The topology of the L-arginine exporter ArgO conforms to an N_{in}-C_{out} configuration in *Escherichia coli*: Requirement for the cytoplasmic N-terminal domain, functional helical interactions and an aspartate pair for ArgO function

Amit Pathania^{1, 2}Arvind Kumar Gupta³ Swati Dubey^{1, 2} Balasubramanian Gopal³ and Abhijit A. Sardesai^{1#}

¹Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics Hyderabad, India, ²Graduate Studies, Manipal University, India and ³Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.

[#]Author for correspondence Abhijit A. Sardesai, abhijit@cdfd.org.in

SUPPLEMENTAL MATERIAL

Table S1. Plasmid list

Plasmid	Description		
»UVD2025	A modified version of nTro00A described in reference 2		
рп 1 D3023	A modified version of p11099A described in feference 2.		
pHYD2805	Derivative of the plasmid pET21b in in which $argO_{CHA}$ expression is under		
	the transcriptional control of the P_{T7} promoter, encoding ArgO bearing a		
	hemagglutinin (HA) tag appended to its C-terminus. argO _{CHA} is present in		
	the NdeI XhoI sites.		

- pHYD2835 pHYD3025 in which $argO_{CHA}$ expression is under the transcriptional control of the P_{trc} promoter, $argO_{CHA}$ is present in the NdeI SalI sites of pHYD3025 and is described in reference 2.
- pHYD2835.1 Derivative of the plasmid pHYD2835 encoding ArgO bearing the G20C amino acid substitution.
- pHYD2835.2 Derivative of the plasmid pHYD2835 encoding ArgO bearing the Q22R amino acid substitution.
- pHYD2835.3 Derivative of the plasmid pHYD2835 encoding ArgO bearing the V118E amino acid substitution.
- pHYD2835.4 Derivative of the plasmid pHYD2835 encoding ArgO bearing the D128Y amino acid substitution.
- pHYD2835.5 Derivative of the plasmid pHYD2835 encoding ArgO bearing the S156F amino acid substitution.
- pHYD2835.6 Derivative of the plasmid pHYD2835 encoding ArgO bearing the F160S amino acid substitution.
- pHYD2835.7 Derivative of the plasmid pHYD2835 encoding ArgO bearing the V118E and the I51T amino acid substitutions.
- pHYD2835.8 Derivative of the plasmid pHYD2835 encoding ArgO bearing the V118E and the A60P amino acid substitutions.
- pHYD2835.9 Derivative of the plasmid pHYD2835 encoding ArgO bearing the V118E and the V132A amino acid substitutions.

- pHYD2835.10 Derivative of the plasmid pHYD2835 encoding ArgO bearing the S156F and the I51T amino acid substitutions.
- pHYD2835.11 Derivative of the plasmid pHYD2835 encoding ArgO bearing the S156F and the A60P amino acid substitutions.
- pHYD2835.12 Derivative of the plasmid pHYD2835 encoding ArgO bearing the S156F and the V132A amino acid substitutions.
- pHYD2835.13 Derivative of the plasmid pHYD2835 encoding ArgO bearing the I51T amino acid substitution.
- pHYD2835.14 Derivative of the plasmid pHYD2835 encoding ArgO bearing the A60P amino acid substitution.
- pHYD2835.15 Derivative of the plasmid pHYD2835 encoding ArgO bearing the V132A amino acid substitution.
- pHYD2835.16 Derivative of the plasmid pHYD2835 encoding ArgO bearing the D47A amino acid substitution.
- pHYD2835.17 Derivative of the plasmid pHYD2835 encoding ArgO bearing the D47E amino acid substitution.
- pHYD2835.18 Derivative of the plasmid pHYD2835 encoding ArgO bearing the D128A amino acid substitution.
- pHYD2835.19 Derivative of the plasmid pHYD2835 encoding ArgO bearing the D128E amino acid substitution.
- pHYD2835.20 Derivative of the plasmid pHYD2835 encoding ArgO lacking the N-

terminal 28 amino acids. ArgO expressed from the P_{trc} promoter, the ORF is designated $argO_{N\Delta 28}$.

- pHYD2865 *phoA* lacking first 26 codons, present in the SmaI site of pCL1920, *phoA* can be excised by digestion with XhoI
- pHYD2868 pHYD3025 in which $mscL_{CHA}$ expression is under the transcriptional control of the P_{trc} promoter, encoding MscL bearing a hemagglutinin (HA) tag appended to its C-terminus. $mscL_{CHA}$ is present in the NdeI SalI sites of pHYD3025.
- pHYD2869 pHYD3025 in which $argO_{NHA}$ expression is under the transcriptional control of the P_{trc} promoter, encoding ArgO bearing a hemagglutinin (HA) tag appended to its N-terminus. $argO_{NHA}$ is present in the NdeI SalI sites of pHYD3025.
- pHYD2869A pHYD3025 in which *argO* expression is under the transcriptional control of the P_{trc} promoter, encoding ArgO. *argO* is present in the NdeI SalI sites of pHYD3025.
- pHYD2869B Contains *argO*_{NHA} present in the NdeI XhoI sites of pOK12.

pHYD2869B8 Derivative of pHYD2869B containing a Sal1 site engineered after the 8th natural codon of *argO*.

