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SUPPLEMENTARY INFORMATION 
 
DESIGN AND FABRICATION OF THE SPINAL IMPLANT  
 
Spatial distribution of leg motoneurons  
Monkeys (n = 7, Supplementary Table 1) received injections of Fastblue (4 % in sterile saline, 1000 µl per 
muscle) or Fluoro-Ruby (10 % in sterile saline, 1000 µl per muscle) in up to two distinct muscles of the left 
and right legs, allowing tracing up to four muscles per monkey. The following muscles recorded during 
locomotion were traced: gluteus medius, iliopsoas, rectus femoris, semitendinosus, gastrocnemius medialis, 
tibialis anterior, extensor digitorum longus, and flexor hallucis longus. The locations of the retrogradely traced 
motoneurons were reconstructed in 3D from serial sections of the spinal cord using Neurolucida. We merged 
the reconstruction from several monkeys into a unified digital library using the morphology of the spinal 
segments as a landmark.  
 
Anatomy of the vertebrae  
Imaging of the vertebrae for the design and visualization of spinal implants was conducted using the micro-
computer tomography scanner Skyscan 1076 (Bruker µCT). Scanner settings were adjusted to avoid 
artefacts induced by the metallic parts of the vertebral orthosis (0.5-1 mm aluminum filter, voltage 70-100 kV, 
current 100-140 µA, exposure time 120-160 ms, rotation step 0.5 deg).  The resulting projection images were 
reconstructed into 3D renderings using NRecon and GPURecon Server (Bruker µCT). The spinal cords of 
monkeys were imaged post-mortem, after explant. Segmentation and 3D models were constructed with 
Amira® (FEI Vizualisation Sciences Group). The 3D shape of vertebrae was derived from this micro-
computed tomography imaging. The spinal cords of three monkeys were imaged, and the entire bone 
structure was reconstructed in 3D. The 3D renderings were exported in the virtual reality modelling language 
file format WRL that was later merged with spinal tissue and dorsal root reconstructions. Measurements of 
relationships between vertebra and spinal segment morphologies were performed on fresh tissue. For each 
subject, the spinal segments were identified based on the innervation of the dorsal roots. The centre of the 
segment was defined as the entry point of the rootlets. After measuring the length of vertebra, and the 
relationships between vertebra and spinal segments, the entire spinal cord was extracted, and the roots 
moved perpendicular to the spinal cord to clearly visualize the segments. The location and length of each 
segment was then calculated. 
  
Reconstruction of spinal segments and dorsal root trajectories 
The spinal cords of three monkeys were dissected, fixated overnight, and transferred to 30% phosphate 
buffered sucrose for cryoprotection. The dura mater was opened along the rostrocaudal axis, and gently 
moved on the side. For each spinal segment, the dorsal root ganglions were identified. The corresponding 
root was retracted cranially and laterally. The entire length of the root was painted, from the cut extremity to 
the entrance into the spinal segment. All the painted roots from S1 to L1 were repositioned to their original 
location along spinal segments, and the dura mater was sutured. The spinal cord was then frozen and cut 
into 80 µm thick slices using a cryostat (Leica Instruments). Reconstructions were conducted using every 4 
sections, corresponding to intervals of 320 µm. The slides were assembled into the Neurolucida image 
analysis software (MBF Bioscience) to reconstruct the color-coded dorsal roots trajectories and lumbosacral 
segments in 3D (Extended Data Fig. 1). 
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Spinal cord and vertebral morphology 
All the 3D reconstructions derived from micro-computed tomography imaging and anatomical experiments 
were merged to generate a global model including the bony structure of vertebras, the shape of spinal 
segments, the trajectory of each dorsal root and the anatomical locations of motoneuron columns. This 
model supported the optimization of the spinal implant and vertebral orthosis.  
 
