Supplementary information to:

The biosynthetic gene cluster for the cyanogenic glucoside dhurrin in *Sorghum bicolor* contains its co-expressed vacuolar MATE transporter

Behrooz Darbani, Mohammed Saddik Motawia, Carl Erik Olsen, Hussam H. Nour-Eldin, Birger Lindberg Møller, Fred Rook

Supplementary methods

Gene cloning and expression constructs

cDNA was synthesized from RNA extracted from 3-day old etiolated Sorghum seedlings using Oligo(dT) priming and SuperScript II Reverse Transcriptase (Invitrogen) according to the manufacturer's instructions. The primers SbMATE-F and SbMATE-R (see Supplementary Table S2) were used to amplify the *SbMATE2* transcript which was cloned into the pCR-Blunt II-TOPO vector using the Zero Blunt TOPO PCR Cloning Kit (Invitrogen). Multiple *SbMATE2* containing plasmids were verified by sequencing to confirm the gene structure. A selected *SbMATE2* clone was used as template to amplify the *SbMATE2* coding region using primers SbMATE-USER-F and SbMATE-USER-R (see Supplementary Table S2), such that it contained the ATG start codon but lacked the stop codon. The fragment was cloned in frame to YFP with USER-based subcloning into pCambia 2300 35S-User_site-YFP (pLIFE0001). Clone pLIFE001_35S-SbMATE2-YFP-(3) was transformed to *Agrobacterium tumefaciencs* AGL1 for use in transient expression studies. Protoplasts from *Nicotiana benthamiana* transiently expressing the SbMATE2-YFP fusion protein were isolated according to Damm & Willmitzer (1988).

Primer SbMATE-USER-F in combination with primer SbMATE-Xenopus-USER-R (see Supplementary Table S2) were used to amplify the *SbMATE2* coding region and insert it in vector pNB1u (pUSER_016), cloning it between the T7 promoter and the 3-UTR region of β -globin (see Nour-Eldin *et al.*, 2006). The construct was verified by sequencing and primers F and R (see Supplementary Table S2) were used to amplify the *in vitro* transcription cassette for producing *SbMATE2* mRNA.

Computational analyses.

The protein structure of SbMATE2 was modelled using the Phyre2 server (http://www.sbg.bio.ic.ac.uk/phyre2) following the procedure outlined in Kelley *et al.* (2015) and the model was visualised using the PyMOL Molecular Graphics System (<u>http://pymol.org/</u>). Phylogenetic analysis was performed using the MEGA5 program suite (Tamura *et al.*, 2011). Clustal Omega (www.ebi.ac.uk) was used for multiple sequence alignment.

Supplementary Figures:

Figure S1: Structural model of SbMate2 predicted using the Phyre2 web portal. The model is based on the structure of the MATE transporter NorM from *Vibrio cholerae* (PDB ID: 3MKU) with 100% confidence over 449 residues (90% of the sequence) (He et al. 2010). (a) front view. (b) view from the vacuolar lumen side with the individual helices TM1 to TM12 numbered. The amino acid residues in TM8 and TM10 - TM12 that form the by Phyre2 predicted cation binding side are shown as stick structures in white. They are E282, F286, G314, F317, T396, N400, Y427, M453 and T458.

