Cell Chemical Biology, Volume 23

Supplemental Information

Endoplasmic Reticulum Proteostasis Influences

the Oligomeric State of an Amyloidogenic

Protein Secreted from Mammalian Cells

John J. Chen, Joseph C. Genereux, Eul Hyun Suh, Vincent F. Vartabedian, Bibiana Rius, Song Qu, Maria T.A. Dendle, Jeffery W. Kelly, and R. Luke Wiseman

SUPPLEMENTAL FIGURES 1

Mass Diff (vs. ^{FT} TTR ^{WT})	Modification	Predicted Site of Modification	Relative Abundance (%)
+199	+SO $_3$ and +Cys	Tyr and Cys10	38 +/- 4
+80	+SO ₃	Tyr	31 +/- 5
+119	Cys	Cys10	12 +/- 2
+160	2 x SO ₃	Tyr	8 +/- 2
Parent			6 +/- 3

Figure S1 (Supplement to Figure 1).

- **A.** Plot showing the compound **1**-TTR conjugate fluorescence of recombinant TTR^{WT} (200 nM) in cell 5 culture media separated by anion exchange chromatography. Compound 1 (10 µM) was added to unconditioned media containing recombinant TTR^{WT} for 16 h prior to analysis by anion exchange 7 8 chromatography.
- **B.** Plot showing the compound **1**-TTR conjugate fluorescence of recombinant ^{FT}TTR^{WT} (200 nM) in cell 9 culture media separated by anion exchange chromatography. Compound 1 (10 µM) was added to 0 unconditioned media containing recombinant ^{FT}TTR^{WT} for 16 h prior to analysis by anion exchange 1 2 chromatography.
- **C.** Plot showing the compound **1**-TTR conjugate fluorescence of ^{FT}TTR^{WT} in conditioned media. 3 Compound **1** at the indicated concentration was added to conditioned media containing ^{FT}TTR^{WT} for 16 4 5 h prior to analysis by anion exchange chromatography.
- **D.** Table showing modifications of ^{FT}TTR^{WT} identified by mass spectrometric analysis of TTR 6 immunopurified from media conditioned for 16 h on HEK293 cells expressing ^{FT}TTR^{WT}. The mass 7 difference from parent, modification, predicted modification site and relative abundance are shown. 8 These modified TTRs integrate into heterotetramers to comprise the 8 distinct peaks identified by 9 compound 1-TTR conjugate fluorescence in UPLC anion exchange chromatograms, as shown in Fig. 0
 - 1D.

3 Figure S2 (Supplement to Figure 2).

- A. Immunoblot of fractions collected from media conditioned on HEK293 cells expressing ^{FT}TTR^{WT} (top) or
 ^{FT}TTR^{A25T} (bottom) separated by gel filtration chromatography. The migration of molecular weight
 standards are shown above. The arrows show ^{FT}TTR. The asterix (*) identifies non-TTR background
 bands that cross-react with this antibody in conditioned media. The migration of ^{FT}TTR^{WT} is identical to
 that observed for recombinant ^{FT}TTR^{WT} (Chen et al., 2014).
- B. Representative SDS-PAGE immunoblot and quantification of total TTR levels in media conditioned for
 16 h on HEK293 cells expressing ^{FT}TTR^{WT} (black), ^{FT}TTR^{V122I} (orange), ^{FT}TTR^{V30M} (green), ^{FT}TTR^{L55P}
 (blue), or ^{FT}TTR^{A25T} (red). The graph shows relative amounts of the different TTR variants normalized to
 ^{FT}TTR^{WT}. Error bars show SEM for n=3.
- C. Immunoblot of ^{FT}TTR^{A25T} incubated in conditioned media at 37 °C for the indicated time. The pH of the
 media was adjusted as indicated to induce protein unfolding. Note that the ^{FT}TTR^{A25T} signal is not lost
 during this incubation at any pH, indicating that no proteolysis is observed.
- 6

Figure S3 (Supplement to Figure 4)

B. Proton NMR for Taf-SO $_3^-$.

Figure S4 (Supplement to Figure 5).

9	Α.	Representative plot showing the compound 1-TTR conjugate fluorescence of media conditioned for 16
0		h on HEK293 cells expressing $^{\text{FT}}\text{TTR}^{\text{L55P}}$ in the presence of vehicle (black), Taf (10 $\mu\text{M};$ red), or Taf-
1		SO ₃ ⁻ (10 μ M; blue). Compound 1 (10 μ M) was added to conditioned media for 16 h prior to analysis by
2		anion exchange chromatography.