Polyimide-based spinal implant 
We designed and fabricated Polyimide-based epidural spinal implants for monkeys using technology  similar 
to that previously described in rats1. Briefly, the spinal implants were fabricated using ultra-violet (UV) 
photolithographic patterning of a photosensitive Polyimide, as well as micro electroforming to create gold 
electrodes and embedded gold interconnects. Polyimide is a mechanically and chemically robust polymer 
material exhibiting a high level of biocompatibility. Processing of the implants was performed on wafer scale, 
which allowed parallel fabrication of 4 devices or more on a 125 mm silicon wafer serving as carrier wafer. 
Processing started with deposition of a 20 µm thick Polyimide film by spin coating on the silicon substrate. 
UV lithography was used to shape the Polyimide-based bottom layer, which constituted the footprint of the 
implant.  A 200 nm thick gold layer was deposited using vacuum evaporation and lithographically structured 
providing a conductive seed pattern. Gold was then electroplated to a height of approximately 6 µm to create 
the electrodes and leads. A 20 µm cover layer of photosensitive Polyimide resist was applied by spin coating 
to uniformly cover the bottom and electrode structure. A final UV lithography step was conducted in order to 
structure the top layer of the implant, and create openings over the electrodes and contact pads. The contact 
interface was embedded in a shaft that oriented the electrode implant towards the spinal cord through the 
laminectomy. 3D micro-computed tomography scans steered the optimization of the size and shape of the 
vertebral orthosis, which was realized using 3D laser sintering of medical grade titanium. The titanium 
orthosis enabled a reliable attachment of the implant onto the vertebra. The process flow, shape and 
dimensions of Polyimide-based electrode implants are detailed in Extended Data Fig. 1.  
 
IMPLANTABLE PULSE GENERATOR 
The spinal implants were interfaced with an implantable pulse generator commonly used for deep brain 
stimulation therapies (Activa RC, Medtronic, USA), which supported the delivery of monopolar, constant-
current or constant-voltage stimulation protocols using the case of the generator as the anode. To support 
real-time triggering capabilities, we developed an investigational firmware for the implantable pulse generator 
that enabled stimulation across multiple sites (Extended Data Fig. 2). In addition, we developed the Neural 
Research Programmer software application that uploaded the stimulation protocols to the pulse generator 
and relayed stimulation protocol trigger commands from our real-time analysis software to the pulse 
generator. Trigger commands were transmitted wirelessly over a chain of devices consisting of a Bluetooth-
to-infrared module (ACTiSYS Inc.) and a modified Patient’s Programmer (Medtronic, USA). Wireless 
communication between the Control Computer and the implantable pulse generator was reliable over up to 5 
m with latencies of about 100ms. These latencies accumulated through the communication chain between 
the Control Computer and the implantable pulse generator. Distribution of latencies calculated from 
experimental data are reported for each step of the communication chain (Extended Data Fig. 2). The Neural 
Research Programmer was accessed from the control computer through the user datagram protocol (UDP). 
This system is an investigational prototype restricted to research that is not approved for commercial use. 
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DECODING OF MOTOR STATES FROM NEURAL SIGNALS 

Decoder calibration 
The extracted gait event timings served to identify sets of neuronal features, representing measurements of 
foot off and foot strike motor states that were used to calibrate the decoders. Specifically, sets of fo and fs, 
FO and FS, were used to derive the foot off and foot strike motor state classes of neural features, CFO and 
CFS: 
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where FOa and FSa  are feature vector members of classes CFO and CFS; NTP=3 (pre-injury) or 5 (post-injury) is 
the number of spike rate measurements taken from the same neural channel; �t=125ms (pre-injury) or 
100ms (post-injury) is the temporal difference between the two consecutive spike rate measurements taken 
from the same neural channel; NCH=96 is the number of neural channels; and ΔtFO and ΔtFS are the foot off 
and foot strike temporal offsets (for derivation of offsets, see section “Calculation of temporal offsets”). 
Another class COTHER representing states other than foot off and foot strike gait events was formed: 
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where ti are all times at least 20ms away from all fo and fs events. To limit the computational complexity of 
the decoder calibration and, therefore, limit the time needed to calibrate the decoder, we selected up to 100 
000 ti by making random draws from a uniform distribution without repetitions. If less than 100 000 ti were 
available, all ti were used for calibration. 
 
CFO, CFS, and COTHER were used to calibrate a multiclass regularized linear discriminant analysis (rLDA)2 
decoding model. We used previously described procedures to implement the regularization3, using 
regularization parameter value of 0.5. The probability of every feature vector F(t) in the test dataset to belong 
to the CFO or CFS class was then calculated using the decoder. Specifically, the decoding model was loaded 
into our real-time analysis application, where it was used to calculate probabilities pFO and pFS of the currently 
captured feature vector belonging to CFO and CFS classes. When one of these motor state probabilities 
crossed a threshold of 0.8, that motor state was detected. After a motor state was detected, the motor state 
could not be detected for the following 250ms. See Extended Data Fig. 4 for a schematic of the decoder 
calibration process. 