Norm-VC	MENSVHRYKK	EASNL 15
rbMate1	MEAPVELGPGG-RQASPERRHWLRCLVLSDFRE	ELRAL 37
Mate1b	MERTEESAPGPGG-ADAASE-RRGLRCLLLPGFLE	ELRAL 38
hMATE1	MEAPEEPAPVRGG-PEATLE-VRGSRCLRLSAFRE	ELRAL 38
SbMATE2	MDSTTPLLOPAPHGGGGGSRELEAILEDASVP-WARRALRGAGV	ELPLL 47
TT12	MSSTETYEPLLTRLHSDSOITERSSPEIEEFLRRRGSTVTPRWWLKLAVW	ESKLL 55
		* *
Norm VC		
rbMato1		
IDMate1		SACDI 97
MatelD		SACDT 98
nMATE1	LVLAGPAFLVQLMVFLISFISSVFCGHLGKLELDAVTLAIAVINVTGVSVGFGLS	SACDT 98
SDMATE2	LRIALPAVAVYMINYLMSMSTQIFCGQLGNLELAAVSLGNTGIQVFAYGLMLGMG	SAVET 107
TT12	WTLSGASIVVSVLNYMLSFVTVMFTGHLGSLQLAGASIATVGIQGLAYGIMLGMA	SAVQT 115
	** • • * * * * * * * • • • * * • • * * •	*
Norm-VC	VVAQLNGAGRQHKIPFEVHQGLILALLVSVPIIAVLFQTQFIIRFMDVEEAMATK	TVGYM 134
rbMate1	LISQTYGSRNLKHVGVILQRGSLILLLCCLPCWALFLNTQHILLLFRQDPAVSRL'	TQTYV 157
Mate1b	LISQTYGSQNLKHVGVILQRGTLILLLCCFPCWALFINTEQILLLFRQDPDVSRL'	TQTYV 158
hMATE1	LISQTYGSQNLKHVGVILQRSALVLLLCCFPCWALFLNTQHILLLFRQDPDVSRL	TQTYV 158
SbMATE2	LCGQAYGAHKPGMLGVYLQRSTVLLTATGVPLAVAYGFSERILVFLGESERIAHA	AAVFV 167
TT12	VCGQAYGARQYSSMGIICQRAMVLHLAAAVFLTFLYWYSGPILKTMGQSVAIAHE	GQIFA 175
Norm-VC	HAVIFAVPAYLLFQALRSFTDGMSLTKPAMVIGFIGLLLNIPLNWIFVYGKFGAP	ELGGV 194
rbMate1	TIFIPALPATFLYTLOVKYLLNOGIVLPOVVTGVAANLVNALANYLFVYOL	HLGVM 213
Mate1b	MIFIPALPAAFLYTLOVKYLLNOGIVLPOIMTGIAANLVNALANYVFLYHL	HLGVM 214
hMATE1	TTETPALPATELYMI.OVKYLI.NOGTVI.POTVTGVAANI.VNALANVI.FI.HOI	HLGVT 214
ShMATE2		GMGLL 223
ΨΨ12		DECLI 231
1112		•* •
		• •
Norm-VC	CCCVATATVYWTMLLLLEVTVTSKRLAHVKVFETFHKPOPKELTRLERLCEDVA	AAT.FF 254
rbMatol		
Matel Matel		
MALEID		LMLCI 272
IIMATEI GLANDERO		
SDMATEZ	GGALVLSLSWWIIVLAUFGYIVTSPRCKETWTGFTSQAFHSLGSFFKLSAASA	VMLCL 281
1.1.1.5	GAALILSFSWWLLVAVNGMYILMSPNCKETWTGFSTRAFRGIWPYFKLTVASA	VMLCL 289
	* • • • • • * • • • • • • • • • • • • •	* :
		200
Norm-VC	EVTLFAVVALLVAPLGSTVVAAHQVALNFSSLVFMFPMSIGAAVSIRVGHKLG.	EQDTK 312
rbMatel	EWWAYEIGSFLSGILGMVELGAQSVTYELAVIVYMIPMGLSVAVNVRVGNALG	AGNIE 329
Matelb	EWWA <mark>Y</mark> EVGSFLSGILGMVELGAQSITYELAIIV <mark>Y</mark> MIPSGFSVAANVRVGNALG	AGNID 330
hMATE1	EWWA <mark>Y</mark> EVGSFLSGILGMVELGAQSIVYELAIIV <mark>Y</mark> MVPAGFSVAASVRVGNALG	AGDME 330
SbMATE2	ETWY <mark>F</mark> QILVLIAGLLKNPELSLDSLSICMTINGWV <mark>F</mark> MISVGFNAAASVRVGNELG.	AGNPR 341
TT12	<mark>E</mark> IWY <mark>N</mark> QGLVIISGLLSNPTISLDAISICMYYLNWD <mark>M</mark> QFMLGLSAAISVRVSNELG.	AGNPR 349
	* ** * * * * * * * * ** ** **	*
Norm-VC	GAAIAANVGLMTGLATACITALLTVLFREQIALLYTENQVVVALAMQLLLFAAIY	QCM <mark>D</mark> A 372
rbMate1	QAKKSSAVALLVTELIAVVFCVMLLSCKDLVGYIFTSDRDIIALVAQVTPIYAVS	HLF <mark>E</mark> S 389
Mate1b	QAKKSSAISLIVTELFAVTFCVLLLGCKDLVGYIFTTDRDIVALVAQVIPIYAVS	HLF <mark>E</mark> G 390
hMATE1	QARKSSTVSLLITVLFAVAFSVLLLSCKDHVGYIFTTDRDIINLVAQVVPIYAVS	HLF <mark>E</mark> A 390
SbMATE2	AAAFSVVVVTSLSLAVAVVCAVVVLCIRDQLSYFFTGGEAVARAVSDLCPLLAVT	LVL <mark>N</mark> G 401
TT12	VAMLSVVVVNITTVLISSVLCVIVLVFRVGLSKAFTSDAEVIAAVSDLFPLLAVS	IFL <mark>N</mark> G 409
	* : : : : : : : : : : : : : : : : : : :	::.
Norm-VC	VQVVAAGSLRGYKDMTAIFHRTFIS <mark>Y</mark> WVLGLPTGYILGMTNWLTEQPLGAKGFWL	G FIIG 432
	-	

