
Proofs of Claims in the Paper Body

0.1 Proof of Lemma 0.6

Lemma Minimizing RSS is equivalent to finding the maximum likelihood solution to our
formulation.
Proof: Recall that εi,j ∼ N(0, σ2). This allows us to formulate the likelihood function for a
given site at an individual. We first compute µi,j , the expected value at ŝij :

µi,j = E[ŝi,j ]

= E[s0i + ritj + εi,j ]

= E[s0i ] + E[ritj ] + E[αi,j ]

= s0i + ritj (1)

where the second equation stems from Equation (1), the third from linearity of expectation,
and the last equation follows since εi,j ∼ N(0, σ2). The likelihood of an entry is the probability
of seeing that value, ŝi,j , given the model parameters. Specifically:

L(ŝi,j) = Pr(ŝi,j |tj , s0i , ri)
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where the last equation follows from (1).
As our input is the matrix Ŝ with data for n sites and m time periods (individuals), we have:

L(Ŝ) =
∏

1≤i≤n

∏
1≤j≤m

Pr(ŝi,j |ri, s0i , tj). (3)

As the likelihood and the log likelihood obtain their minimum and maximum at the same
parameter values, it is customary to search in the log space.
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where RSS is the residual sum of squares defined:

RSS =
∑

1≤i≤n

∑
1≤j≤m

ε2i,j . (5)

As the first two terms in the right hand side of (4) are constant for a given input, it follows

that maximizing the log likelihood is equivalent to minimizing RSS. Let R̂SS be the optimal
(ML) RSS obtained under the given parameters (we detail on this in the sequel). Under the

ML formulation, we set σ̂2 = R̂SS/nm where σ̂2 is the ML value for σ2. Hence we get

log
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)
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2
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2
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2
(6)

0.2 Proof of Observation 0.3

Observation For two methylation sites si and si′ with characteristic rates ri and ri′, let
ρi,i′ = ri/ri′. Then for any individual j and time τ ≤ tj holds

ρi,i′ = rτi,j/r
τ
i′,j . (7)

Proof: In order to prove the observation, we discretize the time interval τ into infinitely many
time periods, such that rate changes occur only at the beginnings of these small time periods.
The proof now follows by induction on the number of time periods. The basis of the induction
follows by the requirement that all site start at time zero with their characteristic rate and by
definition we have:

r0i,j
r0i′,j

=
ri
ri′

= ρi,i′ . (8)

Next, assume a correction for time period k and let α be the rate of change at time period
k+1. The induction step follows by the requirement that at every rate change, all sites change
rate by the same proportion. Hence at time period k + 1 we have:

rk+1
i,j

rk+1
i′,j

=
αrki,j

αrki′,j
= ρi,i′ . (9)

0.3 Proof of Observation 0.4

Observation Setting

r∗i,j =
ŝi,j − s0i

tj
, (10)

at every component of the RSS, may violate the constant ratio between rates assumption.
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Proof: Consider the following toy example with two sites s1 and s2 with methylation starting
position s01 = 2 and s02 = 1 respectively and two individuals 1 and 2 with ages t1 = 1 and
t2 = 1. Also let the methylation level at individual 1 for sites s1 and s2 be s1,1 = 4 and s2,1 = 2
respectively. Similarly, let the methylation level at individual 2 for sites s1 and s2 be s1,2 = 3
and s2,2 = 4 respectively. The above parameters yield the following RSS:

RSS = (4− 1 · r1,1 − 2)2 + (2− 1 · r2,1 − 1)2 + (3− 2 · r1,2 − 2)2 + (4− 2 · r2,2 − 1)2.

It can easily be seen that setting

• r∗1,1 = 2,

• r∗2,1 = 1,

• r∗1,2 = 1/2,

• r∗2,2 = 3/2,

vanishes all components in RSS. However, not only that the ratio between the rates at individ-
ual 1, r1,1/r2,1 = 2 is different than the ratio between the rates at individual 2, r1,2/r2,2 = 1/3,
even the ordering is inverted (i.e. r1,1 > r2,1 but r1,2 < r2,2), contradicting Observation 0.3.

0.4 Proof of Lemma 0.5

Lemma Let r∗i,j the ML value for ri,j. Also let δ∗i,j = r∗i,j/ri be the change in proportion from
ri to r∗i,j. Then the ML solution is obtained if ri,j is intact (i.e. remains on its initial value
ri) but the time tj is stretched or shrunk by δ∗i,j. Proof:

The ML solution is based on the RSS polynomial and the ML value is obtained from the
RSS by evaluating the variables to their values under the ML solution.

The (i, j) component in the RSS is of the form:

ε2i,j = (ŝi,j − tjri,j − s0i )2.

At the ML point we have:

ε2i,j = (ŝi,j − tjr∗i,j − s0i )2

= (ŝi,j − tj(δ∗i,jri)− s0i )2

= (ŝi,j − (tjδ
∗
i,j)ri − s0i )2,

where the second equality follows from the definition of δ∗i,j and the third equality follows from
change of association.
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It remains to show that for every i and i′ holds δ∗i,j = δ∗i′,j .

δ∗i,j =
r∗i,j
ri

=
r∗i,j
ri′ρi,i′

=
r∗i′,jρi,i′

ri′ρi,i′

=
r∗i′,j
ri′

= δ∗i′,j ,

where the second equality follows from the definition of ρi,i′ , ρi,i′ = ri/ri′ , and third equality
follows from Observation 0.3 stating that for any individual j, at any time point, including the
ML value, the ratio between the rates equals ρi,i′ . Now, since the above affects all and only
components pertaining to tj , we can multiply tj by δ∗i,j and divide r∗i,j by δ∗i,j without affecting
the value of the whole component, or any component not associated with tj . By the definition,
this also applies to any j.
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