Supporting Information

Targeting the Src homology 2 (SH2) domain of signal transducer and activator of transcription 6 (STAT6) with cell-permeable, phosphatase-stable phosphopeptide mimics potently inhibits activation and transcriptional activity.

Pijus K. Mandal,¹ Pietro Morlacchi,¹ J. Morgan Knight,¹ Todd M. Link,² Gilbert R. Lee, IV, ² Roza Nurieva,³ Divyendu Singh,³ Ankur Dhanik,⁴ Lydia Kavraki⁴, David B. Corry,⁵ John E. Ladbury,² John S. McMurray¹*

¹Department of Experimental Therapeutics, ²Department of Biochemistry and Molecular Biology, Center for Biomolecular Structure and Function, ³Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, ⁴The Department of Computer Science, Rice University, Houston, Texas, ⁵Departments of Medicine and Pathology & Immunology, The Baylor College of Medicine, Houston, Texas

Table S1. Characterization of phosphopeptides assayed for binding to STAT6	S2
Table S2. Characterization of phosphate analogs of 17.	S3
Table S3. Yields and characterization of prodrug analogs of 17	S4
Figure S1. Inhibition of pSTAT6 and pAkt in MDA-MB-468 breast cancer cells	S5
Figure S2. Inhibition of STAT proteins in CD4 ⁺ T lymphocytes	S6
NMR Characterization of 19c	S7
NMR Characterization of 31	S8

#	Phosphopeptide	(M+H)	(M+H)	HPLC	Yield
		Calcd	Found	RT	(mg)
				(min) ^a	_
1	Ac-pTyr-Lys-Pro-Phe-Gln-Asp-	1144.5444	1144.5484	25.4	91
	Leu-Ile-NH ₂				
2	Ac-pTyr-Lys-Pro-Phe-Gln-Asp-	1031.4603	1031.4668	21.4	48
	Leu-NH ₂				
3	Ac-pTyr-Lys-Pro-Phe-Gln-Asp-NH ₂	918.3763	918.3787	16.4	75
4	Ac-pTyr-Lys-Pro-Phe-Gln-NH ₂	803.3493	803.3534	16.1	50
5	Ac-pTyr-Lys-Pro-Phe-NH ₂	675.2907	675.2950	17.17	63
6	Ac-pTyr-Lys-Pro-NH ₂	528.2223	528.2234	9.33	28
7	Ac-pTy-Tle-Pro-Phe-NH ₂	660.2798	660.2880	21.73	46
8	Ac-pTy-Nle-Pro-Phe-NH ₂	660.2798	660.2863	24.07	31
9	Ac-pTy-Ala-Pro-Phe-NH ₂	618.2329	618.2415	18.40	39
10	PhCH ₂ CH ₂ CO-pTyr-Lys-Pro-Phe-	765.3377	765.3385	24.16	63
	NH ₂				
11	PhCH ₂ CO-pTyr-Lys-Pro-Phe-NH ₂	751.3220	751.3241	22.52	58
12	PhCO-pTyr-Lys-Pro-Phe-NH ₂	737.3064	737.3081	21.66	71
13	PhCH=CHCO-pTyr-Lys-Pro-Phe-	763.3220	763.3239	24.92	42
	NH ₂				
14	pCinn-Lys-Pro-Phe-NH ₂	616.2536	616.2521	17.9	49
15	p-Indole-Lys-Pro-Phe-NH ₂	629.2489	629.2490	18.17	32
16	p-Benzofuran-Lys-Pro-Phe-NH ₂	630.2329	630.2324	18.04	71

Table S1. Characterization of phosphopeptides assayed for binding to STAT6.

^a Peptides were tested for purity by reverse phase HPLC on a Waters Alliance HPLC using a Phenomenex Luna C18 (2) 5μ M 2.1 x 250 mm column. A gradient of 0-40% MeCN/30 min at a flow rate of 0.4 mL/min was used with both mobile phases containing 0.1% TFA. Elution was monitored at 230 nm, 254 nm, and 275 nm.