- pHYD2869B36 Derivative of pHYD2869B containing a Sal1 site engineered after the 36th natural codon of *argO*.
- pHYD2869B66 Derivative of pHYD2869B containing a Sal1 site engineered after the 66th

natural codon of argO.

- pHYD2869B110 Derivative of pHYD2869B containing a Sal1 site engineered after the 110th natural codon of *argO*.
- pHYD2869B146 Derivative of pHYD2869B containing a Sal1 site engineered after the 146th natural codon of *argO*.
- pHYD2869B181 Derivative of pHYD2869B containing a Sal1 site engineered after the natural codon 181 of *argO*.
- pHYD2869B201 Derivative of pHYD2869B containing a Sal1 site engineered after the natural codon 201 of *argO*.
- pHYD2869C8 Derivative of pHYD2869B8 containing *phoA* isolated as an XhoI fragment from pHYD2865 present in its SalI site.
- pHYD2869C36 Derivative of pHYD2869B36 containing *phoA* isolated as an XhoI fragment from pHYD2865 present in its SalI site.
- pHYD2869C66 Derivative of pHYD2869B66 containing *phoA* isolated as an XhoI fragment from pHYD2865 present in its SalI site.
- pHYD2869C110 Derivative of pHYD2869B110 containing *phoA* isolated as an XhoI fragment from pHYD2865 present in its SalI site.
- pHYD2869C146 Derivative of pHYD2869B146 containing *phoA* isolated as an XhoI fragment from pHYD2865 present in its SalI site.
- pHYD2869C181 Derivative of pHYD2869B181 containing phoA isolated as an XhoI

fragment from pHYD2865 present in its Sall site.

- pHYD2869C201 Derivative of pHYD2869B201 containing *phoA* isolated as an XhoI fragment from pHYD2865 present in its SalI site.
- pHYD2869D8 pHYD3025 in which a translational fusion of the codon 8 of *argO* to codon 27 of *phoA* is placed under the expression control of the P_{trc} promoter. The translational fusion was isolated as an NdeI XhoI fragment from the plasmid pHYD2869C8 and cloned into the NdeI SalI sites of pHYD3025.
- pHYD2869D36 pHYD3025 in which a translational fusion of the codon 36 of *argO* to codon 27 of *phoA* is placed under the expression control of the P_{trc} promoter. The translational fusion was isolated as an NdeI XhoI fragment from the plasmid pHYD2869C36 and cloned into the NdeI SaII sites of pHYD3025.
- pHYD2869D66 pHYD3025 in which a translational fusion of the codon 66 of *argO* to codon 27 of *phoA* is placed under the expression control of the P_{trc} promoter. The translational fusion was isolated as an NdeI XhoI fragment from the plasmid pHYD2869C66 and cloned into the NdeI SaII sites of pHYD3025.
- pHYD2869D110 pHYD3025 in which a translational fusion of the codon 110 of *argO* to codon 27 of *phoA* is placed under the expression control of the P_{trc} promoter. The translational fusion was isolated as an NdeI XhoI fragment from the plasmid pHYD2869C110 and cloned into the NdeI SalI sites of

pHYD3025.

pHYD2869D146 pHYD3025 in which a translational fusion of the codon 146 of *argO* to codon 27 of *phoA* is placed under the expression control of the P_{trc} promoter. The translational fusion was isolated as an NdeI XhoI fragment from the plasmid pHYD2869C146 and cloned into the NdeI SalI sites of pHYD3025.

- pHYD2869D181 pHYD3025 in which a translational fusion of the codon 181 of *argO* to codon 27 of *phoA* is placed under the expression control of the P_{trc} promoter. The translational fusion was isolated as an NdeI XhoI fragment from the plasmid pHYD2869C181 and cloned into the NdeI SalI sites of pHYD3025.
- pHYD2869D201 pHYD3025 in which a translational fusion of the codon 201 of *argO* to codon 27 of *phoA* is placed under the expression control of the P_{trc} promoter. The translational fusion was isolated as an NdeI XhoI fragment from the plasmid pHYD2869C201 and cloned into the NdeI SalI sites of pHYD3025.
- pHYD2869.1 Derivative of the plasmid pHYD2869 encoding ArgO lacking the last 10 amino acids with the corresponding ORF present between the NdeI and SalI sites of pHYD3025 and expressed from the P_{trc} promoter. The *argO* ORF is designated as $argO_{C\Delta 10}$.
- pHYD2869.2 Derivative of the plasmid pHYD2869 encoding ArgO lacking the last 40 amino acids with the corresponding ORF present between the NdeI and

Sall sites of pHYD3025 and expressed from the P_{trc} promoter. The *argO* ORF is designated as $argO_{C\Delta 40}$.