rbMate1	LAGTSGGILRGSG	NQKFGAIVNAIG <mark>Y</mark>	YVVGLPIGIALMFA	AKLGVIGLWLGIVV -443	
Mate1b	LACTCGGILRGTG	NQKVGAIVNAIG <mark>Y</mark>	YVIGLPIGIALMFA	AKLGVIGLWSGIII -444	
hMATE1	LACTSGGVLRGSG	NQKVGAIVNTIG <mark>Y</mark>	YVVGLPIGIALMFA	TTLGVMGLWSGIII-444	
SbMATE2	VQPVLSGVAVGCG	WQAFVAYVNVGC <mark>Y</mark>	YIIGVPLGVFLGFY	LDLGAKGIWSGMVIG 456	
TT12	IQPILSGVAIGSG	WQAVVAYVNLVT <mark>Y</mark>	YVIGLPIGCVLGFK	TSLGVAGIWWGMIA-463	
	* * *	• *	* * * * * * * *	** * * * * * * * * * * * * * * * * * * *	
Norm-VC	LSAAALMLG	QRLYWLQKQSDDV	QLHLAAK	461	
rbMate1	CAVSQAVCFLGFI	ARLNWTKACQ-QA	RVHANLTVNTAS-NGNS	AVLPDQPHPVGPDSHGG 501	
Mate1b	CTTCQTTCFLAFIARLNWKRACQ-QAQVHANLKVNVALNSAVSHEPAHPVCPESHGE 500				
hMATE1	CTVFQAVCFLGFI	VFQAVCFLGFIIQLNWKKACQ-QAQVHANLKVNNVPRSGNSALPQDPLHPGCPENLEG 503			
SbMATE2	GTMMQTLILLWVT	MQTLILLWVTSRTDWNKEVE-KARARLDKWDDKKQPLLED498			
TT12	GVILQTLTLIVLT	LKTNWTSEVE-NA	AQRVKTSATENQEMANA(GV 507	
	0 0 0	• × • • •	0 0		
Norm-VC				461	
rbMate1	IVLRDADRKEGAE	LNEQVHPELPLPV	RPEDSAHLSGKQLALRRO	GLLLLGVILVLLAGILV 561	
Mate1b	IMMTDLEKKDETQLDQPMNQQQALPIRPKDSNKLSGKQLALRRGLLLLGVVLVLVGGILV 560				
hMATE1	ILTNDVGKTGEPQSDQQMRQEEPLPEHPQDGAKLSRKQLVLRRGLLLLGVFLILLVGILV 563				
SbMATE2				498	
TT12				507	
Norm-VC		460			
rbMate1	KVYVRTQ	568			
Mate1b	RVYIRIE	567			
hMATE1	RFYVRIQ	570			
SbMATE2		498			
TT12		507			

Figure S2: Multiple sequence alignment of MATE transporters from prokaryotic and eukaryotic origin. The alignment was generated with Clustal Omega (www.ebi.ac.uk). The amino acid sequences were obtained from genbank and phytozome and include: NorM-VC from *Vibrio cholera* (Genbank accession: 3MKU_B), rbMATE1 from *Oryctolagus cuniculus* (NP_001103289), Mate1b from *Mus musculus* (NP_080459), hMATE1 from *Homo sapiens* (AAH10661), SbMATE2 from *Sorghum bicolor* (Sobic.001G012600), and TT12 from *Arabidopsis thaliana* (Q9LYT3, At3G59030). Conserved amino acids that form a cation-binding site are highlighted in yellow. Most notably these are in SbMATE2 E282 (E255 in NorM-VC), F286 (F259), F317 (F288), N400 (D371), and Y427 (Y398). See also Figure 4 in He *et al.* 2010.

