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Supporting Information 

Supplementary Methods: 

Growth of InGaN/GaN SQW LED 

Blue and green InGaN/GaN SQW LEDs were grown on c-plane sapphire substrates 

by low-pressure metalorganic chemical-vapor deposition (MOCVD). The structure 

consists of a 25 nm-thick nucleation layer, followed by a 2 µm-thick u-GaN layer, 2 

µm-thick n-GaN layer, 10 nm-thick barrier layer, 2.5 nm-thick InGaN quantum well 

layer and 200 nm-thick p-GaN layer. Blue and green InGaN/GaN SQW structures were 

fabricated by regulating the growth temperature during the epitaxial growth, and the 

nominal indium concentrations of the InGaN QW layer are 18% and 26%, respectively. 

The external strain is applied on the back of the device by a precise strain controller.  

Time-resolution photoluminescence measurement 

TRPL measurements are carried out using a time-correlated single-photon counting 

(TCSPC) technique with ~25 ps resolution. The sub-100-ps laser pulse excitation 

wavelength was chosen at 375 nm to make sure that the photoexcitation and carrier 

capture would only occur in the InGaN quantum well. Time-resolution PL data were 

collected and focused on a half-meter monochromator. A microchannel-plate photo-

multiplier tube (MCP-PMT) was placed at the output focal plane of the monochromator 

to detect every single photon produced by band-to-band recombination luminescence. 

PL data were recorded by a PC in real time. 

The self-consistent calculation of the Schrödinger-Poisson coupling equations 

The distribution of carriers in the GaN/InGaN/GaN single quantum well is 



modelled with self-consistent Schrödinger-Poisson calculations. In the effective mass 

approximation, the electronic sub-band states in the c-axis of GaN/InGaN/GaN are 

solutions to the Schrödinger wave equation, 
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here m* is the electron effective mass at the conduction band edge, (𝑧) indicates the 

potential energy, 𝐸𝑖 refers to the energy of the 𝑖𝑡ℎ sub-band and (𝑧) (𝑖=e for electron 

and 𝑖 =h for hole) denotes the wavefunction. The non-parabolicity of the conduction 

band can be ignored, and m* is independent of the electron energy and has an isotropic 

value that changes abruptly at the interface between the GaN and InGaN. The detailed 

calculation parameters for wurtzite GaN and InN are listed in Table I, and for the 

corresponding ternary alloys InxGa1-xN, the parameters are calculated by the linear 

interpolation of Vegard’s law. The potential energy 𝑉(𝑧)can be expressed as 

𝑉(𝑧) = 𝑉𝑐(𝑧) + 𝑉ℎ(𝑧) + 𝑉𝑥𝑐(𝑧)                                                                                                                            (2) 

in which 𝑉𝑐(𝑧) represents the conduction band edge potential in the form of a step 

function associated with the conduction band offset, 𝑉ℎ(𝑧) is the Hartree potential of 

the electrostatic interaction due to net piezo-charges and carriers distributed in the 

system, and 𝑉𝑥𝑐(𝑧) is the exchange-correlation potential representing the many-body 

interactions that are not included in 𝑉ℎ(𝑧). 𝑉ℎ(𝑧) is the solution to Poisson’s equation 
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in which 𝜀  is the dielectric constant, which is assumed to change abruptly at the 

GaN/InGaN/GaN interfaces, and 𝑒 denotes the value of an elementary charge. The 

density of total charges 𝜌(𝑧) is given as 

𝜌(𝑧) = ∑ 𝜎(𝑧)𝛿(𝑧 − 𝑧𝑖) + 𝑝(𝑧) + 𝑁𝐷
+(𝑧) − 𝑛(𝑧) − 𝑁𝐴

−(𝑧)                                                                       (4) 

 

where 𝜎(𝑧), 𝑝(𝑧), 𝑁𝐷
+(𝑧), 𝑛(𝑧) and 𝑁𝐴

−(𝑧) denote the density of piezo-charges, the 

density of free holes, the density of ionized donors, the density of free electrons, and 



the density of ionized acceptors, respectively. 𝜎(𝑧) contains the piezo-charges 

distributed at the boundary or the interface of a GaN/InGaN/GaN single quantum well, 

which is sensitive to externally applied strains and can be obtained by a finite difference 

method (FDM) calculation. 𝑁𝐷
+(𝑧) = 𝑁𝐴

−(𝑧) =0 is adopted to the undoped 

GaN/InGaN/GaN single quantum well in this work. From the neutrality condition, the 

following condition must be satisfied for the sum of the total charges: 
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𝑑(𝑧) = 0                                                                                                                      (5)  

Considering the spatial probability distribution of carriers at a given energy, the density 

of electrons 𝑛(𝑧) (similarly for holes) is obtained by summing over all energy sub-

bands and multiplying the occupancy 𝑁𝑖 of the 𝑖𝑡ℎenergy sub-band by the squared 

modulus of the wavefunction 

𝑛(𝑧) = ∑ 𝑁𝑖

𝑖

|𝜑𝑖(𝑧)|2                                                                                                                        (6) 

and the occupancy 𝑁𝑖 of the 𝑖𝑡ℎ energy sub-band can be given as 
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Here, 𝑘𝐵and T are the Boltzmann constant and the electron temperature, respectively. 

The Fermi energy 𝐸𝐹 is determined from the neutrality condition, i.e., Equation 5. 

𝑉𝑥𝑐(𝑧)in equation (2) can be formulated using density functional theory. In the simplest 

approximation, the so-called local density approximation (LDA), 𝑉𝑥𝑐(𝑧)  can be 

parameterized in an analytical form 
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in units of the effective Bohr radius, and the effective Rydberg energy is given by 

𝐸𝑅 =
𝑒2

8𝜋𝑘𝑎∗
                                                                                                                                                          (10) 

The wave function 𝜑𝑖(𝑧) at the top and bottom surfaces of the GaN layer is set to zero, 

which is defined as the boundary conditions. Equations 1 and 3 are coupled through the 



carrier density. The solution of Poisson’s equation (i.e., Equation 3) yields the Hartree 

potential 𝑉ℎ(𝑧), which depends on the value of the electron density 𝑛(𝑧), and the hole 

density 𝑝(𝑧), in turn, is determined by solving the Schrödinger wave equation, which 

again depends on the Hartree potential 𝑉ℎ(𝑧). To obtain a self-consistent solution of 

Equations 1-10, a grid spacing as small as 1x10-10 m along the z-axis is adopted, and 

the convergence criterion for the Hartree potential is set to 10-3 to ensure the iteration 

convergence and the stability of the calculation. 

 