- pHYD2870 Derivative of pHYD2869 in which an ORF $argO_{CL}$ encoding a cysteineless ArgO is placed under the expression control of the P_{trc} promoter. The translated polypeptide bears the C43A, C52A and C189A amino acid substitutions.
- pHYD2870.1 Derivative of pHYD2870 encoding ArgO bearing the M15C amino acid substitution.
- pHYD2870.2 Derivative of pHYD2870 encoding ArgO bearing the S59C amino acid substitution.
- pHYD2870.3 Derivative of pHYD2870 encoding ArgO bearing the T90C amino acid substitution.
- pHYD2870.4 Derivative of pHYD2870 encoding ArgO bearing the A117C in pHYD2870 amino acid substitution.
- pHYD2870.6 Derivative of pHYD2870 encoding ArgO bearing the L158C amino acid substitution.
- pHYD2870.7 Derivative of pHYD2870 encoding ArgO bearing the R175C amino acid substitution.
- pHYD2870.8 Derivative of pHYD2870 encoding ArgO bearing the L98C amino acid substitution.

- pHYD2870.10 Derivative of pHYD2870 encoding ArgO bearing the L81C in pHYD2870 amino acid substitution.
- pHYD2870.13 Derivative of pHYD2870 encoding ArgO bearing the L71C in pHYD2870 amino acid substitution.
- pHYD2870.15 Derivative of pHYD2870 encoding ArgO bearing the L165C amino acid substitution.
- pHYD2870.17 Derivative of pHYD2870 encoding ArgO bearing the Q7C amino acid substitution.
- pHYD2870.19 Derivative of pHYD2870 encoding ArgO bearing the S65C amino acid substitution.
- pHYD2870.20 Derivative of pHYD2870 encoding ArgO bearing the W109Camino acid substitution.
- pHYD2870.21 Derivative of pHYD2870 encoding ArgO bearing the R146C amino acid substitution.
- pHYD2870.22 Derivative of pHYD2870 encoding ArgO bearing the A179C amino acid substitution.
- pHYD2870.23 Derivative of pHYD2870 encoding ArgO bearing the D201C amino acid substitution.
- pHYD2870.24 Derivative of pHYD2870 encoding ArgO bearing the N28C amino acid substitution.

- pHYD2870.25 Derivative of pHYD2870 encoding ArgO bearing the M38C amino acid substitution.
- pHYD2870.26 Derivative of pHYD2870 encoding ArgO bearing the A43C amino acid substitution.
- pHYD2870.27 Derivative of pHYD2870 encoding ArgO bearing the A52C amino acid substitution.
- pHYD2870.29 Derivative of pHYD2870 encoding ArgO bearing the L41C amino acid substitution.
- pHYD2870.30 Derivative of pHYD2870 encoding ArgO bearing the V142C amino acid substitution.
- pHYD2870.31 Derivative of pHYD2870 encoding ArgO bearing the P144C amino acid substitution.
- pHYD2870.32 Derivative of pHYD2870 encoding ArgO bearing the S135C amino acid substitution.

The ancestral plasmids pTrc99A, pHYD3025, PCL1920 and pOK12 are described in references 1, 2, 3 and 4 respectively.

Primer ID	Sequence of Primer (5'to 3')	
JGLARGOHAF	CGGAATATCCCATATGTACCCATACGATGTTCCTGACTATGCGGG CGGCCCATTTTCTTATTACTTT	
	<i>pHYD</i> 2869	
JGLARGOFP	CGGAATATCCCATATGTTTTCTTATTACTTT	
	<i>pHYD2869A</i>	
JGLARGOR	TCCATCAGACTCGAGCTAACTGAACAAGGCT	
	pHYD2869, pHYD2869A	
JGLCYS1RP	AGGACCAAATCGCTGATAGCAGCAAGTAAGGCAATCATAATGT	
	pHYD2870	
JGLCYS2FP	GCTATCAGCGATTTGGTCCTGATTGCTGCCGGGATTTTTGGTGG	
	pHYD2870	
JGLCYS2RP	TCCCACAACCAGATTGATAATG	
	<i>pHYD</i> 2870	
JGLCYS3FP	CATTATCAATCTGGTTGTGGGAGCTGTTATGTGGTTTATTGCCTT	
	<i>pHYD</i> 2870	
JGLM15CFP	CTTGCACTTGGGGCGGCTTGCATCCTACCGCTCGGTCCA	
	pHYD2870.1	
JGLM15CRP	TGGACCGAGCGGTAGGATGCAAGCCGCCCCAAGTGCAAG	
	pHYD2870.1	
JGLS59CFP	GCCGGGATTTTTGGTGGCTGCGCGTTATTGATGCAGTCG	
	pHYD2870.2	