Supplementary Tables

Table S1: Sorghum bicolor publically available RNA-Seq expression data present in the MOROKOSHI database with references to the original literature (http://sorghum.riken.jp/morokoshi/)						
Sample number	Sample name	Tissue and treatment	Reference			
1	Spikelet	at anthesis, 5 months after sowing	Makita <i>et al.,</i> 2014			
2	Seed	5 months + 2 weeks after sowing				
3	Stem	5 months after sowing				
4	Infec_C0h	Control, 0 hours				
5	Infec_C12h	Control, 12 hours	Yazawa <i>et al.,</i> 2013			
6	Infec_12h	Infected, 12 hours				
7	Infec_C24h	Control, 24 hours				
8	Infec_24h	Infected, 24 hours				
9	Nitrogen	Root tissue, nitrogen stress	Gelli <i>et al.,</i> 2014			
10	Root_ABA	Roots 9 day seedlings treated with 20 μ M ABA				
11	Root_PEG	Roots 9 day seedl. treated with 20% PEG-8000	Dugas <i>et al.,</i> 2011			
12	Root_seedling	Roots 9 day seedlings, untreated				
13	Root_NaOH	Roots 9 day seedlings, treated 0.2 M NaOH				
14	Shoot_ABA	Shoots 9 day seedl. treated with 20 μ M ABA				
15	Shoot_PEG	Shoots 9 day seedl. treated with 20% PEG-8000				
16	Shoot_seedling	Shoots 9 day seedlings, untreated				
17	Shoot_NaOH	Shoots 9 day seedlings, treated 0.2 M NaOH				
18	Leaves	BTx623, 20 day leaves				
19	Inflorescence_emerg	BTx623, emerging inflorescence	Davidson et al., 2012			
20	Seed_5d_pollination	BTx623, seed 5 days after pollination				
21	Inflorescence_early	BTx623, early inflorescence				
22	Pistil	BTx623, pistil				
23	Embryo	BTx623, embryo 25 days after pollination				
24	Endosperm	BTx623, endosperm 25 days after pollination				
25	Anther	BTx623, anther				
26	Seed 10d pollination	BTx623, seed 10 days after pollination				

Supplementary Table S2

Sequences of primers used in this study

Primers for cloning the SbMATE2 (Sobic.001G012600) cDNA clone

SbMATE-F:5'-CGATCGATCAACGTGCTAGCTTTGC-3'SbMATE-R:5'-AGTCTTGTTCTAAATGATGATGGCAG-3'

Primers for USER-based subcloning SbMATE2 into pCambia 2300 35S-USER_site-YFP (pLIFE0001)

SbMATE-USER-F5'-GGCTTAAUATGGACTCGACGACGCCGCT-3'SbMATE-USER-R:5'-GGTTTAAUCCGTCTTCTAGGAGAGGCTGCTTCTTATCATCCCACT-3'

Primers for cloning into T7 promoter vector pUSER_016

SbMATE-USER-F5'-GGCTTAAUATGGACTCGACGACGCCGCT-3'SbMATE-Xenopus-USER-R5'-GGTTTAAUTCAAGCGTAATCTGGAACATCGTATGGGTAGTCTTCTAGGAGAGGCTGCTTCTTATCATCCCACT-3'

Primers for amplification of in vitro transcription cassette for producing SbMATE2 mRNA

- F: 5'-TGCAAGGCGATTAAGTTGGGTAACGC -3'
- R: 5'-CTCGAGGCGGCCGCCTGCAG-3'

Supplementary references:

Damm, B. & Willmitzer, L. Regeneration of fertile plants from protoplasts of different *Arabidopsis thaliana* genotypes. *Mol. Gen. Genet.* **213**, 15-20 (1988).

Davidson, R.M. *et al.* Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution. *Plant J.* **71**, 492-502 (2012).

Dugas, D.V. *et al.* Functional annotation of the transcriptome of *Sorghum bicolor* in response to osmotic stress and abscisic acid. *BMC Genomics* **12**, 514 (2011).

Gelli, M. *et al.* Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. *BMC Genomics* **15**, 179 (2014).

He, X. *et al*. Structure of a cation-bound multidrug and toxic compound extrusion transporter. *Nature* **467**, 991-996 (2010).

Kelley, L.A. *et al.* The Phyre2 web portal for protein modeling, prediction and analysis. *Nat. Protoc.* **10**, 845-858 (2015).

Makita, Y. *et al*. MOROKOSHI: transcriptome database in *Sorghum bicolor*. *Plant Cell Physiol*. **56**, e6 (2015).

Nelson, B.K., Cai, X &, Nebenführ A. A multicolored set of in vivo organelle markers for colocalization studies in Arabidopsis and other plants. *Plant J.* **51**, 1126-1136 (2007).

Tamura, K. *et al.* MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol. Biol. Evol.* **28**, 2731-2739 (2011).

Yazawa, T., Kawahigashi, H., Matsumoto, T. & Mizuno, H. Simultaneous transcriptome analysis of sorghum and *Bipolaris sorghicola* by using RNA-seq in combination with *de novo* transcriptome assembly. *Plos One* **8**, e62460 (2013).