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Finite element simulations of the strain in a HW

The two images in Figure 1 represent COMSOL simulations of the out-of-plane (left) and

the in-plane (right) strain distribution of a capped HW. For our theoretical model we have

extracted an out-of-plane value of 2 and an in-plane value of -3.3 percent.
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Figure 1: COMSOL simulations of the out-of-plane (a) and the in-plane strain distribu-
tion (b) in a capped HW. The color scale represents the percentage of strain with positive
(negative) values meaning tensile (compressive) strain.

Matrix representation of spin operators

We use the following matrix representation1 for the operators Jν . The basis states are |3/2〉,

|1/2〉, |−1/2〉, and |−3/2〉.
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In the derivation of the pure-HH Hamiltonian [Eq. (34)], we consider the Pauli matrices

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 , (2)

where |3/2〉 and |−3/2〉 are the basis states.

Calculation with electric fields

It is well possible that an electric field Ez along the out-of-plane axis was present in the

experiment. When the direct coupling −eEzz and the standard Rashba spin-orbit coupling

αEz(kxJy − kyJx), with α = −0.4 nm2e,1,2 are added to the Hamiltonian H [Eq. (1) of
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the main text], our finding that the low-energy states correspond to HH states remains

unaffected, even for strong Ez around 100 V/µm. Due to symmetries in our setup, we

believe that electric fields Ey along y were very small. Nevertheless, we find numerically

that the HH character of the eigenstates is preserved even when the direct and the standard

Rashba coupling that are caused by nonzero Ey are included in the model. We note that

additional corrections besides the standard Rashba spin-orbit interaction arise for hole states

in the presence of an electric field,1 but these terms are all small and will not change our

result that the low-energy states are of HH type.

Couplings C±

Here we explain the calculation of the matrix elements C± that are presented in Eq. (4) of

the main text. When the magnetic field is applied along the z axis, the Hamiltonian is

H =
~2

2m

[(
γ1 +

5γ2

2

)
k2 − 2γ2

∑
ν

k2
νJ

2
ν − 4γ3 ({kx, ky}{Jx, Jy} + c.p.)

]
+2µBBz

(
κJz + qJ3

z

)
+ b
∑
ν

εννJ
2
ν + V (y, z) (3)

and the vector potential is A = (−Bzy, 0, 0). Consequently,

{ky, kz} = −∂y∂z, (4)

{kx, kz} = −∂x∂z + i
e

~
Bzy∂z, (5)

{kx, ky} = −∂x∂y + i
e

~
Bzy∂y + i

e

2~
Bz, (6)

k2
x = −∂2

x + 2i
e

~
Bzy∂x +

e2

~2
B2
zy

2, (7)
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and k2
y = −∂2

y , k
2
z = −∂2

z . Using the matrices for the spin operators Jν listed in Eq. (1), one

finds

〈±3/2| {Jy, Jz} |±1/2〉 = −i
√

3

2
, (8)

〈±3/2| {Jx, Jz} |±1/2〉 = ±
√

3

2
, (9)

whereas

〈±3/2|Q |±1/2〉 = 0 (10)

when the operator Q is {Jx, Jy}, J2
x , J2

y , J2
z , Jz, or J3

z . Therefore,

C± = 〈±3/2, 1, 1, 0|H |±1/2, 2, 2, 0〉

= i
√
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m
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where the wave functions [see Eq. (3) of the main text] of the basis states are
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inside the HW (|z| < Lz/2, |y| < Ly/2) and ϕ1,1,0 = 0 = ϕ2,2,0 outside. We note that

〈ϕ1,1,k̃x
| ∂x∂z |ϕ2,2,k̃x

〉 vanishes for arbitrary k̃x after integration over the y axis due to the

orthogonality of the basis functions for the y direction. Thus, using Eqs. (4) and (5) in

Eq. (11) yields

C± = −i
√

3
γ3~2

m
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√
3
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m

Bz 〈ϕ1,1,0| y∂z |ϕ2,2,0〉 . (14)
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With the integrals (analogous for z)
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we finally find

〈ϕ1,1,0| ∂y∂z |ϕ2,2,0〉 =
64

9LyLz
, (17)

〈ϕ1,1,0| y∂z |ϕ2,2,0〉 =
128Ly
27π2Lz

, (18)

and so

C± = −i 64γ3~2

3
√

3LyLzm
∓ i128Lyγ3e~Bz

9
√

3π2Lzm
. (19)

This is the result shown in Eq. (20), considering that the Bohr magneton is µB = e~/(2m).

As explained in the above derivation, the first term on the right-hand side results from the

part proportional to ∂y∂z{Jy, Jz} in the Hamiltonian H, while the second term results from

the part proportional to Bzy∂z{Jx, Jz}.