Table S2. PCR primers used in this study (appropriate destination plasmids are italicized)

JGLS59CRP	CGACTGCATCAATAACGCGCAGCCACCAAAAATCCCGGC
	<i>pHYD2870.2</i>
JGLT90CFP	GGTTTTGGCGCTTTTAAATGCGCAATGAGCAGTAATATT
	<i>pHYD2870.3</i>
JGLT90CRP	AATATTACTGCTCATTGCGCATTTAAAAGCGCCAAAACC
	<i>pHYD2870.3</i>
JGLA117CFP	ATTATCGCCACCATGTTGTGCGTGACCTGGCTGAATCCG
	pHYD2870.4
JGLA117CRP	CGGATTCAGCCAGGTCACGCACAACATGGTGGCGATAAT
	pHYD2870.4
JGLL158CFP	ACAATTAGCGCCTCTTTCTGCTGGTTCTTTGGTCTGGCT
	pHYD2870.6
JGLL158CRP	AGCCAGACCAAAGAACCAGCAGAAAGAGGCGCTAATTGT
	pHYD2870.6
JGLR175CFP	TGGCTGGCACCGCGTCTGTGCACGGCAAAAGCACAGCGC
	pHYD2870.7
JGLR175CRP	GCGCTGTGCTTTTGCCGTGCACAGACGCGGTGCCAGCCA
	pHYD2870.7
JGLL98CFP	ATGAGCAGTAATATTGAGTGCGCCAGCGCCGAAGTCATG
	pHYD2870.8
JGLL98CRP	CATGACTTCGGCGCTGGCGCACTCAATATTACTGCTCAT
	<i>pHYD2870.8</i>
JGLL81CFP	GGCGGCGTAGCCTTCTTGTGCTGGTATGGTTTTGGCGCT

pHYD2870.10

JGLL81CRP AGCGCCAAAACCATACCAGCACAAGAAGGCTACGCCGCC pHYD2870.10 JGLL71CFP TCGCCGTGGTTGCTGGCGTGCGTCACCTGGGGCGGCGTA *pHYD2870.13* TACGCCGCCCAGGTGACGCACGCCAGCAACCAC JGLL71CRP *pHYD2870.13* JGL165CFP TGGTTCTTTGGTCTGGCTTGCCTCGCAGCCTGGCT *pHYD2870.15* JGL165CRP AGCCAGGCTGCGAGGCAAGCCAGACCAAAGAACCA pHYD2870.15 JGLARGOQ7FP TTTTCTTATTACTTTTGTGGTCTTGCACTTGGGG pHYD2870.17 JGLARGOQ7RP CCCCAAGTGCAAGACCACAAAAGTAATAAGAAAA pHYD2870.17 JGLARGOS65FP CGCGTTATTGATGCAGTGTCCGTGGTTGCTGGCGCTGG pHYD2870.19 JGLARGOS65RP CCAGCGCCAGCAACCACGGACACTGCATCAATAACGCG *pHYD2870.19* JGLARGOW109FP TGAAGCAAGGCAGATGCAAAATTATCGCCACCA *pHYD2870.20* TGGTGGCGATAATTTTGCATCTGCCTTGCTTCA JGLARGOW109RP pHYD2870.20

- JGLARGOR146FP TTGATGTGGAACCAAAATGCTGGTTTGCACTCGGGAC pHYD2870.21
- JGLARGOR146RP GTCCCGAGTGCAAACCAGCATTTTGGTTCCACATCAA
 pHYD2870.21
- JGLARGOA179FP GCACCGCGTCTGCGCACGTGTAAAGCACAGCGCATTATCA pHYD2870.22
- JGLARGOA179RP TGATAATGCGCTGTGCTTTACACGTGCGCAGACGCGGTGC pHYD2870.22
- JGLARGOD201FP CCTTGCAGCTGGCGAGATGCGGTATTGCTCATGCAC pHYD2870.23
- JGLARGOD201R GTGCATGAGCAATACCGCATCTCGCCAGCTGCAAGG *pHYD2870.23*
- JGLARGON28FP CAGGGCATACGTCGTCAGTACCACATTATGATTGCCTTAC *pHYD2870.24*
- JGLARGON28RP GTACTGACGACGTATGCCCTGACACATCACAAAAGCATTT pHYD2870.24
- JGLARGOM38FP ATTGCCTTACTTTGTGCTATCAGCGATTTGGTCCTGATTTG pHYD2870.25
- JGLARGOM38RP GATAGCACAAAGTAAGGCAATACAAATGTGGTACTGACGACG pHYD2870.25
- JGLARGOCYS43RP AGGACCAAATCGCTGATAGCACAAAGTAAGGCAATCATAATGT *pHYD2870.26*

