

Supplementary Figure 1 | Deflection of a heterogeneous Alpine lithosphere. Subsidence due to the load of the LGM icecap for (a), a low rigidity¹ (avg. *EET* for the Alps is 10 km) and (b), a high rigidity lithosphere (avg. *EET* = 70 km). avg. = average.

Supplementary Figure 2 | **Effect of spatial variations in** *EET*. Difference in lithospheric deflection, relative to a lithosphere with a uniform *EET* of **a**, 10 km and **b**, 70 km.

Supplementary Figure 3 | **Results for increased erosional unloading. a**, Deglaciation component. **b**, Uplift rate due to erosional unloading assuming that 90% of the postglacially eroded material has been exported. **c**, Comparison of the combined signal with the geodetic observations^{2–5}. Note that the French leveling data was not used in the optimization (see main text for details).

Supplementary Figure 4 | **Model error in a seismotectonic context. a**, Seismogenic faults (black solid lines, http://diss.rm.ingv.it/share-edsf/), and focal plane solutions from the global Centroid-Moment-Tensor catalogue⁶ superimposed on a DEM of the study area. Negative errors indicate overestimation. b, Inset focusing on the Western Alps. Grey dots: seismicity after NEIC, 1973-2008. Thin solid lines are uplift contours modified after (ref. ⁷) and given in mm yr⁻¹. Dashed lines show the uplift contours derived in this study (see Fig. 6). RV = Rhône Valley, TW = Tauern Window.

Supplementary Figure 5 | **Map of mean annual precipitation**. Mean annual precipitation was determined from rain-gauge measurements from 1971–2008⁸, which were used to impose spatially variable maximum accumulation rates in the ice model.

Supplementary Figure 6 | Map of equilibrium line altitudes. Distribution of equilibrium line altitudes for the ice model, which best fits LGM ice-geometry indicators, i.e., moraines⁹ and trimlines¹⁰⁻¹².

Supplementary Figure 7 | Sensitivity of viscosity and modelled uplift rates to changes in EET. a, Root mean squared error (RMS) and viscosity (μ) as a function of the average *EET*. A minimum error occurs at 50 km with $\mu = 2.2 \times 10^{20}$ Pa s. b, Modelled versus measured uplift rates for 20, 30, 40, 50, 60, and 70 km of *EET*. Blue circles = Swiss levelling data^{2,13}. Orange triangles = Austrian levelling data³. Magenta diamonds = French Alps levelling data⁵. Yellow rectangles = permanent GPS data⁴. Avg. = average

River catchment	Reference	Method
Aare	14	drilling
Adige	15,16	drilling, seismic
Drau	17,18	drilling, seismic
Inn	19–21	drilling, seismic
Isar, Loisach, Lech	22	drilling
l'Isère	23	drilling
Reuss, Seez, Linth	24	drilling, seismic
Rhine	24–26	drilling, seismic
Rhône	26,27	seismic
Salzach	28,29	drilling, seismic
Sarca	15	seismic
Tagliamento	30	drilling, gravimetric
Ticino	26	seismic
Traun, Ens	29	drilling
Ubaye	31	seismic

Supplementary Table 1 | Data sources for measurements of valley-fill thicknesses.

Supplementary Table 2 | Estimates of upper mantle viscosity (μ).

Region	$\mu \ (\times 10^{20} \mathrm{Pa \ s})$	Reference
Antarctica	5	32
Hudson Bay	4	33
Fennoscandia	3–10	34
Great Britain	3–4	35
Australian coastline	2	36
European Alps	1.4–2.8	this study
Basin and Range	0.18	37
Central Andes	0.01-1	38
Japan	0.5	39
Cascadia margin	0.05-0.5	40
Iceland	0.01–0.5	41