Correction gC to the out-of-plane g-factor

In the previous section we derived the couplings

C± = 〈±3/2, 1, 1, 0|H |±1/2, 2, 2, 0〉 = −i 64γ3~2

3
√

3LyLzm
∓ i256γ3LyµBBz

9
√

3π2Lz
(20)

assuming that the magnetic field is applied in the out-of-plane direction z. In order to

calculate the associated correction gC to the g-factor g⊥, we consider a four-level system

with the basis states |3/2, 1, 1, 0〉, |−3/2, 1, 1, 0〉, |1/2, 2, 2, 0〉, and |−1/2, 2, 2, 0〉 (see also

Figure 4 (b) of the main article). Projection of the Hamiltonian H [Eq. (3)] onto this basis
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yields the effective Hamiltonian

Heff =



Eg,+ 0 C+ 0

0 Eg,− 0 C−

C∗+ 0 Ee,+ 0

0 C∗− 0 Ee,−


, (21)

where the asterisk stands for complex conjugation and

Eg,± =
~2π2
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zmHH

+
~2π2(γ1 + γ2)
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are the energies on the diagonal. We assumed here that εxx = εyy = ε‖ and omitted the

state-independent offset 15bε‖/4. The introduced effective masses are

mHH =
m

γ1 − 2γ2

, (24)

mLH =
m

γ1 + 2γ2

. (25)

From second-order perturbation theory,1 we find that the low-energy 2×2 Hamiltonian ob-

tained after diagonalization of Eq. (21) is

H2×2
eff '

Eg,+ − |C+|2
∆+

0

0 Eg,− − |C−|2
∆−

 , (26)

where we defined

∆± = Ee,± − Eg,±. (27)

6



With σ̃z as a Pauli operator that is based on the low-energy eigenstates, Eq. (26) can be

written as

H2×2
eff ' 1

2

(
Eg,+ + Eg,− −

|C+|2

∆+

− |C−|
2

∆−

)
+

1

2

(
Eg,+ − Eg,− −

|C+|2

∆+

+
|C−|2

∆−

)
σ̃z. (28)

The effective Zeeman splitting and the out-of-plane g-factor g⊥ are therefore determined by

g⊥µBBz ' Eg,+ − Eg,− −
|C+|2

∆+

+
|C−|2

∆−
. (29)

From Eq. (22), it is evident that

Eg,+ − Eg,− =

(
6κ+

27

2
q

)
µBBz. (30)

Given our parameters for Ge HWs, we find that the splittings ∆± are predominantly deter-

mined by the confinement rather than the strain and that they can be well approximated by

∆± '
2~2π2

L2
zmLH

− ~2π2

2L2
zmHH

=
~2π2(3γ1 + 10γ2)

2L2
zm

= ∆ (31)

using Lz � Ly. With the calculated expressions for the couplings C± [Eq. (20)], we finally

obtain

g⊥ ' 6κ+
27

2
q + gC , (32)

where

gC =
|C−|2 − |C+|2

µBBz∆
= − 217γ2

3

81π4(3γ1 + 10γ2)
(33)

is the correction that results from the Bz-induced difference in the tiny LH admixtures

(|±1/2, 2, 2, 0〉) to the eigenstates of type |3/2, 1, 1, 0〉 and |−3/2, 1, 1, 0〉. We note that

|C±|/∆ < 0.05 for our parameters, and so the perturbation theory used in the derivation of

H2×2
eff applies. Remarkably, our result for gC depends solely on the Luttinger parameters γ1,2,3.
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Hamiltonian for pure heavy holes

If the contributions from LH states (jz = ±1/2) are ignored completely, the Hamiltonian

of Eq. (1) in the main text can be simplified by projection onto the HH subspace, i.e., by

removing all terms that cannot couple a spin jz = 3/2 (or jz = −3/2, respectively) with

either jz = 3/2 or jz = −3/2. As evident, e.g., from the standard representations of the

4×4 matrices Jν and the 2×2 Pauli matrices σν [see Eqs. (1) and (2)], this projection can

be achieved by substituting {Jx, Jy} → 0 (analogous for cyclic permutations), J3
x → 3σx/4,

J3
y → −3σy/4, J3

z → 27σz/8, J2
x,y → 3/4, J2

z → 9/4, Jx,y → 0, Jz → 3σz/2, which leads to

the pure-HH Hamiltonian

HHH =
~2

2m

[
(γ1 − 2γ2) k2

z + (γ1 + γ2) (k2
x + k2

y)
]

+

(
3κ+

27

4
q

)
µBBzσz +

3

2
qµB (Bxσx −Byσy) + V (y, z) (34)

for the low-energy hole states in the HW. Thus, if LH states are ignored, one expects small in-

plane g-factors g‖ ' 3q ' 0.2 and very large out-of-plane g-factors g⊥ ' 6κ+ 27q/2 ' 21.4,3

where we used again the band structure parameters κ = 3.41 and q = 0.07 of bulk Ge.1,4
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