JGLARGOCYS52FP GCTATCAGCGATTTGGTCCTGATTTGCGCCGGGATTTTTGGTGG pHYD2870.27

- JGLL41CNWFP TACCACATTATGATTGCCTGCCTTGCTGCTATCAGCGAT pHYD2870.29
- JGLL41CNWRP ATCGCTGATAGCAGCAAGGCAAGGCAATCATAATGTGGTA pHYD2870.29
- JGLS135CFP ACTTTTGTTGTACTGGGGCTGTCTTGGCGGGCAACTTGAT pHYD2870.32
- JGLS135CRP ATCAAGTTGCCCGCCAAGACAGCCCAGTACAACAAAGT pHYD2870.32
- JGLV142CFP CTTGGCGGGCAACTTGATTGCGAACCAAAACGCTGGTTT *pHYD2870.30*
- JGLV142CRP AAACCAGCGTTTTGGTTCGCAATCAAGTTGCCCGCCAAG *pHYD2870.30*
- JGLP144CFP GGGCAACTTGATGTGGAATGTAAACGCTGGTTTGCACTC *pHYD2870.31*
- JGLP144CRP GAGTGCAAACCAGCGTTTACATTCCACATCAAGTTGCCC *pHYD2870.31*
- JGLARGOG8FP TTTCTTATTACTTTCAAGGTGTCGACCTTGCACTTGGGGCGGG
 pHYD2869A8
- JGLARGOG8RP CCGCCCCAAGTGCAAGGTCGACACCTTGAAAGTAATAAGAAA pHYD2869A8
- JGLARGOH36FP CATACGTCGTCAGTACCACGTCGACATTATGATTGCCTTACTTTG

pHYD2869A36

JGLARGOH36RP CAAAGTAAGGCAATCATAATGTCGACGTGGTACTGACGACGTATG pHYD2869A36

JGLARGOP66FP TTATTGATGCAGTCGCCGGTCGACTGGTTGCTGGCGCTGGT

pHYD2869A66

- JGLARGOP66RP ACCAGCGCCAGCAACCAGTCGACCGGCGACTGCATCAATAA
 pHYD2869A66
- JGLARGOK110FP TGAAGCAAGGCAGATGGAAAGTCGACATTATCGCCACCATGTTG G

pHYD2869a110

- JGLARGOK110RP CCAACATGGTGGCGATAATGTCGACTTTCCATCTGCCTTGCTTCA pHYD2869A110
- JGLARGOR146FP TTGATGTGGAACCAAAACGCGTCGACTGGTTTGCACTCGGGACAA TT

pHYD2869A146

JGLARGOR146RP AATTGTCCCGAGTGCAAACCAGTCGACGCGTTTTGGTTCCACATC AA

pHYD2869A146

- JGLARGOR181FP CAAAAGCACAGCGCGTCGACATTATCAATCTGGTTGTGGG pHYD2869A181
- JGLARGOR181RP CCCACAACCAGATTGATAATGTCGACGCGCTGTGCTTTTG pHYD2869A181
- JGLARGOD201F CCTTGCAGCTGGCGAGAGACGTCGACGGTATTGCTCATGCACAAG *pHYD2869A201*
- JGLARGOD201RP CTTGTGCATGAGCAATACCGTCGACGTCTCTCGCCAGCTGCAAGG

pHYD2869A201

JGLMSCLFP GAATTCCATATGAGCATTATTAAAGA *pHYD2868* **JGLMSCLHARP** AAGTAGCTCGAGCTACGCATAGTCAGGAACATCGTATGGGTAAG AGCGGTTATTCTGCT *pHYD2868* **JGLPHOAFP** TCCATCAGACTCGAGCCTGTTCTGGAAAACCGGGCT *pHYD2865* **JGLPHOARPSTOP** TCCATCAGACTCGAGCTATTTCAGCCCCAGAGCGGCTTT *pHYD2865* JGLD47AFP TTACTTTGTGCTATCAGCGCTTTGGTCCTGATTTGCGCC pHYD2835.16 JGLD47ARP GGCGCAAATCAGGACCAAAGCGCTGATAGCACAAAGTAA *pHYD2835.16* JGLD47EFP TTACTTTGTGCTATCAGCGAATTGGTCCTGATTTGCGCC *pHYD2835.17* GGCGCAAATCAGGACCAATTCGCTGATAGCACAAAGTAA JGLD47ERP pHYD2835.17 AATCCGCATGTTTACCTGGCTACTTTTGTTGTACTGGGC JGLD128AFP *pHYD2835.18* JGLD128RP GCCCAGTACAACAAAGTAGCCAGGTAAACATGCGGATT pHYD2835.18 JGLD128ENEWFP AATCCGCATGTTTACCTGGAAACTTTTGTTGTACTGGGC *pHYD2835.19* GCCCAGTACAACAAAGTTTCCAGGTAAACATGCGGATT JGLD128ENEWRP