B. Representative plot showing the compound 1-TTR conjugate fluorescence of media conditioned for 16
 h on HEK293 cells expressing ^{FT}TTR^{A25T} in the presence of vehicle (black), Taf (10 μM; red), or Taf SO₃⁻ (10 μM; blue). Media was conditioned for 16 h prior to collection. Compound 1 (10 μM) was added
 to conditioned media for 16 h prior to analysis by anion exchange chromatography.

- C. Plot showing relative tetramer levels (measured by compound 1-TTR conjugate fluorescence UPLC assay) of media conditioned on HEK293 cells expressing ^{FT}TTR^{A25T} in the presence of Taf-SO₃⁻ (10
- μ M). The x-axis shows the time media was incubated prior to addition of compound **1** (14.4 μ M).

2 Figure S5 (Supplement to Figure 6)

- A. Immunoblot of lysates prepared from HEK293 cells expressing ^{FT}TTR^{A25T} treated with vehicle or Tg (0.5
 μM). The Tg-dependent increase in BiP is shown in the KDEL immunoblot panel.
- B. Representative plot showing the compound 1-TTR conjugate fluorescence of media conditioned for 16
 h on HEK293 cells expressing ^{FT}TTR^{A25T} conditioned in the presence of vehicle (black) or Tg (0.5 μM;
 red). Media was conditioned the presence of Taf-SO₃⁻ (10 μM). Compound 1 (10 μM) was added to
 conditioned media for 16 h prior to analysis by anion exchange chromatography.
- C. Representative plot showing the compound 1-TTR conjugate fluorescence of media conditioned for 16
 h on HEK293 cells expressing ^{FT}TTR^{A25T} conditioned in the presence of vehicle (black) or increasing Tg
 concentration, as indicated. Media was conditioned the presence of Taf-SO₃⁻ (10 μM). Compound 1 (10
 μM) was added to conditioned media for 16 h prior to analysis by anion exchange chromatography.
- D. Representative CN-PAGE and SDS-PAGE immunoblot of media conditioned for 16 h on HEK293 cells
 expressing ^{FT}TTR^{A25T} conditioned in the presence of vehicle (black) or increasing Tg concentration, as
 indicated. Media was conditioned the presence of Taf-SO₃⁻ (10 μM).
- 6 E. Graph showing normalized TTR tetramers in the conditioned media described in Fig. S5C,D.
 7 Normalized tetramers were calculated by dividing the relative tetramer levels by the total amount of
 8 TTR in each sample measured by SDS-PAGE. This normalization is necessary to account for the
 9 reduced total ^{FT}TTR^{A25T} levels observed in Tg-treated cells. Error bars show SEM for n=3. *p<0.05,
 0 **p<0.01, ***p<0.005.
- F. Graph showing normalized TTR tetramers in the conditioned media prepared on HEK293 cells
 transfected with 5 or 2.5 μg DNA and treated with vehicle (grey) or Tg (0.5 μM; red), as indicated.
 Normalized tetramers were calculated by dividing the relative tetramer levels by the total amount of
 TTR in each sample measured by SDS-PAGE. This normalization is necessary to account for the
 reduced total ^{FT}TTR^{A25T} levels observed in Tg-treated cells. Error bars show SEM for n=2.
 G. Graph showing total (open bars; measured by SDS-PAGE) or tetrameric (closed bars; measured by
- integrating compound 1-TTR conjugate fluorescence from UPLC) TTR in media conditioned for 16 h on
 HEK293 cells expressing ^{FT}TTR^{WT} in the presence of vehicle (grey) or Tg (0.5 µM; red). Media was

9		conditioned in the presence of Taf-SO $_3^-$ (10 μ M). All data are shown relative to vehicle-treated controls.
0		Error bars show SEM for n=6.
1	H.	Graph showing the posttranslational modifications of FTTTR ^{WT} immunopurified from media conditioned
2		on HEK293T cells expressing $^{FT}TTR^{WT}$ and treated in the presence of vehicle (grey) or Tg (0.5 μM ;
3		red). Modifications of ^{FT} TTR ^{WT} were determined using the same LC-MS approach described in Fig. 1E .
4		

5 SUPPLEMENTAL EXPERIMENTAL PROCEDURES

6 Antibodies

7 The antibodies used for immunoblotting were monoclonal mouse M2 anti-FLAG (Sigma), monoclonal mouse
8 anti-tubulin (Sigma) and polyclonal rabbit anti-TTR antibody (Dako).