Supplementary References

- Tesauro, M., Kaban, M. K. & Cloetingh, S. A. P. L. How rigid is Europe's lithosphere? *Geophys. Res. Lett.* 36, 1–6 (2009).
- Schlatter, A., Schneider, D., Geiger, A. & Kahle, H. G. Recent vertical movements from precise levelling in the vicinity of the city of Basel, Switzerland. *Int. J. Earth Sci.* 94, 507–514 (2005).
- Ruess, D. & Mitterschiffthaler, P. Rezente Höhenänderungen in Österreich abgeleitet aus geodätischen Wiederholungsmessungen. in 18. Internationale Geodätische Woche, Obergurgl (eds. Hanke, K. & Weinhold, T.) 111–123 (Wichmann, 2015).
- Bruyninx, C. The EUREF Permanent Network: a multi-disciplinary network serving surveyors as well as scientists. *GeoInformatics* 7, 32–35 (2004).
- Jouanne, F., Ménard, G. & Darmendrail, X. Present-day vertical displacements in the north-western Alps and southern Jura Mountains: Data from leveling comparisons. *Tectonics* 14, 606–616 (1995).
- Ekström, G., Nettles, M. & Dziewoński, A. M. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. *Phys. Earth Planet. Inter.* 200–201, 1–9 (2012).
- 7. Nocque Jt, . et al. Present-day uplift of the western Alps. Nat. Sci. Rep. (2016).
- Isotta F, A. *et al.* The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. *Int. J. Climatol.* 34, 1657–1675 (2014).
- Ehlers, J. & Gibbard, P. L. Quaternary glaciations— extent and chronology, Part I Europe. (Elsevier, 2004).
- Kelly, M. A., Buoncristiani, J. F. & Schlüchter, C. A reconstruction of the last glacial maximum (LGM) ice-surface geometry in the western Swiss Alps and contiguous Alpine regions in Italy and France. *Eclogae Geol. Helv.* 97, 57–75 (2004).
- Florineth, D. Surface geometry of the Last Glacial Maximum (LGM) in the southeastern Swiss Alps (Graubünden) and its paleoclimatological significance. *Eiszeitalter und Gegenwart* 48, 23–27 (1998).

- Florineth, D. & Schlüchter, C. Reconstructing the Last Glacial Maximum (LGM) ice surface geometry and flowlines in the Central Swiss Alps. *Eclogae Geol. Helv.* 91, 391–407 (1998).
- Kahle, H.-G. *et al.* in *NRP 20—Deep Structure of the Swiss Alps* (eds. Pfiffner, O. A., Lehner, P., Heitzmann, P., Mueller, S. & Steck, A.) 251–259 (Birkhäuser, 1997).
- GEOSOND. GEOSOND: Geologische Sondierungen im Kanton Bern. (2014). at http://www.be.ch/geoportal
- 15. Faccioli, E. & Vanini, M. Complex seismic site effects in sediment-filled valleys and implications on design spectra. *Prog. Struct. Eng. Mater.* **5**, 223–238 (2003).
- Bassetti, M. & Borsato, A. Evoluzione geomorfologica della Bassa Valle dell' Adige dall' Ultimo Massimo Glaciale: sintesi delle conoscenze e riferimenti ad aree limitrofe. *Stud. trentini di Sci. Nat. - Acta Geol.* 82, 31–42 (2005).
- Brückl, E., Brückl, J., Chwatal, W. & Ullrich, C. Deep alpine valleys: Examples of geophysical explorations in Austria. *Swiss J. Geosci.* 103, 329–344 (2010).
- Heinz, H. & Walach, G. Ergebnisse refraktionsseismischer Messungen im Gebiet des Lurnfeldes (Drautal, Oberkärnten). *Verh. Geol. B.-A.* 2, 77–83 (1979).
- Aric, K. & Steinhauser, P. Geophysikalische Untersuchung des Inntal-Untergrundes bei Thaur, östlich von Innsbruck. *Zeitschrift für Gletscherkd. und Glazialgeol.* 12, 37–54 (1976).
- Preusser, F., Reitner, J. M. & Schlüchter, C. Distribution, geometry, age and origin of overdeepened valleys and basins in the Alps and their foreland. *Swiss J. Geosci.* 103, 407–426 (2010).
- Steinbrener, J. Sedimentologische und geochemische Untersuchung der Tiefbohrung Wattens I (Tirol). (Universität Wien, 2011).
- 22. Frank, H. Glazial übertiefte Täler im Bereich des Isar-Loisach-Gletschers. *Eiszeitalter* und Gegenwart **29**, 77–99 (1979).
- Nicoud, G., Royer, G., Corbin, J., Lemeille, F. & Paillet, A. Creusement et remplissage de la vallée de l'Isère au Quaternaire récent. Apports nouveaux du forage GMB1 (1999) dans la région de Grenoble (France). *Géologie la Fr.* 4, 39–49 (2002).