pHYD2835.19

JGLUPTO200MISS	AAGTAGCTCGAGCTATCTCGCCAGCTGCAAGGCAA	
	pHYD2869.1	
JGLUPTO171MISS	AAGTAGCTCGAGCTATGCCAGCCAGGCTGCGAGAAG	
	pHYD2869.2	
JGLUPTO28MISS	GAATTCCATATGCAGGGCATACGTCGTCAGTAC	
	pHYD2835.20	
JGL51TFP	TGCGCCGGGATTTTTGGTGGCAGCGCGTTATTGATGCAGTC	
	pHYD2835.7, pHYD2835.10, pHYD2835.13	
JGL51TRP	CCACCAAAAATCCCGGCGCAAGTCAGGACCAAATCGCTGATAG	
	pHYD2835.7, pHYD2835.10, pHYD2835.13	
JGL60PFP	TTATTGATGCAGTCGCCGTGGTTGCTGGCGCTGGTCACCTG	
	pHYD2835.8, pHYD2835.11, pHYD2835.14	
JGL60PRP	CCACGGCGACTGCATCAATAACGGGCTGCCACCAAAAATCCC	
	pHYD2835.8, pHYD2835.11, pHYD2835.14	
JGL132AFP	CTGGGCAGCCTTGGCGGGCAACTTGATGTGGAACCAAAAC	
	pHYD2835.9, pHYD2835.12, pHYD2835.15	
JGL132ARP	TTGCCCGCCAAGGCTGCCCAGTGCAACAAAAGTATCCAGGTAA	
	pHYD2835.9, pHYD2835.12, pHYD2835.15	

 Table S3. Bacterial strains

Strain	Genotype	
GJ4823 GJ9099.1	MC4100 ^a argO205::Tn10dTet, described in reference 5 F ⁻ araC14 leuB6 secA206 lacY1 proC14 tsx-67 Δ(ompT- fepC)266 entA403 glnX44 trpE38 rfbC1rpsL109 xylA5 mtl-1 thiE1 argO205::Tn10dTet	
	hns _{FL} ::Kan ^b	

^aMC4100 was from the laboratory collection and ^bhns_{FL}::Kan encodes the nucleoid protein H-NS

bearing a 3x FLAG epitope at its C-terminus.

Figure S1. Cys accessibility depicting immunodetection of the ArgO:MAL-PEG adducts. Cultures of GJ9099.1 bearing plasmids encoding the indicated single cysteine substituted ArgO, were processed and the ArgO:MAL-PEG (IIa-IIIa) and the H-NS:MAL-PEG (IIb-IIIb) adducts

were detected with western blotting with anti-HA and anti-FLAG antibodies respectively. U, T and S stand for cell suspensions that were not treated with MAL-PEG, treated with MAL-PEG and treated with MAL-PEG following sonication. The positions of the ArgO:MAL-PEG, H-NS:MAL-PEG adducts and free ArgO and H-NS species are marked with filled and open triangles respectively. Panel I depicts the imnnodetection with anti-HA antibody of ArgO:MAL-PEG adducts obtained after treatment of cultures of GJ9099.1 bearing plasmids encoding the Cys-less ArgO (ArgO_{CSL}) and its indicated single cysteine substituted derivatives with MAL-PEG following whole cell protein precipitation (6) and SDS solubilization. All plasmids are derivatives of pHYD2870 that encodes the Cys-less ArgO expressed from the P_{trc} promoter and are described in Table S1.

Figure S2. Detection of ArgO:MAL-PEG adducts in crude membrane fraction. Crude membrane fractions isolated from (I) Mid-log phase cultures of GJ9099.1, containing the plasmid expressing the Cys-less ArgO (ArgO_{CSL}) and its derivative plasmids bearing the indicated Cys substitutions were A_{600} normalized, sonicated, treated with MAL-PEG and their crude membrane fractions were isolated and solubilized. 20 µg total membrane protein from each fraction was electrophoreded on an SDS-PAGE gel and the ArgO:MAL-PEG adducts were detected following immublotting with anti-HA antibody. (II) Cellular proteins levels of ArgO_{CSL} and its indicated cysteine substituted ArgO proteins. A_{600} normalized sample loading of mid-log phase cultures of transformants of GJ9099.1 containing plasmids encoding the indicated *argO* variants was performed and the levels of the indicated ArgO proteins were detected with immnoblotting with anti-HA antibody. The positions of the ArgO:MAL-PEG adducts and of ArgO_{CSL} are marked with filled and open triangles respectively.

