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Figure S1. Flowchart of the computational strategy to design high-affinity α7 nAChR blocker based on PnIA 
conotoxin framework. (A) Establishment of database of α7 nAChR-active conotoxins and their mutants, and 
stratification according to the channel activity (IC50/Kd). (B) Acquisition of 3D structures from PDB and homology 
modeling. (C) Molecular dynamics (MD) simulations to account molecular flexibility. (D) Calculation of distribution of 
conotoxins’ electrostatic potential (ELP) on the molecular surface. (E) Building of ELP 2D projection maps with use of 
Protein Surface Topography (PST) approach. (F) MD-averaging of these maps. (G) Comparative analysis of ELP maps 
with respect to conotoxins’ activity. (H) Computing of characteristic patterns for “good” and “bad” α7 nAChR 
blockers (group averaging of ELP maps). (I) Building differential map to guide the design of point mutations to 
improve activity. (J) Three PnIA mutant variants that were synthesized and biochemically tested. Spherical maps for 
this figure were prepared with our in-house Protein Surface Topography software1, which is currently available only 
on request. 



 

Figure S2. [Ca2+]i rise in neuroblastoma Neuro2a cells transiently expressing mouse α1β1δε nAChR in response to 
different concentration of acetylcholine measured in the absence (1, solid line and filled circles) or in the presence of 
0.55 µM PnIA[R5, R9, L10, R14] (2, dotted line and open circles). 

  



 

 

Figure S3. HPLC profiles for the products of the [127I]-iodination reaction of PnIA[R9, L10] (A) and PnIA[R5, R9, L10, 
R14] (B). The collected and analyzed peaks of non-modified analogs (0) and respective mono-iodinated derivatives 
(1) are marked with indicated molecular masses (MH+) measured by MALDI mass-spectrometry. 

 

 

Figure S4. Kinetics of [125I]-PnIA[R9, L10] washout from α7 nAChR transfected in GH4C1 cells. Binding of 0.4 nM 
radioligand was allowed to reach equilibrium (2 h incubation) followed by adding of α-cobratoxin (20 μM) at the 
indicated time (from 2 min till 2 h). Each point is a mean ± s.e.m. value of two measurements for each time 
interval in single experiments. 

 

 



 

Figure S5. Inhibition of [125I]-PnIA[R5, R9, L10, R14] binding to α7 nAChR transfected in GH4C1 cells by α-cobratoxin 
(open circles, thin line) and α-conotoxin PnIA[R5, R9, L10, R14] analog (filled circles, thick line) with the IC50 = 1.6 ± 
0.4 μM for the latter (mean ± s.e.m.). Each point is a mean ± s.e.m. value of two measurements for each 
concentration in two independent experiments. The curve for PnIA[R5, R9, L10, R14] analog was calculated from 
the means ± s.e.m. using the ORIGIN 7.5 program (see Methods).  
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Figure S6. Stability of conotoxin variant PnIA [A10L, D14K] in molecular dynamics (MD) simulations. (A) 3D 
structure of this conotoxin (PDB ID: 2BR8). Secondary structure is shown as flat ribbons. Disulfide bridges are shown 
as brown sticks. (B) Root mean square deviation (RMSD) from the starting structure in MD trajectory for this peptide. 
(C) Secondary structure of this peptide during MD. 

 

  
Figure S7. Maps of the electrostatic potential for two PnIA variants (PnIA[P7R, A10L]; left, and 
PnIA[L5Y,P6R,P7R,A10L,D14R,Y15W]; right) that possess overall positive net charge and exhibit areas of 
positive electrostatic potential, but moderately or low active due to improper distribution of the potential 
(compare with Fig. 1A and D in the main text of the article). 

  



Table S1. Three groups of α-conotoxins and their mutants according to α7 nAChR activity. “Good”, IC50<16 nM; 
“average”, 39 nM< IC50 < 390 nM; and “bad”, IC50 > 390 nM. 

