2λ the source sets θ′ = 0, and whenever the dishonest party

receives Y , he declares loss.

• With probability 1− 2λ the source sets θ′ = π/4.

Let Q(λ) be the probability that the dishonest parties pass the test, conditioned on

not declaring loss. We have:

Q(λ) =
1

1− λ
(λ · Pr[pass test|θ′ = 0, X] + (1− 2λ) · Pr[pass test|θ′ = π/4]) (42)

=
λ+ (1− 2λ) · 0.854

1− λ
(43)

Supplementary Figure 1 shows the difference in the pass probability for the two

tests when the amount of tolerated loss increases. Here, Q(λ) is plotted for the

XY -protocol test and P (λ) is plotted for the θ-protocol test.

Supplementary Note 2

State generation

The generation of photon pairs in our setup is achieved by spontaneous four-wave

mixing (SFWM) in fiber sources exploiting birefringent phase-matching (1, 2). The

fibers are strongly birefringent (∆n = 4 × 10−4) and microstructured, with the

phase-matching generating signal-idler pairs cross-polarization to the pump laser.

The waveguide contributions to the dispersion in addition to the birefringence tailor

the SFWM to the generation of naturally narrowband spectrally uncorrelated pho-

tons when pumped with Ti-Sapphire laser pulses at 726nm. This is achieved at the

flat region of the phase-matching curves upon which the idler photons (λi = 871 nm)

are group velocity matched to the pump pulse so that they become spectrally broad

(∆λi = 2.2 nm) whilst the signal photons (λs = 623 nm) are intrinsically narrow-

band (∆λs = 0.3 nm). This narrowband phase-matching results in a Joint-Spectral

Amplitude (JSA) which is highly separable for a wide range of pump bandwidths

and thus single photons of high purity can be produced. The pump bandwidth can

then be tuned to minimize the effects of deviating from the flat region at 726 nm

whilst reducing the self-phase modulation caused by short pulses, to arrive at an

optimal pump bandwidth of ∆λp = 1.7 nm.

The fiber sources are then positioned in Sagnac-loop configurations in which the

pump pulse is set to diagonal polarization and split at a polarizing beam-splitter
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(PBS), after which it is launched into the fiber in both directions simultaneously.

The 90◦ rotation of the fiber axis between its two facets results in the pump light

being strongly suppressed out of the port of the PBS it entered, whilst the generated

signal-idler pairs from each facet of the fiber are cross-polarized to the pump that

generated them, so exit from the other port to the pump. The pairs generated

from each direction traverse the same mode in reverse so on exiting the PBS they

coherently share the same spatio-temporal mode and create the state 1√
2
(|H〉s |H〉i+

eiθ |V 〉s |V 〉i) up to some phase θ.

The generation of three- and four-photon GHZ states in our setup is then achieved

by a parity check, or ‘fusion’, with post-selection (3–6). Fusion processes of this sort

require photons originating from two distinct sources to be indistinguishable in all

degrees of freedom, however the fabrication of microstructured fibres can result in

small inhomogeneities between fiber samples. To overcome these inhomogeneities

one fiber source is temperature tuned so that the spectra of the signal photons

match the spectra of the signal photons in the other fiber. This reduces the dis-

tinguishability. The spectra of the signal photons from each source were measured

for a range of pump bandwidths and Gaussians fitted to determine their central

wavelength. The second source was then temperature tuned using a Peltier cooler

to 23.7◦C (relative to the ambient 17.6◦C) to achieve optimal indistinguishability in

the spectra (see Supplementary Figure 2). It is useful to note here that despite the

inhomogeneous distribution of heat to the fiber, which results in significant broad-

ening of the idler photon, the narrowband phase-matching scheme ensures that the

signal photon remains narrowband. However, note there are still small differences

between the signal spectra that arise from inhomogeneities in the fibre and these

reduce the maximum fidelity achievable.

The generation of the four-photon GHZ state proceeds by overlapping the signal

photons from two Bell pair sources at a PBS and post-selecting the event in which

one photon is detected at each output port. On the other hand, the three-photon

GHZ state requires one of the sources to contribute just a single heralded signal

photon in the state |D〉 = 1√
2
(|H〉 + |V 〉) and post-selecting similarly. This is

achieved by pumping the second source in only one direction and rotating the

heralded signal photon with a half-wave plate.

Arbitrary local projective measurements are achieved by polarisation rotations

using pairs of half- and quarter-wave plates, followed by polarising beam splitters

(PBSs) to spatially separate the two eigenstates of polarisation, before collection

into 8 silicon avalanche photodiode detectors. Pairs of automated achromatic half-

and quarter-wave plates were calibrated to account for the chromatic deviations at

signal and idler wavelengths, and numerical methods were used to find wave plate

angles to map the input states to the states closest to the ideal projection vectors.
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Note that due to the chromatic deviations of wave plates, not all rotations can

necessarily be achieved, so to allow the Pauli bases and the X-Y equator to be

reached, appropriate approximate states were chosen by fiber polarizers for input

to the measurement stage.

