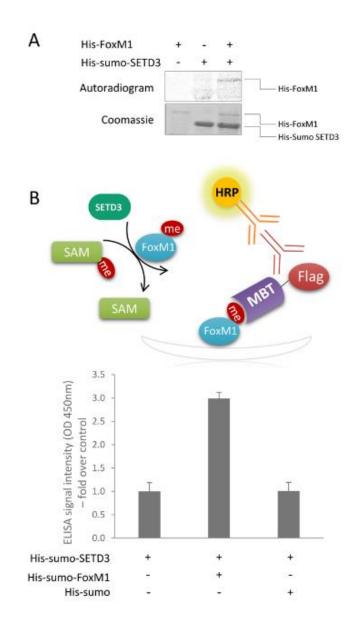
Chromatin associated SETD3 negatively regulates VEGF expression


Ofir Cohn^{1,2}, Michal Feldman^{1,2}, Lital Weil^{1,2}, Margarita Kublanovsky^{1,2} and Dan Levy^{1,2#}

¹The Shraga Segal Department of Microbiology, Immunology and Genetics and the ²National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Be'er-Sheva 84105, Israel

[#]Correspondence should be addressed to D.L: <u>ledan@post.bgu.ac.il</u>

Corresponding Author: Dr. Dan Levy Department of Microbiology, Immunology and Genetics Ben-Gurion University of the Negev Be'er Sheva 84105, Israel e-mail: <u>ledan@post.bgu.ac.il</u>

Tel: +972-8-6477251

Figure S1: SETD3 methylates FoxM1 *in vitro* **A.** *In-vitro* methylation in the presence of ³H-labeled SAM with recombinant His-FoxM1 and His-sumo-SETD3. Coomassie stain of the recombinant proteins used in the reaction is shown below. **B.** ELISA signal intensity (OD 450nm) of the indicated proteins that were subjected to in-vitro methylation reaction followed by detection with His-FLAG-MBT protein. Data are representative of three independent experiments (error bars, S.D.). Schematics of the ELISA approach for the identification of methylated proteins is shown above.