Empirical Model

We fit the sales, sales rank, reputation and self-representation data to the following log-linear relationship.

In(Sales_j) = β_0 + β_1 In(Sales Rank_j) + β_2 Reputation_j + β_3 Self-Representation_j + β_4 In(Sales Rank_j)×Self-Representation_j + ϵ_j (1)

The β_1 coefficient measures how quickly doctor j's demand falls as the sales rank increases, which indicates market concentration. If the E-consultation has a long tail effect, then β_1 will be less negative. In contrast, if the E-consultation has a super-star effect, then β_1 will be more negative.

The β_4 on the interaction term measures the moderating effect of online reputation on market concentration. If online reputation weakens market concentration, then β_4 should be positive and significant (given β_1 is negative and significant). In contrast, if online reputation strengthens market concentration, then β_4 should be negative and significant.

In the similar way, the β_5 on the interaction term measures the moderating effect of self-representation on market concentration. If self-representation weakens market concentration, then β_5 should be positive and significant (given β_1 is negative and significant). In contrast, if self-representation strengthens market concentration, then β_5 should be negative and significant.