Calculation of temporal offsets 
We sought to trigger stimulation over flexion and extension hotspots at the time these hotspots are active 
during natural locomotion. We hypothesized that these times can be decoded from neural activity by 
identifying neural motor states based on foot off and foot strike gait events. However, a number of temporal 
delays had to be taken into account to trigger the stimulation at the correct time. First, natural activation of 
the flexion and extension hotspots started about ΔtH=100 ms (about 10% of the gait cycle) prior to the foot 
off and foot strike gait events, respectively. Therefore, hotspot stimulation had to be initiated 100ms before 
the respective gait events. Second, we took into consideration the average latency from the control computer 
to the delivery of the stimulation command (See Extended Data Fig. 2). Third, in the majority of cases, motor 
state probabilities crossed the probability threshold before the motor state actually occurred, which was 
closer to the probability maximum. 
 
To account for all of these latencies, we defined foot off and foot strike specific offsets, �tFO and �tFS. First, 
we calibrated the decoder with offsets set to 0ms and used these offsets on the data used for calibration to 
estimate the times when the stimulation would be initiated, eFO and eFS. The estimate was calculated based 
on the times of motor state detections modified by the median detection-to-stimulation latency. We then 
calculated the median difference between the estimated times of the hotspot activations and the estimated 
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times of the stimulations, F̂OtD  and F̂StD . Times of the hotspot activations were derived from the gait event 
times, corrected by ΔtH. 
 ( ) ( )ˆ ˆ         FO H FO FS H FSt M fo t e t M fs t eD = -D - D = -D -    

where M is the median operator. Only the closest estimated event to the gait event of the same type was 
taken into account. Median was used to exclude type I and type II errors from affecting the estimate of the 
offsets. We then added R̂FOtD  and R̂FStD  to �tFO and �tFS, respectively and calibrated the decoder with the 

new temporal offsets. This procedure was repeated until R̂FOtD  and R̂FStD  were between -5ms and 5ms. 
 
We then tested the decoders over several steps of the monkey. Based on the observed kinematic effects, the 
ΔtH was selected, increased or decreased using 25ms increments. After completion of this calibration, ΔtFO 
and ΔtFS were kept constant throughout the remainder of the session. 
 
 
Stimulation of hotspots triggered by detection of motor states 
Upon detection of the motor states, the real-time analysis software sent a stimulation command to the Neural 
Research Programmer running on the control computer in order to trigger the stimulation protocols.  
 
 
DATA PROCESSING AND ANALYSIS  
 
Neuronal activity analysis 
We characterized the neuronal activity by first regressing the spike event rates recorded on each electrode 
against the phase of the gait cycle. Thus, we obtained 96 neuronal event tuning curves, hel(ω), one for each 
electrode el. Gait phase was calculated as: 
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where tlastFS and tlastFO are the times of the previous foot strike and foot off events, tnextFS and tnextFO are the 
times of the next foot strike and foot off events; and 0.665FOw =  is the average proportion of the stance 
phase within a gait cycle over monkeys Q1-3 (Q1:0.685±0.001; Q2:0.658±0.003; Q3:0.653±0.005). The mean 
event rate and modulation depth for electrode el were calculated as the mean hel(ω) over all values of ω, and 
the difference between the maximum and minimum of hel(ω), respectively. We then fitted a double cosine 
function to the hel(ω) in order to account for the biphasic tuning curves: 
 ( )( ) ( )( )1 1 2 2

ˆ ( ) cos 2 cos 4elh c a aw p w a p w a= + - + -   

The preferred direction was calculated as the ω of maximum ˆ ( )elh w . 
The change of neuronal activity was measured by mean absolute differences of average spike event rates, 
modulation depths and preferred directions. These values were calculated by first calculating differences for 
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each electrode between two successive sessions and then calculating the mean over all electrodes. Our 
analysis revealed substantial neural activity changes between any two sessions, as previously observed in 
people with tetraplegia 4,5. Nevertheless, the rate of change between the last pre-lesion and the first post-
lesion sessions was higher than between any two other session pairs, thus suggesting ongoing adaptation of 
cortical activity following spinal cord lesion (see 6 for a similar finding). While the modulation depth and 
preferred direction changes between two post-lesion sessions returned to pre-lesion levels, changes in mean 
spiking event rate remained increased, suggesting that adaptions of cortical activity were still taking place during 
the second week after lesion. 
 