- 24. Wildi, W. Isohypsenkarte der quartären Felstäler in der Nord- und Ostschweiz mit kurzen Erläuterungen. *Eclogae Geol. Helv.* **77**, 541–551 (1984).
- 25. Eberle, M. Zur Lockergesteinsfüllung des St. Galler und Liechtensteiner Rheintales. *Eclogae Geol. Helv.* **80**, 193–206 (1987).
- Pfiffner, O. A. et al. in Deep Structure of the Swiss Alps: results of NRP 20 (eds. Pfiffner, O. A., Heitzmann, P., Lehner, P., Mueller, S. & Steck, A.) 265–288 (Birkhäuser, 1997).
- Finckh, A. & Frei, P. Seismic reflection profiling in the Swiss Rhone valley. Part 1, Seismic reflection field work, seismic processing and seismic results of the Roche-Vouvry and Turtmann and Agarn lines. *Eclogae Geol. Helv.* 84, 345–357 (1991).
- Bleibinhaus, F., Hilberg, S. & Stiller, M. First results from a seismic survey in the Upper Salzach Valley, Austria. *Austrian J. Earth Sci.* 103, 28–32 (2010).
- 29. van Husen, D. Verbreitung, Ursachen und Füllung glazial übertiefter Talabschnitte an Beispielen in den Ostalpen. *Eiszeitalter und Gegenwart* **29**, 9–22 (1979).
- 30. Barnaba, C. *et al.* The buried shape of an alpine valley from gravity surveys, seismic and ambient noise analysis. *Geophys. J. Int.* **180**, 715–733 (2010).
- Jongmans, D. & Campillo, M. The response of the Ubaye Valley (France) for incident SH and SV waves: Comparison between measurements and modeling. *Bull. Seismol. Soc. Am.* 83, 907–924 (1993).
- 32. Argus, D. F., Peltier, W. R., Drummond, R. & Moore, A. W. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. *Geophys. J. Int.* 198, 537– 563 (2014).
- Mitrovica, J. X. & Forte, A. M. A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. *Earth Planet. Sci. Lett.* 225, 177–189 (2004).
- Nordman, M., Milne, G. & Tarasov, L. Reappraisal of the Angerman River decay time estimate and its application to determine uncertainty in Earth viscosity structure. *Geophys. J. Int.* 201, 811–822 (2015).

- 35. Lambeck, K., Smither, C. & Johnston, P. Sea-level change, glacial rebound and mantle viscosity for northern Europe. *Geophys. J. Int.* **134**, 102–144 (1998).
- Nakada, M. & Lambeck, K. Late Pleistocene and Holocene sea-level change in the Australian region and mantle rheology. *Geophys. J. R. Astron. Soc.* 96, 497–517 (1989).
- Bills, B. G., Currey, D. R. & Marshall, G. A. Viscosity estimates for the crust and upper mantle from patterns of lacustrine shoreline deformation in the Eastern Great Basin. J. *Geophys. Res.* 99, 22059–22086 (1994).
- Bills, B. G. *et al.* Hydro-isostatic deflection and tectonic tilting in the central Andes: Initial results of a GPS survey of Lake Minchin shorelines. *Geophys. Res. Lett.* 21, 293–296 (1994).
- Okuno, J. & Nakada, M. in *Dynamics of the Ice Age Earth: A Modern Perspective* (ed. Wu, P.) 443–458 (Trans Tech Publications, 1998).
- 40. James, T. S., Clague, J. J., Wang, K. & Hutchinson, I. Postglacial rebound at the northern Cascadia subduction zone. *Quat. Sci. Rev.* **19**, 1527–1541 (2000).
- Sigmundsson, F. & Einarsson, P. Glacio-isostatic crustal movements caused by historical volume change of the Vatnajökull Ice Cap, Iceland. *Geophys. Res. Lett.* 19, 2123–2126 (1992).