	Sequence	Yield	%	HRMS	HRMS	HPLC
		mg	Yield	(M+H)	(M+H)	RT
				Calcd	Found	(min) ^a
18a	pCinn-Tle-Pro-N(4-I-Ph)(Ph)	35	47	732.1336	732.1333	22.5
19a	βMpCinn-Tle-Pro-N(4-I-	39	53	746.1492	746.1458	22.8
	Ph)(Ph)					
20	pInd-Tle-Pro-N(4-I-Ph)(Ph)	61	72	745.1288	745.1273	22.13
18b	pCinn-Tle-Pro-NPh ₂	23	39	606.2369	606.2350	18.4
18c	pCinn-Tle-Pro-N(Me)(Ph)	41	27	544.22	544.20	26.7
18d	pCinn-Tle-Pro-NHPh	34	22	530.21	530.25	30.3
19b	βMpCinn-Tle-Pro-NPh ₂	31	51	620.2526	620.2510	19.46
19c	βMpCinn-Tle-Pro-N(Me)(Ph)	29	56	558.2369	558.2373	15.13
19d	βMpCinn-Tle-Pro-NHPh	25	48	544.2213	544.2181	17.2
19e	βMpCinn-Tle-Pro-NHCH ₂ Ph	27	51	558.2369	558.2336	16.01
19f	βMpCinn-Tle-Pro-	31	53	572.2526	572.2526	16.57
	NHCH ₂ CH ₂ Ph					
19g	βMpCinn-Tle-Pro-	37	67	564.2839	564.2842	17.5
	$N(Me)(C_6H_{11})$					
19h	βMpCinn-Tle-Pro-N(CH ₃) ₂	30	61	496.2213	496.2191	10.7
19i	β MpCinn-Tle-Pro-N(C ₂ H ₅) ₂	27	52	524.2526	524.2502	12.00
21	βMpCinn-Tle-Sar-N(Me)(Ph)	22	42	532.2213	532.2186	15.92
22	β MpCinn-Tle-Ala-N(Me)(Ph)	31	59	532.2213	532.2184	15.15
23	βMpCinn-Tle-N(Me)Ala-	30	55	546.2369	546.2189	24.4
	N(Me)(Ph)					
24	βMpCinn-Tle-pyrrolidine-2-	22	40	527.2311	527.2312	20.47
	CH=CHPh					
25	βMpCinn-Tle-pyrrolidine-2-	19	35	555.2624	555.2867	24.52
	CH=CHCH ₂ CH ₂ Ph					
26	βMpCinn-Tle-pyrrolidine-2-	16	30	557.2780	557.2827	25.52
	CH ₂ CH ₂ CH ₂ CH ₂ Ph					
27	βMpCinn-Tle-pyrrolidine-2-	44	31	544.25	544.35	28.14
	CH ₂ N(Me)Ph					

 Table S2.
 Characterization of phosphate analogs of 17.

^a Peptides were tested for purity by reverse phase HPLC on a Waters Alliance HPLC using a Phenomenex Luna C18 (2) 5μ M 2.1 x 250 mm column. A gradient of 0-40% MeCN/30 min at a flow rate of 0.4 mL/min was used with both mobile phases containing 0.1% TFA. Elution was monitored at 230 nm, 254 nm, and 275 nm.

#	Structure	Yield	%	(M+H)	(M+H)	HPLC
		(mg)	Yield	Calcd	Found	RT
						$(\min)^a$
17	F2PmCinn(POM ₂)-Tle-Pro-	64	66	994.2716	994.2753	35.03
	N(4-I-Ph)(Ph)					
28	F2PmCinn(POM ₂)-Tle-Pro-	63	58	868.3750	868.3753	35.6
	NPh ₂					
29	F2PmCinn(POM ₂)-Tle-Pro-	56	53	806.3593	806.3578	31.2
	N(Me)(Ph)					
30	F2PmCinn(POM ₂)-Tle-Pro-	49	38	792.3437	792.3463	33.2
	NHPh					
31	βMF2PmCinn(POM ₂)-Tle-	56	53	820.3750	820.3746	34.73
	Pro-N(Me)Ph					
32	βMF2PmCinn(POM ₂)-Tle-	48	45	826.4219	826.3944	33.77
	$Pro-N(Me)(C_6H_5)$					

 Table S3. Yields and characterization of prodrug analogs of 1.