Decoding performance quantification  
Briefly, the time from the beginning to the end of each block was subdivided into foot off, foot strike and 
neither epochs, TFO(i), TFS(i) and TNEITHER, defined as follows: 
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where δ is the median command-to-stimulation delay; and τTOL=125ms is the detection tolerance. We 
counted all TFO and TFS epochs that contained a detected foot off or foot strike motor event as foot off and 
foot strike true positives (NTP_FO, NTP_FS), respectively. TFO and TFS epochs that contained no detected foot off 
or foot strike motor events were counted as foot off and foot strike false negatives (NFN_FO, NFN_FS), while the 
epochs that contained a motor state detection of the other kind counted as foot off / foot strike false positive 
and foot strike / foot off false positive (NFP_FO/FS, NFP_FS/FO). We then counted the number of decoded foot off 
and foot strike motor states that fell within the TNEITHER epoch and counted them as foot off or foot strike false 
positive (NFP_FO, NFP_FS). The number of true negative events was calculated by dividing the total length of the 
TNEITHER epoch by 2τTOL=250ms and then subtracting the number of foot off or foot strike false positives 
(NTP_N). Numbers of all these events were then summed up over the trials of the same condition within a 
session. Confusion matrix C was calculated by normalizing the numbers of events by the respective number 
of epochs: 
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To compare the performances of decoders, we calculated the normalized mutual information7 CYX between 
the actual gait events and decoded motor states as follows: 
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where x marks all the actual gait events, y marks all the decoded motor states, p(x) and p(y) mark the 
cumulative probabilities; p(x,y) mark all the joint probabilities; and X and Y are the sets of all x and y events. 
For a total number of actual gait events N = NFO + NFS + NN, the probabilities are then calculated as follows: 
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Standard error of the CYX was calculated by bootstrapping with 10 000 resamples8.  
 
Chance level decoding 
To establish whether the accuracy of our decoders was significantly higher than chance, we designed a 
chance level decoder. This decoder was designed to make a decision every 20ms on whether to detect a 
foot off or a foot strike event with a “chance” detection probability. This probability was calibrated by taking 
the data used to train our real-time decoders, containing Nt time points, and decoding foot off and foot strike 
events using chance detection probabilities pC that ranged from 0.08% to 0.13% in steps of 0.0005%. 
Detection was performed by drawing Nt values from a uniform [0,1] distribution, one for each time point. Time 
points with the values lower or equal to pC were detected as foot strike events, while the values higher or 
equal to 1-pC were detected as foot off events. Testing of each of these chance level decoders was repeated 
100 times. We calculated CYX for each test and selected the probability for which the chance level decoder 
gave the highest mean CYX. In all cases, there was a clear global maximum within the tested range of 
probabilities, typically around 0.1%. The chance level decoder using the selected probability was then 
applied NT=1000 times to the brain-controlled blocks. We measured CYX for each of these tests, CL

YXC , and 
calculated the p-value for significance from our actual decoder using the Monte Carlo method: 
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where NGE is the number of CL
YXC  higher than the CYX of our real-time decoder calculated on the same set of 

trials. 
 
Random decoder 
To test whether our real-time decoder effectively extracted information from the neural data, we designed a 
“random decoder” that was calibrated using the same neural data, but randomizing the gait events in time. 
This allowed us to preserve all the statistical properties of the neural data. To preserve the statistical 
properties of gait events as much as possible, we generated randomized gait events that started with the 
same gait events as in the actual trial and then interchanged between the two types of gait events. We first 
calculated the average stance duration, τS, and average swing duration, τW, from all data that was used to 
build a decoder. The following iterative process was then used to generate random events, fo* and fs*, until 
there are as many random events as there are actual ones: 
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where U is a number drawn from a [-1,1] uniform distribution. We used these randomized events to calibrate 
a random decoder and applied it to the neural data collected during the brain-control blocks. We used the 
decoded gait events to calculate the CYX of the random decoder, RAND

YXC . This procedure was repeated 

NR=1000 times, thus providing us with 1000 RAND
YXC  values. When comparing the performance of the random 

decoder to our real-time decoder, we used the Monte Carlo method to calculate the p value. 
 
 
Spatiotemporal maps of motoneuron activation 
Spatiotemporal maps of motoneuron activation were constructed by adding up the contributions of each 
muscle to the total activity at each spinal segment. The motor output pattern of each spinal segment Si was 
estimated by the following equation: 
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where EMGj represents the envelope of muscle activity normalized to the maximum value observed across all 
experimental sessions for each muscle, ni is the number of EMGjs corresponding to the i-th segment, MNij is 
the number of motor neurons of j-th muscle in the i-th segment, and Mj is the total number of motor neurons 
of the j-th muscle (Extended Data Fig. 3a). 
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SUPPLEMENTARY TABLES 
�

�

P Performed 
-   Not Performed 
*   Could not be performed due to technical issues or animal conditions 
 
Supplementary Table 1. Experimental procedures conducted on the animals. 
  