Toxin name Sequence$ 
   1   5   9      16 

α7 nAChR activity 
(IC50, nM) 

Ref 

Good  
ArIB (V11L, V16A)   DECCSNPACRLNNPHACRRR  0.356a 2 
ArIB (V11L)   DECCSNPACRLNNPHVCRRR  0.539a 2 
ArIB (V11L, V16D)   DECCSNPACRLNNPHDCRRR  1.09a 2 
ArIB    DECCSNPACRVNNPHVCRRR  1.81a 2 
GID (γ4E, O16P)# IRDECCSNPACRVNNPHVC-NH2 2.0 ± 0.1a 3 
ArIA(O16P)# IRDECCSNPACRVNNPHVCRRR 6.02a 2 
GID (γ4E, O16P)# IRDECCSNPACRVNNPHVC 8.4 ± 1.9a 3 
PnIA (L5R, A10L, D14R)    GCCSRPPCALNNPRYC-NH2 10a; 670 ± 50b 4, 5 
PnIA (A10L, D14K)    GCCSLPPCALNNPKYC-NH2 7200 ± 700b 5 
PnIA (L5R, A10L)    GCCSRPPCALNNPDYC-NH2 12000 ± 2000b 5 
PnIA (A10L)    GCCSLPPCALNNPDYC-NH2 12.6a; 14000 ± 1000b 2, 5 
ArIB (N6R, A8P)   DECCSRPPCRVNNPHVCRRR 15.9a 2 

Average  
TxIA (A10L)    GCCSRPPCILNNPDLC-NH2 39a 4 
GID(D3A, γ4E, O16P)# IRAECCSNPACRVNNPHVC  42.1 ± 10.9a 3 
GID(γ4E, P9A, O16P)# IRDECCSNAACRVNNPHVC  90.5 ± 22.6a 3 
GID(γ4E, R12A, O16P)# IRDECCSNPACAVNNPHVC  48.8 ± 4.2a 3 
GID(γ4E, N14A, O16P)# IRDECCSNPACRVANPHVC  51.4 ± 6.8a 3 
GID (Δ1–3, γ4A, O16P)#    ACCSNPACRVNNPHVC 100.3 ± 8.3a 3 
PnIA (L5H, D14R)    GCCSHPPCAANNPRYC-NH2 21000 ± 1000b 5 
PnIA (L5H)    GCCSHPPCAANNPDYC-NH2 26000 ± 1000b 5 
PnIA (L5D, P7R, A10L, D14R)    GCCSDPRCALNNPRYC-NH2 23000 ± 1000b 5 
PnIA 
(L5Y,P6R,P7R,A10L,D14R,Y15W) 

   GCCSYRRCALNNPRWC-NH2 19000 ± 1000b 5 

PnIA (L5R, P7D, A10L, D14R)    GCCSRPDCALNNPRYC-NH2 72000 ± 5000b 5 
PnIB    GCCSLPPCALSNPDYC-NH2 61.3b 6 
MII    GCCSNPVCHLEHSNLC-NH2 130a 7 
PnIA    GCCSLPPCAANNPDYC-NH2 252a 2 
TxIA    GCCSRPPCIANNPDLC-NH2 390a 4 

Bad  
Vc1.1    GCCSDPRCNYDHPEIC-NH2 7123a 8 
Vc1.1(N9A)    GCCSDPRCAYDHPEIC-NH2 >3000a 8 
Vc1.1(N9I)    GCCSDPRCIYDHPEIC-NH2 963a 8 
Vc1.1(N9L)    GCCSDPRCLYDHPEIC-NH2 >3000a 8 
Vc1.1(N9G)    GCCSDPRCGYDHPEIC-NH2 >3000a 8 
PnIA (L5D, A10L)    GCCSDPPCALNNPDYC-NH2 >100000b 5 
PnIA (P7R, A10L)    GCCSLPRCALNNPDYC-NH2 >100000b 5 
PnIA (P7D, A10L)    GCCSLPDCALNNPDYC-NH2 >100000b 5 
PnIA (L5D, P7R, A10L)    GCCSDPRCALNNPDYC-NH2 >100000b 5 
PnIA (L5D, P7R, A10V)    GCCSDPRCAVNNPDYC-NH2 >100000b 5 
PnIA (L5R, P7D, A10L)    GCCSRPDCALNNPDYC-NH2 >100000b 5 
MII (H9A, L15A)    GCCSNPVCALEHSNAC-NH2 >10000a 9 
$ — Sequences are aligned, and positions are numbered according to PnIA. 

# — O=oxyproline. Although, in this work proline analog was used for computations, since according to [3] this 
substitution almost does not affectactivity. 

a — IC50 (nM) for blocking of Xenopus oocyte-expressed α7 nAChR; b — IC50 (nM) in [125I]-αBgt displacement from α7 
nAChR. 
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