pTM_CG_Lys		
pTM_EC_Arg		
EC_ArgO		
EC_ArgO CG_LysE MT_Rv1986 MT_Rv0488 YP VC PS	1 MF SYYFQGLALGAAMILP LGP QN A F VMN QG I RR QYHIMIALL CAISD LVLI CAG I F 1 MVIME I F I T GLLLGASLLLSI GP QN VLVI K QG I KR E GLI AVLLV CLI SD V FLF I A GTL 1 VN SP LVV GF LA C F T LI A AIGA QN A F VLR QG I QR E HVLP VV AL C T VSD I VLI A A GI A 1 MMT LKV AIGP QN A F VLR QG I RR E Y VLVI VAL CGI AD GALI A A G VG 1 MLAVYLHGF I LSAAMILP LGP QN VF VMN QG I KR QHHLMS A SL CALSD I I LI CAG I F 1 MN WWILLQGF SLGATMII PIGA QN A F VLN QG I KR HHHLT TA AT C G VLD MI F I T LG I F 1 MWQ SY FN GLLI A A GLIMA I GS QN A F VLA QG LRR E HHV SVAML CII CD AILVA A GV F	G G S A L LMQ S P WL L A L V TWG G V A F L L G V D L L S N A A P I V L D I M RWG G I A Y L L G F G A L I G A H P R A L N V V K F G G A A F L I G F A A L I H A H P N M T L V A R F G G A A F L I G G S A L L S R S P L L L A L V TWG G V A F L M G G G A L I S Q N T S L L I G V T L A G I L F L C G L A N V L A Q N P T L L A V A R WG G V L F L S
pTM_CG_Lysl	LysE	
pTM_EC_Arg	ArgO NTM3 N	
EC_ArgO		TM3
EC_ArgO CG_LysE MT_Rv1986 MT_Rv0488 YP VC PS	82 WY GF GA F K TAMS S N I E LA	RWK I I A TMLAV TWL NP HV YL D TFVV WVK PMLMA I VL TWL NP NAYL DAFVF LAEVLVT CAAF TFL NP HV YL D TVVL L I GVV QMCLVVT FL NP HV YL D TVVL RWR I LVT LLAVTWL NP HV YL D TFVV RKAV I FGAFAVTVFN PHLYL D TVVI RR TVLL SALAVTLL NP HV YL D TVLL
pTM_CG_LysE		
pTM_EC_ArgO		
EC_ArgO	TM4	TM5
EC_ArgO CG_LysE MT_Rv1986 MT_Rv0488 YP	133 L G S L G G Q L D V E P K R W F A L G T I S A S F L W F F G L A L L A AWL A P R L R T A K A Q R I I N L V V G C V 167 I G G V G A Q Y G D T G R W I F A A G A F A A S L I W F P L V G F G A A A L S R P L S S P K V W R W I N V V A V V 132 L G A L A N E H S D - Q R W L F G L G A V T A S A V W F A T L G F G A G R L R G L F T N P G S W R I L D G L I A V M 121 I G A L A N E E S D - L R W F F G A G A W A S V V W F A V L G F S A G R L Q P F F A T P A A W R I L D A L V A V 133 L G S L G G Q L L P D I R P W F A L G A V T A S I V W F A V L G F S A G R L Q P F F A T P A A W R I L D A L V A V 136 L G S L G G Q L L P D I R P W F A L G A V T A S I V W F F A L A L A A W L S P W N R P V A Q R I I N L F V G G V	MWF I A L Q L A R D G I A HA QA L F S · · · MTALA I K LMLMG · · · · · · · · · · · · MVA L G I S L T V T · · · · · · · · · · · · · · · · MI G VA V V L V T S P S V P T A N V A L I I MG F I A F Q L A R Q G F G L · · · · · · · · · · · · · · · · · ·
PS	133 I G S L GAQQSV - P GAYVA GAASAS LLWF S C LA I GAAWLAPWLAR PATWR LLDVMV AVM	MFSVAWQLIRSA

Figure S3. Multiple sequence alignment of ArgO and its orthologs. The sequence alignment was performed using PROMALS3D (7). The alignment (in CLUSTAL format) was edited using Jalview 2.9.0b2 (8) with conserved residues highlighted in blue. The sequence based prediction of secondary structural elements (predicted transmembrane α -helices, referred to here as pTM) for LysE (dark blue) and ArgO (green) are shown above the inferred secondary structure of ArgO. TM prediction was performed using TMpred (9). The experimental data described in this study guided the assignment of the transmembrane helices (green cylinders) and the cytoplasmic N-terminal domain (orange cylinder, NTD) of ArgO. *EC, CG, MT, YP, VC, PS* stand for *E. coli, C. glutamicum, M. tuberculosis, Y. pestis* and *P. syringae* respectively.

