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Phylogenetic trees and metabolic information for the parasites used in this study. Hosts and
vectors are indicated where known. The major pathways used to generate ATP in each host
are provided where G = glycolysis, AA = amino acid metabolism, AS = amino-sugar
metabolism, FA = fatty acid metabolism. Genome size and GC content are also provided.
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ATP generating metabolic pathways. Nitrogen atoms have been highlighted in red and
required genes are indicated in blue. * denotes substrates that are extracellular. tr. is the
abbreviation for transporter.
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Amino acid Amino acid

Ln parasites use the least amount of nitrogen in their amino acid side chains compared to
Mn and Hn parasites. (A) Frequency of occurrence of amino acids with nitrogen in their side
chains at orthologous sites in orthologous genes in the kinetoplastid parasites. This
corresponds to a total number of nitrogen atoms in amino acids side chains of Ln = 347,789,
Mn = 353,574 and Hn = 350,376. (B) Frequency of occurrence of amino acids with nitrogen
in their side chains at orthologous sites in orthologous genes in the Mollicute parasites. This
corresponds to a total number of nitrogen atoms in amino acids side chains of Ln = 11,948,
Mn = 12,178 and Hn = 12,063. Glutamine (Q) is not considered for the Mollicutes as the Mn
and Hn groups lack glutaminyl-tRNA synthetase (GInS). Instead a non-discriminating
glutamyl-tRNA synthetase (GItX) charges both tRNACGY and tRNAC" with Glu. This means
use of Q between Mycoplasma (Mn and Hn species) and Phytoplasma (LN species) is not
comparable. For both the kinetoplastids and the Mollicutes, Mn parasites use more nitrogen
in their side chains than Hn parasites. This can be explained by the reduced occurrence of
arginine (R) in the Hn parasites, which is expected as these parasites metabolise arginine
to generate energy. In both graphs the orthologous sites are the same as for the analysis in
the section “Low nitrogen availability parasites have low nitrogen content sequences and
vice-versa”.
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The model for synonymous codon use under the joint pressures of selection acting on
nitrogen content and mutation bias fits real codon use with > 90% accuracy. Comparison of
observed (dark) and fitted (light) synonymous codon use for (A) Mollicute Ln , 2N,s = -0.24,
m = 4.8 (B) Mollicute Mn, 2N,s = -0.15, m = 3.5 (C) Mollicute Hn, 2N;s =-0.13, m=5.9 (D)
Kinetoplastid Ln, 2Ngs = -0.09, m = 0.7 (E) Kinetoplastid Mn, 2N,s =-0.06, m= 0.7 and (F)
Kinetoplastid Hx 2N;s = -0.03, m = 0.3 parasites.
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The model that considers both mutation bias and nitrogen content selection in combination
provides a better fit than either parameter considered in isolation. (A) The average mRNA
nitrogen content per codon for 3003 orthologous genes in the kinetoplastida. The average
nitrogen content per double stranded codon for the same set of genes. Empirical codon use
probabilities (expressed as %) plotted against themselves for all groups, Ln, MN and Hn
respectively. Analogous plots are shown in panels B-H for sequences simulated using fitted
values for (B) selection acting on codon nitrogen content (Equation 2). (C) selection acting
on translational efficiency (tAl) (Equation 10). (D) mutation bias acting on the GC content of
the sequences (Equation 5). (E) both selection acting on codon nitrogen content and
mutation bias (Equation 7) (F) both selection acting on translational efficiency and mutation
bias (Product of equations 5 and 10). (G) all 3 parameters together i.e. Selection acting on
codon nitrogen content, mutation bias and selection acting on translational efficiency
(Equation 12) (H) empirical codon usage probabilities i.e. the 61 actual codon use
frequencies. These simulated sequences produce symmetrical distributions with low
variance that do not precisely recapitulate the data found in A. For the kinetoplastids (A-H)
the best AIC values for Ln and Mn are 1992812 and 2011196 respectively for the 3
parameter model (G), for Hn it is 1756308 for the two parameter model that considers both
translational efficiency and mutation bias. (/ — P) As for plots A-H but for the Mollicutes. For
the Mollicutes the best AIC values for Ln, Mn and Hn are 61440, 71126 and 59288
respectively for the 3 parameter model (O) .Y-axis is the probability density function (PDF)
for the distributions.
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Boxplots showing distribution of 2Ngs values for individual species.
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Gene expression negatively correlates with selection acting on mRNA nitrogen content. (A-
C) Using the selection-mutation model, 2Ngs values were calculated for 4083 orthologous
genes for one species from each of the Ln, Mn and Hn kinetoplastid groups (P. frangai, T.
brucei and L. mexicana respectively). Mutation bias values were fixed as constant at the
overall value for each species (Ln = 0.61, Mn = 0.92 Hn = 0.34). These values were plotted
against mMRNA expression data from equivalent lifecycle stages (procyclic) and data points
were set to an opacity value of 50% to help judge density. Linear regressions were fit to the
data for each species. The slope of the Ln line was the most negative, Mn was intermediate
and Hn was the closest to 0. This is consistent with our other results and shows that selection
to minimise nitrogen in mMRNA is strongest for the species that are the most nitrogen limited.
ie a gene with a TPM value of 100 would be predicted to have a 2Ngs value of Ln = -0.08,
Mn =-0.06 and Hn = -0.02. Two-tailed t-tests comparing the slopes showed that all of them
were significantly different from one another (p < 0.05). R2=0.07, 0.01 and 0.02 respectively.
(D) Comparison of the nitrogen use of the 4083 orthologous genes found in all of all of P.
frangai (green), T. brucei (yellow) and L. mexicana (orange) taking expression into account.
ie. If a gene had a TPM value of 10, it is represented in the distribution 10 times. All
distributions are significantly different using a Wilcoxon Signed-Ranks (p < 0.05).
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Gene clusters for nitrogen liberating metabolic pathways in Hn Mollicute parasites.
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The model parameters which provide the best fit between observed and predicted codon
use also provide the best percentage of correctly predicted optimal codons and correctly
ordered codon use. (A) Percentage of correctly predicted optimal codons for Mollicute
parasites using different parameter combinations. (B) As in (A) but for kinetoplastid
parasites. (C) Percentage of correctly ordered relative codon use for different parameter
combinations. (D) As in (C) but for kinetoplastid parasites. Mb = Mutation bias, Ns =
selection acting on nitrogen content, tAl = selection acting on translational efficiency.
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Example distribution of the model when run with shuffled codon nitrogen content. (A) Left,
the average mRNA nitrogen content per codon for 3003 orthologous genes in the
kinetoplastida (observed data). Right, the average nitrogen content per double stranded
codon for the same set of genes. Analogous plots are shown in panels B and C for
sequences simulated using fitted values for (B) selection acting on codon nitrogen content
(Equation 2). (C) selection acting on codon nitrogen content where the nitrogen content of
the codons has been shuffled (as described in the methods). Shuffled codon nitrogen cost
(C) provides distributions that do not fit observed data (A) as well as distributions that use
real nitrogen content (B). 2Ngs values for the shuffled example were Ln = 0.01, Mn = 0.02
and Hn = 0 compared to -0.06, -0.04 and 0.03 for the real nitrogen content. Thus when
codon nitrogen content is shuffled, the model is unable to recapitulate the observed
distribution of nitrogen content in gene sequences and the influence of the model parameter
is reduced towards zero.
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