9

0 Cell Culture, Lysates, Plasmids, and Transfections

HEK293 cells used in this study were purchased from the ATCC and cultured in Dulbecco's modified Eagle's 1 2 medium (DMEM) supplemented with glutamine, penicillin/streptomycin, and 10% fetal bovine serum, as previously described (Shoulders et al., 2013). All TTR point mutations were incorporated into the previously 3 described FLAG₂.TTR.pcDNA3.1 vector through site-directed mutagenesis. Transient transfections of ^{FT}TTR 4 5 variants were performed by calcium phosphate transfection using established procedures (Shoulders et al., 2013). Whole cell lysates were prepared in Lysis Buffer (20 mM HEPES [pH 7.4], 100 mM NaCl, 1 mM EDTA, 6 7 1% Triton X-100 supplemented with EDTA-free protease inhibitors [Roche]). Protein concentration in lysates 8 was normalized using the Bio-Rad protein assay.

9

0 Characterization of TTR modifications

^{FT}TTR^{WT} was immunopurified from cell-conditioned media by overnight incubation with protein A resin 1 covalently conjugated to anti-TTR antibody at 4 ^oC, as previously described (Sekijima et al., 2003). The beads 2 were washed four times with 10 mM Tris pH 8.0 100 mM NaCl 0.05% saponin and two times with 10 mM Tris 3 pH 8.0 100 mM NaCl. FTTTR^{WT} was then eluted overnight using 100 mM triethylamine pH 11.5 with gentle 4 shaking. For LC-MS analysis, eluates were separated using a 5 µm ID 300 Å pore size C8 RP-HPLC column 5 6 (Agilent) over a 15%/min linear acetonitrile gradient and analyzed on an 1100 MSD SL mass spectrometer 7 (Agilent). Deconvolution parameters were set to 10 kDa \leq MW \leq 20 kDa, q \leq 50, and minimum 6 peaks for identification. 8

9

0 Recombinant TTR Aggregation Assay

1 Recombinant TTR^{WT} (7.2 μ M tetramer) in 10 mM Tris pH 7.5 100 mM NaCl 1 mM EDTA was incubated for 1 h 2 with the indicated equivalent of Taf-SO₃⁻ or Taf (1 equivalent = 7.2 μ M molecule). The protein was then diluted

- 3 1:1 into 50 mM Acetate pH 4.4 100 mM NaCl 1 mM EDTA resulting in a final tetramer concentration of 3.6 μM.
- 4 The sample was then incubated for 72 h at room temperature. Aggregation was measured by turbidity at 330
- 5 and 400 nm, as previously described (Razavi et al., 2003; Sekijima et al., 2005).
- 6

7 SUPPLEMENTAL REFERENCES

- 8 Chen, J.J., Genereux, J.C., Qu, S., Hulleman, J.D., Shoulders, M.D., and Wiseman, R.L. (2014). ATF6
- 9 activation reduces the secretion and extracellular aggregation of destabilized variants of an amyloidogenic
 0 protein. Chemistry & biology *21*, 1564-1574.
- 1 Razavi, H., Palaninathan, S.K., Powers, E.T., Wiseman, R.L., Purkey, H.E., Mohamedmohaideen, N.N.,
- 2 Deechongkit, S., Chiang, K.P., Dendle, M.T., Sacchettini, J.C., et al. (2003). Benzoxazoles as transthyretin
- 3 amyloid fibril inhibitors: synthesis, evaluation, and mechanism of action. Angewandte Chemie 42, 2758-2761.
- 4 Sekijima, Y., Hammarstrom, P., Matsumura, M., Shimizu, Y., Iwata, M., Tokuda, T., Ikeda, S., and Kelly, J.W.
- 5 (2003). Energetic characteristics of the new transthyretin variant A25T may explain its atypical central nervous
- 6 system pathology. Laboratory investigation; a journal of technical methods and pathology *83*, 409-417.
- 7 Sekijima, Y., Wiseman, R.L., Matteson, J., Hammarstrom, P., Miller, S.R., Sawkar, A.R., Balch, W.E., and
- 8 Kelly, J.W. (2005). The biological and chemical basis for tissue-selective amyloid disease. Cell *121*, 73-85.
- 9