Animal  
ID 

Micro 
electrode 

array 

Spinal 
implant 

Wireless 
muscle 
activity 
system 

Spinal 
cord 

injury 

Retrograde 
motoneuron 

tracing 

Intact  
walking 

experiments 

Single pulse 
spinal cord 
stimulation 

Pre-lesion 
brain-control 
stimulation  

Post-lesion 
brain-control 
stimulation 

Q1  P P P - P P P P - 
Q2  P P P P P P P P P 
Q3 P P * P P P * * P 

P1 P P P - - - P - - 
P2 P - P - P P - - - 
P3 P - P - - P - - - 
P4 - - - - P - - - - 
P5 - - - - P - - - - 
P6 - - - - P - - - - 
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Monkey Session # of blocks 
Stimulation 

Off 

# of blocks 
Brain control: 

Flexion 

# of blocks 
Brain control: 

Extension 

# of blocks 
Brain Control: 

Both 

# of blocks 
Continuous 
stimulation 

Q1 Pre-lesion 1:  treadmill 
28.7.2014 

5 
 

 1 at 40 Hz 4 at 40 Hz  

 Pre-lesion 2: treadmill 
29.7.2014 

4  
 

1 at 40Hz 1 at 40 Hz 4 at 40 Hz  

 Pre-lesion 3: treadmill 
30.7.2014. 

4  
 

5 at 40 Hz  5 at 40 Hz  

Q2 Pre-lesion 1: treadmill 
24.3.2015. 

2 3 at 60 Hz 
1 at 60 Hz 

3 at 60 Hz 
1 at 60 Hz 

 
3 at 60 Hz 

 

 Pre-lesion 2: treadmill 
26.3.2015. 

4  
 

2 at 60 Hz 
1 at 60 Hz 

2 at 60 Hz 
 

3 at 60Hz  

 Pre-lesion 3: treadmill 
28.3.2015.  

3  2 at 60 Hz 
4 at 30 to 80 

Hz 

2 at 60 Hz 
 

  

 Post-lesion day 6: treadmill 
23.06.2015. 

4 
 

  4 at 40Hz  

 Post-lesion day 7: corridor 
24.06.2015. 

5  
2 

2 at 40 Hz 
 

3 at 40 Hz 
 

2 at 40Hz  

 Post-lesion day 13: treadmill 
30.06.2015. 

6  
 

  13 at 20 to 60 
Hz 

1 at 40Hz 

 Post-lesion day 14: Corridor 
01.07.2015. 

6  
1 

  6 at 30Hz  

 Post-lesion day 99: treadmill 
24.9.2015. 

8     

Q3 Pre-lesion 1: treadmill 
16.1.2015. 

2      

 Post-lesion day 16: treadmill 
3.7.2015. 

2  
 

2 at 40Hz 2 at 60Hz 8 at 30 to 80Hz  

 Post-lesion day 99: treadmill 
24.9.2015. 

8     

P2 Intact: treadmill 
26.11.2013. 

1      

P3 Intact : treadmill 
12.12.2013. 

1      
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Supplementary table 2. Behavioral experiments conducted with each animal. Trials in bold and underlined were used to calibrate the brain 
decoders used on that session.  
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PARAMETERS VARIABLE DETAILED EXPLANATION 

Limb endpoint (Metatarsal phalange) trajectory   

 1 Step length 
 2 Maximum backward position of the foot 
 3 Maximum forward position of the foot 
 4 Step height 
 5 Speed of the foot at swing onset 
 6 Angular acceleration of the foot velocity vector at swing onset 

Stability   

Trunk and pelvic 
position and 
oscillations 

7 Maximum hip sagittal position 
8 Minimum hip sagittal position 
9 Length of pelvis displacements in the forward direction 

10 Length of pelvis displacements in the vertical direction 

Joint angles   

Backward 11 Crest oscillations 
12 Thigh oscillations 
13 Leg oscillations 
14 Foot oscillations 

Forward 15 Crest oscillations 
16 Thigh oscillations 
17 Leg oscillations 
18 Foot oscillations 

Flexion 19 Knee joint angle 
20 Ankle joint angle 

Abduction 21 Whole limb abduction 
22 Foot abduction 

Extension 23 Knee joint angle 
24 Ankle joint angle 

Adduction 25 Whole limb adduction 
26 Foot adduction 

 
 
Supplementary table 3 | Computed kinematic parameters. 
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