Figure S4. (A) Phenotypes of ArgO bearing deletions of its N and C terminal regions. 5 μ l of 10000 fold diluted stationary phase cultures of GJ4823 bearing the vector or the plasmid pHYD2869 (P_{trc}argO_{NHA}) expressing ArgO bearing an appended N-terminal HA tag and its derivatives pHYD2869.2 (P_{trc}argO_{CΔ40}) and pHYD2869.1 (P_{trc}argO_{CΔ10}) encoding ArgO lacking the last 40 and the last 10 C-terminal amino acids respectively, were spotted on the surface of an MA agar plate (I) and an MA agar plate containing 2 μ g/ml of CAN (II). 5 μ l of similarly diluted stationary phase cultures of GJ4823 bearing the vector or the plasmid pHYD2835 (P_{trc}argO_{CHA}) expressing ArgO bearing an appended C-terminal HA tag and its derivative pHYD2835.20 (P_{trc}argO_{NΔ28}) encoding ArgO lacking its 28 N-terminal amino acids, were spotted on the surface of an MA agar plate (III) and an MA agar plate containing 2 μ g/ml of CAN (IV). (B) Levels of the corresponding ArgO proteins detected by immunoblotting with anti-HA antibody. *A*₆₀₀

normalized sample loading was performed and the indicated ArgO encoding plasmids are described in Table S1.

(I)

Figure S5. Effect of overexpression of functionally defective ArgO variants from the P_{trc} promoter on chromosomally encoded ArgO function. Dilutions (3X10⁻⁶) of stationary phase cultures of MC4100 (*argO*⁺) bearing the vector and plasmids encoding ArgO bearing the indicated substitutions and GJ4823 (*argO*, MC4100 *argO205*::Tn10dTet), bearing the vector were spread on (I) MA agar plates containing 10 µM IPTG and (II) MA agar plates containing 10 µM

IPTG and 20 μ g/ml of CAN. Sections of plates in I and II were photographed after 24 and 36 hours respectively and the plasmid series pHYD2835.1 to pHYD2835.6 (Table S1) encode ArgO with the indicated amino acid substitution.

Figure S6. Superposition of a representative conformational variant of ArgO obtained by Normal Modes simulations. Low frequency normal modes revealed breathing motions between the transmembrane helices. A representative conformation of ArgO generated in the course of the normal modes analysis (magenta) was superimposed on ArgO (orange). Low frequency normal modes for the ArgO model were obtained using the online server ElNémo (10).

Figure S7. B-factor analysis (dynamic fluctuation) of residues of ArgO. The variation in B-factors for the reference model (black) is compared with that obtained from low frequency normal modes simulations (orange). The location of the indicated amino acids of ArgO is marked to provide an estimate of dynamic fluctuations at these positions. The pairing of amino acid substitutions (green) that compensate for ArgO disabling substitutions (red) is indicated. The compensatory pairs shown are V118E A60P, V118E V132A and S156F I51T.

REFERENCES

- 1. **Amann E, Ochs B, Abel KJ.** 1988. Tightly regulated *tac* promoter vectors useful for the expression of unfused and fused proteins in *Escherichia coli*. Gene. **69:**301-315.
- Pathania A, Sardesai AA. 2015. Distinct paths for basic amino acid export in Escherichia coli: YbjE (LysO) mediates export of L-lysine. J. Bacteriol. 197:2036-2047.
- 3. Lerner CG, Inouye M. 1990. Low copy number plasmids for regulated low-level expression of cloned genes in *Escherichia coli* with blue/white insert screening capability. Nucleic Acids Res. **18:**4631.
- 4. **Vieira J, Messing J.**1991. New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene. **100**:189-194.
- 5. **Nandineni MR, Gowrishankar J.** 2004. Evidence for an arginine exporter encoded by *yggA (argO)* that is regulated by the LysR-type transcriptional regulator ArgP in *Escherichia coli*. J. Bacteriol. **186:**3539-3546.
- 6. **Wessel D, Flügge UI.** 1984. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. **138**:141-143.
- 7. **Pei J1, Kim BH, Grishin NV.** 2008. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res. **36:**2295-2300.
- Waterhouse AM1, Procter JB, Martin DM, Clamp M, Barton GJ. 2009. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics. 25:1189-1191.

- 9. **Hofmann K**, **Stoffel W**. 1993. TMbase-a database of membrane spanning proteins segments. BiolChem Hoppe-Seyler. **347**:166.
- Suhre K, Sanejouand Y-H. 2004. ElNémo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res. 32:W610-W614.