Higher-order terms from sources

4-qubit GHZ

The state generated by four-wave mixing in one source in an ‘entangled configu-

ration’ can be written as (7)

|ψ〉s,i = N (|0, 0〉s,i + α(|1H , 1H〉s,i + |1V , 1V 〉s,i)
+α2(|2H , 2H〉s,i + |2V , 2V 〉s,i + |1H1V , 1H1V 〉s,i) +O(α3)), (44)

where N is a normalisation constant, |α|2 = n̄/(n̄+1) is the mean number of signal-

idler pairs generated in a pulse and
∣∣`H/V 〉k = 1√

`!
(â†H/V,k)

` |0〉k for mode k. Taking

two sources in the entangled configuration we have the starting state

|ψ〉s1,i1,s2,i2 = N (|0, 0〉s1,i1 + α(|1H , 1H〉s1,i1 + |1V , 1V 〉s1,i1)
+α2(|2H , 2H〉s1,i1 + |2V , 2V 〉s1,i1 + |1H1V , 1H1V 〉s1,i1) +O(α3))⊗
(|0, 0〉s2,i2 + α(|1H , 1H〉s2,i2 + |1V , 1V 〉s2,i2)
+α2(|2H , 2H〉s2,i2 + |2V , 2V 〉s2,i2 + |1H1V , 1H1V 〉s2,i2) +O(α3)),(45)

which gives 35 terms when expanded up to α3. Applying the PBS transformations

for the fusion: âH,s1 → âH,s1 , âV,s1 → âV,s2 , âH,s2 → âH,s2 and âV,s2 → âV,s1 , and

taking terms that have at least one photon in each mode we have the state

|ψ〉 = N (α2(|1H , 1H , 1H , 1H〉+ |1V , 1V , 1V , 1V 〉) + α3(|2H , 2H , 1H , 1H〉 (46)

+ |1H , 1H , 2H , 2H〉+ |2V , 1V , 1V , 2V 〉+ |1V , 2V , 2V , 1V 〉+
1

2
(|1H1V , 1H , 1V , 1H1V 〉

+ |1H1V , 1H1V , 1V , 1V 〉+ |1H , 1H1V , 1H1V , 1H〉+ |1V , 1V , 1H1V , 1H1V 〉)))s1,i1,s2,i2 ,

where the terms with α2 lead to the desired GHZ state and higher-order terms

with α3 cause the state to be non-ideal. Here we have not included the possibility

of further postselection depending on the measurement basis. For example, in the

H/V basis the last 4 terms can be dropped, as two photons in a single mode will

lead to both detectors from the polarisation analysis of that mode giving a click.

This is not the case for all bases however.

The fidelity of |ψ〉 with respect to the ideal GHZ state is F = 2α4/(2α4 + 5α6).

For the pump power used in our experiment of P = 7 mW in each fibre in each

direction we have n̄ = 0.05 and therefore α = 0.22, leading to a fidelity of F = 0.89.

Thus, higher-order emissions up to α3 reduce the quality of the state, as measured
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using the fidelilty, by 11%. Terms with α4 are 0.22 times smaller than those with

α3 and will therefore have a contribution of only 1 − 2%. At the pump power

used we have a rate of four-folds of 1-2 s−1. An interesting question is whether the

higher-order emissions can be used by the dishonest parties to gain an advantage

when loss is present. This is a system dependent issue which we leave for future

work. However, we note that regardless of this, by using a smaller pump power one

can reduce the impact of higher order terms on the fidelity in our setup, although

at the expense of the overall four-fold rate. For example, with P = 1 mW one can

reduce the impact on the fidelity to only 2%.

3-qubit GHZ

The state generated by four-wave mixing in one source in a ‘product configuration’

can be written as (7)

|ψ〉s,i = N (|0, 0〉s,i + α |1H , 1H〉s,i + α2 |2H , 2H〉s,i +O(α3)). (47)

Taking one source in the product configuration and the other in the entangled

configuration we have the starting state

|ψ〉s1,i1,s2,i2 = N (|0, 0〉s1,i1 + α |1H , 1H〉s1,i1 + α2 |2H , 2H〉s1,i1 +O(α3))⊗ (48)

(|0, 0〉s2,i2 + α(|1H , 1H〉s2,i2 + |1V , 1V 〉s2,i2)
+α2(|2H , 2H〉s2,i2 + |2V , 2V 〉s2,i2 + |1H1V , 1H1V 〉s2,i2) +O(α3)).

which gives 20 terms when expanded up to α3. Applying the HWP on mode s1:

âH,s1 → 1√
2
(âH,s1 + âV,s1), and the PBS transformations for the fusion: âH,s1 →

âH,s1 , âV,s1 → âV,s2 , âH,s2 → âH,s2 and âV,s2 → âV,s1 , and taking terms that have at

least one photon in each mode we have the state (conditioned on a detection of one

or more photons in mode i1)

|ψ〉 = N [
α2

√
2

(|1H , 1H , 1H〉+ |1V , 1V , 1V 〉) +
α3

√
2

(
|1H , 2H , 2H〉+ |2V , 1V , 2V 〉 (49)

+
1

2
|1H1V , 1H , 1H1V 〉+

1

2
|1V , 1H1V , 1H1V 〉+

1√
2
|2H , 1H , 1H〉+

1√
2
|1V , 2V , 1V 〉

+ |1H1V , 1V , 1V 〉+ |1H , 1H1V , 1H〉
)
]s1,s2,i2 ,

where the terms with α2 lead to the desired GHZ state and higher-order terms with

α3 cause the state to be non-ideal. Here we have again not included the possibility

of further postselection depending on the measurement basis.

The fidelity of |ψ〉 with respect to the ideal GHZ state is F = α4/(α4 + 11
4
α6). For

the pump power used in our experiment of P = 7 mW in each fibre in each direction

(with the source in the product configuration only pumped in one direction) we have

n̄ = 0.05 and therfore α = 0.22, leading to a fidelity of F = 0.88. Thus, higher-order
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emissions up to α3 reduce the quality of the state, as measured using the fidelity,

by 12%. Terms with α4 are 0.22 times smaller than those with α3 and will therefore

have a contribution of only 1 − 2%. Again, for a low pump power of P = 1 mW

one can reduce the impact of the higher order terms on the fidelity to 2%.
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