^a Prodrugs were tested for purity by reverse phase HPLC on a Waters Alliance HPLC using a Phenomenex Luna C18 (2) 5μ M 2.1 x 250 mm column. A gradient of 10-80% MeCN/30 min at a flow rate of 0.4 mL/min was used. Elution was monitored at 230 nm, 254 nm, and 275 nm.

Figure S1. Inhibition of STAT6 and Akt phosphorylation in MDA-MB-468 breast cancer cells. Cells were serum starved overnight and were treated with prodrugs for 2 h. IL-4 or EGF were added and total and phosphoprotein levels were determined by western blot after 1 hr.

Figure S2. Inhibition of STAT proteins in CD4⁺ T lymphocytes from C57BL/6J mice. CD4⁺ T cells isolated from C57BL/6J mice were pre-treated with STAT6 inhibitors for 2 hours and activated with plate-bound anti-CD3/anti-CD28 in the presence or absence of indicated cytokines for 15 minutes. The whole cell lysate was subjected to western blot assay to detect the levels of phosphorylated and total STAT6, STAT5, STAT1 and STAT3.

NMR of Compound **19c**

¹H NMR (CDCl₃, 500 MHz)

Trans :*cis* based on integration of the Tle CHα, Pro CHα, and Cinn CHα resonances

Trans isor	ner, 83%							
	αNH	αCH	βСН2	γCH2	δCH2	Arom	NCH3	NPh
Cinn		6.50	2.42 (CH3)			7.17, 7.49		
Tle	7.97	4.59		1.01				
Pro		4.19	1.97, 1.76	1.96, 1.73	3.76, 3.63			
NMePh							3.15	7.3-7.5
NOE								
Cis isome	r, 17%							
	αNH	αCH	βСН2	γCH2	$\delta CH2$	Arom	NCH3	NPh
Cinn		6.58	under DMS	50		7.19, 7.55		
Tle	7.91	4.38		0.72				
Pro		4.27	2.10, 1.97	1.90, 1.74	3.51, 3.34			
NMePh							3.17	7.3-7.5
NOE	TleCHα-Pro	CHα, min	or isomer <i>, cis</i>	Tle-Pro				

 $^{13}\mathrm{C}$ NMR (DMSO- d_{6} , 150 MHz):

 $\delta \ 16.4, \ 24.7, \ 26.0, \ 26.5, \ 29.0, \ 34.9, \ 35.7, \ 37.1, \ 47.9, \ 55.1, \ 56.8, \ 119.7, \ 119.8, \ 119.9, \ 127.1, \ 127.6, \ 119.8, \ 119.9, \ 127.1, \ 127.6, \ 119.8, \ 119.9, \ 127.1, \ 127.6, \ 119.8, \ 119.9, \ 127.1, \ 127.6, \ 119.8, \ 119.8, \ 119.9, \ 127.1, \ 127.6, \ 119.8, \$

NMR Characterization of **31**

¹H NMR (CDCl₃, 600 MHz)

Trans :cis ratio based on integration of the Tle NH, Tle CH α , Cinn CH α and NCH3 resonances

Trans isomer,90%									
αΝΗ	αCH	ВСН2	γCH2	δCH2	Arom	NCH3	NPh	CH2	tBu
Cinn	6.02	2.50 (CH3)			7.58, 7.47				
Tle 6.39	4.78		1.12						
Pro	4.38	1.85	2.04, 1.75	3.87, 3.73					
NMePh						3.27	7.3-7.6		
POM									1.22
NOE									
<i>Cis</i> isomer, 10%									
αΝΗ	αCH	ВСН2	γCH2	8CH2	Arom	NCH3	NPh		
Cinn	6.11	2.52 (CH3)			7.53, 7.58				
Tle 6.30	4.43		1.12						
Pro	4.36	2.06	2.09, 1.79	3.80, 3.50					
NMePh						3.31	7.3-7.6		
POM									1.22

 ^{13}C NMR (CDCl_3, 150 MHz) $\delta:$

17.6, 25.2, 26.6, 26.8, 29.6, 36.2, 37.7, 38.7, 48.8, 56.7, 57.7, 82.4, 121.2, 126.4, 126.5, 127.7, 127.9, 128.0, 129.8, 143.4, 145.5, Resonances from the cis isomer were not distinguishable from those of the trans. 149.9, 165.9, 169.8, 171.7, 176.6